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Abstract. We propose a biologically motivated computational step, called non-
classical receptive field (non-CRF) inhibition, to improve the performance of con-
tour detectors. We introduce a Gabor energy operator augmented with non-CRF
inhibition, which we call the bar cell operator. We use natural images with asso-
ciated ground truth edge maps to assess the performance of the proposed operator
regarding the detection of object contours while suppressing texture edges. The
bar cell operator consistently outperforms the Canny edge detector.

1 Introduction

In the early 1960s, an important finding in the neurophysiology of the visual system
of monkeys and cats was that the majority of neurons in the primary visual cortex
function as edge detectors. Such neurons react strongly to an edge or a line of a given
orientation in a given position of the visual field [1]. The computational models of two
types of orientation selective cell, called the simple cell and the complex cell, which
were developed, gave the basis for biologically motivated edge detection algorithms
in image processing. In particular, a family of two-dimensional Gabor functions was
proposed as a model of the receptive fields of simple cells [2] and subsequently used
widely in various image processing tasks, such as image coding and compression, face
recognition, texture analysis, and edge detection.

The behaviour of orientation selective cells has turned out to be more complex than
suggested by early measurements and models. In particular, the concept of a receptive
field — the region of the visual field in which an optimal stimulus elicits response
from a neuron — had to be reconsidered. This region is presently referred to as the
classical receptive field (CRF). Detailed studies have shown that once a cell is activated
by a stimulus in its CRF, another, simultaneously presented stimulus outside that field
can have effect on the cell response (cf. Fig. 1(a)). This, mostly inhibitive effect is
referred to asnon-classical receptive field inhibition, and it is exhibited by 80% of the
orientation selective cells [3]. In general, an orientation selective cell with non-CRF
inhibition responds most strongly to a single bar, line, or edge in its receptive field,
and shows reduced response when other such stimuli are present in the surrounding.
In an extreme case, the cell responds only to an isolated bar or line. Such cells have
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been found by neurophysiologists: Schiller et al. [4] found many cells in area V1 which
responded strongly to single bars and edges but did not respond to sine-wave gratings.
Similar cells were encountered by Peterhans and Von der Heydt [5]. This type of cell
was called thebar celland a computational model was proposed for it elsewhere [6].

The above mentioned neurophysiological behaviour of bar cells correlates well with
the results of various psychophysical experiments, which have shown that the percep-
tion of an oriented stimulus, such as a line, can be influenced by the presence of other
such stimuli (distractors) in its neighbourhood. This influence can, for instance, mani-
fest itself in an overestimation of an acute angle between two lines [7], or in an orienta-
tion pop-out effect, Fig. 1(b), or in a decreased saliency of groups of parallel lines [8].
Figure 1(c) illustrates the latter effect, where the perception of a contour is suppressed
by a grating.

CRF

Inhibition
surround

(a) (b) (c)

Fig. 1. (a) Non-CRF inhibition is caused by the surround of the CRF. (b) The pop-out effect of
an oriented line segment on a background of other segments (distractors): the segment pops out
only if its orientation is sufficiently different from that of the background. (c) The three legs of
the triangle are not perceived in the same way: the leg which is parallel to the bars of the grating
does not pop out as the other two legs.

In this paper, we examine the role of the non-CRF inhibition mechanism in the
process of edge detection and its potential usefulness in image processing and computer
vision. Our main hypothesis is that this mechanism suppresses edges which make part
of texture, while it does not suppress edges that belong to the contours of objects. An
edge detector which employs this inhibition mechanism will thus be more useful for
contour-based object recognition tasks, such as shape comparison [9], than traditional
edge detectors, which do not distinguish between contour and texture edges.

The paper is organized as follows. Section 2 describes the computational model. The
simple cell and complex cell models and the related Gabor and Gabor energy filters are
briefly discussed, and the bar cell operator is introduced. In Section 3, we evaluate the
performance of the bar cell operator, and compare it to the Canny edge detector. Finally,
we discuss possible extensions of the proposed model in Section 4.



52 C. Grigorescu, N. Petkov and M. A. Westenberg

2 Computational Model

2.1 Simple Cells and Gabor Filters

The spatial summation properties of simple cells can be modeled by a family of two-
dimensional Gabor functions [2]. We use a modified parameterization to take into ac-
count restrictions found in experimental data [6]. A receptive field function of such a
cell, in engineering terms the impulse response,gλ,σ,θ,ϕ(x, y), (x, y) ∈ Ω ⊂ R2, which
is centered around the origin, is given by:

gλ,σ,θ,ϕ(x, y) = e−
x̃2+γ2ỹ2

2σ2 cos(2π
x̃

λ
+ ϕ)

x̃ = x cos θ + y sin θ, ỹ = −x sin θ + y cos θ,
(1)

whereγ = 0.5 is a constant, called the spatial aspect ratio, that determines the ellip-
ticity of the receptive field. The standard deviationσ of the Gaussian factor determines
the linear size of the receptive field. The parameterλ is the wavelength and1/λ the
spatial frequency of the cosine factor. The ratioσ/λ determines the spatial frequency
bandwidth, and, therefore, the number of parallel excitatory and inhibitory stripe zones
which can be observed in the receptive field. In this paper, we fix the value of the ratio
σ/λ to σ/λ = 0.56, which corresponds to a half-response bandwidth of one octave.
The angle parameterθ, θ ∈ [0, π), determines the preferred orientation. The parameter
ϕ, ϕ ∈ (−π, π], is a phase offset that determines the symmetry ofgλ,σ,θ,ϕ(x, y) with
respect to the origin: forϕ = 0 andϕ = π it is symmetric (or even), and forϕ = −π2
andϕ = π

2 it is antisymmetric (or odd); all other cases are asymmetric mixtures.
The responserλ,σ,θ,ϕ(x, y) of a simple cell at position(x, y) to an input image with

luminance distributionf(x, y) is computed by convolution:

rλ,σ,θ,ϕ(x, y) = f(x, y) ∗ gλ,σ,θ,ϕ(x, y)

=
∫∫

Ω

f(u, v)gλ,σ,θ,ϕ(x− u, y − v) dudv.
(2)

The model used in [6] also involves thresholding and contrast normalization, but we do
not need these aspects of the function of simple cells in the context of this paper. In
image processing and computer vision, the filter defined by (2) is known as the Gabor
filter.

2.2 Complex Cells and Gabor Energy Filters

The Gabor energy is related to a model of complex cells which combines the responses
of a pair of simple cells with a phase difference ofπ

2 . The results of a pair of symmet-
ric and antisymmetric filters are combined, yielding the Gabor energyEλ,σ,θ(x, y) as
follows:

Eλ,σ,θ(x, y) =
√
r2
λ,σ,θ,0(x, y) + r2

λ,σ,θ,−π2
(x, y), (3)

whererλ,σ,θ,0(x, y) andrλ,σ,θ,−π2 (x, y) are the outputs of a symmetric and an antisym-
metric filter, respectively.
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In the following, we will use Gabor energy imagesEλ,σ,θi(x, y) for a number of
Nθ different orientations, withθi given by

θi =
iπ

Nθ
, i = 0, 1, . . . , Nθ − 1. (4)

2.3 Non-CRF Inhibition

We now extend the Gabor energy operator presented above with an inhibition term
to qualitatively reproduce the above mentioned non-CRF inhibition behaviour of most
orientation selective cells. For a given point in the image, the inhibition term is com-
puted in a ring-formed area surrounding the CRF centered at the concerned point, see
Fig. 1(a). We use a normalized weighting functionwσ(x, y) defined as follows:

wσ(x, y) =
1

||H(G4σ −Gσ)||
H(G4σ(x, y)−Gσ(x, y))

H(z) =

{
0 z < 0
z z ≥ 0

(5)

whereGσ(x, y) is a Gaussian defined by

Gσ(x, y) =
1√

2πσ2
e−

x2+y2

2σ2 . (6)

and||H(G4σ −Gσ)|| is theL1 norm ofG4σ(x, y)−Gσ(x, y):

||H(G4σ −Gσ)|| =
∫∫
|H(G4σ(x, y)−Gσ(x, y))| dx dy.

We model non-CRF inhibition by computing an inhibition termtλ,σ,θi(x, y) for
each orientationθi. This inhibition term is computed as a convolution of the Gabor
energyEλ,σ,θi(x, y) with the weighting functionwσ(x, y):

tλ,σ,θi(x, y) = Eλ,σ,θi(x, y) ∗ wσ(x, y) (7)

We now introduce a new operatorb̃λ,σ,θi(x, y) which takes as its inputs the Gabor
energyEλ,σ,θi(x, y) and the inhibition termtλ,σ,θi(x, y):

b̃λ,σ,θi(x, y) = H(Eλ,σ,θi(x, y)− αtλ,σ,θi(x, y)), (8)

with H(z) defined as in (5). The factorα controls the strength of the inhibition of the
surround on the Gabor energy operator. If there is no texture in the surrounding of a
given point, the response of this operator at that point will be equal to the response
of the Gabor energy operator. An edge passing through that point will be detected by
the introduced operator in the same way as it is detected by the Gabor energy opera-
tor (of appropriate orientation). However, if there are other edges in the surrounding,
the inhibition termtλ,σ,θi(x, y) may become so strong that it cancels completely the
contribution of the Gabor energy operator, resulting in zero response of the operator
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(a) (b) (c)

Fig. 2. (a) Synthetic input image. (b) The Gabor energy operator responds to lines and edges in-
dependently of the context, i.e., the surrounding in which these lines and edges are embedded. (c)
The bar cell operator responds selectively to isolated lines and edges and lines that are surrounded
by a grating of a different orientation. It does not respond to bars which make part of a grating.

introduced above. Notice that edges of the same orientation as the main stimulus will
have stronger suppression effect than edges of different orientations. We refer to this
type of suppression asanisotropicinhibition.

We now construct a new mapbλ,σ(x, y) with values of maximum response of
b̃λ,σ,θi(x, y) over all orientations:

bλ,σ(x, y) = max{b̃λ,σ,θi(x, y) | i = 0, 1, . . . , Nθ − 1}, (9)

and an orientation mapΘ(x, y) with the orientation for which this maximum response
is achieved:

Θ(x, y) = θk,

k = argmax{b̃λ,σ,θi(x, y) | i = 0, 1, . . . , Nθ − 1}.
(10)

The orientation map is needed in the binarization post-processing step, which involves
nonmaxima suppression and hysteresis thresholding [10]. The operator defined by (9)
will respond to isolated lines, edges, and bars, but it will not respond to groups of such
stimuli that make part of texture grating having the same orientation as a bar of optimal
orientation in the CRF, see Fig. 2(c). We will refer to this operator briefly as the ‘bar
cell operator’, in analogy with the function of the type of visual neuron that exhibits a
similar behaviour [6].

3 Performance Evaluation

Since the bar cell operator behaves as any traditional edge detector on isolated contours,
bars, and edges, but behaves differently on contours in the presence of surrounding
texture, we evaluate its performance on images representing objects on textured back-
ground. We selected a set of 20 images, and for each image, an associated ground truth
binary edge map was specified by a subject.
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3.1 Performance Measure

Let EGT andBGT be the set of edge pixels and background pixels of the ground truth
edge image, respectively, andED andBD be the set of edge pixels and background
pixels of the operator-detected edge image, respectively. The set of correctly detected
edge pixels isE = ED ∩ EGT. False negatives, i.e. ground-truth edges missed by the
edge detector, are given by the setEFN = EGT ∩ BD, while false positives (spurious
edges) are given by the setEFP = ED ∩ BGT. We define the following measure of the
performanceof the edge detector as:

P =
card(E)

card(E) + card(EFP) + card(EFN)
, (11)

in which card(X) denotes the number of elements of setX. The performance measure
P is a scalar taking values in the interval[0, 1]. If all true edge pixels are correctly
detected and no background pixels are falsely detected as edge pixels, thenP = 1. For
all other cases, the performance measure takes values smaller than one, being closer
to zero as more edge pixels are falsely detected and/or missed by the edge detector
operator. Since edges cannot always be detected at exact integer image coordinates,
we consider that an edge pixel is correctly detected if a corresponding ground truth
edge pixel is present in a5 × 5 square neighborhood centered at the respective pixel
coordinates.

3.2 Experimental Results

We assess the performance of the bar cell contour detector, and compare it to the per-
formance of the Canny edge detector [10]. This operator involves gradient magnitude
computation followed by nonmaxima suppression and hysteresis thresholding [10]. We
compute the gradient magnitude by convolution with the two directional derivatives of
a Gaussian, as proposed in [11].

The Canny edge detection operator has three parameters: (1)σ, the standard devia-
tion of a Gaussian smoothing kernel, (2)p, a percentage of candidate edge pixels which
are retained in the final edge map, from which a corresponding threshold valueth is
computed, and (3)t, a fraction ofth. The parametersp and t are used by hysteresis
thresholding. The bar cell contour detector has an additional parameterα, which is the
texture suppression factor.

For the Canny edge detector, we used eight scales,σ ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0,
2.2, 2.4}. For the bar cell contour detector, we used four scales covering the same do-
main,σ ∈ {1.2, 1.6, 2.0, 2.4} and two texture suppression factors,α ∈ {1.0, 1.2}. For
both methods, we applied five values ofp, p = {50%, 40%, 30%, 20%, 10%}; t was
fixed tot = 0.5 th. This results in 40 parameter combinations for each of the methods.
We usedNθ = 12.

Figure 3 shows edge maps for some of our test images. The first and second col-
umn show the input image and the ground truth image, respectively, while the third,
and fourth column show the results for the Canny edge detector and the bar cell con-
tour detector, respectively. The result images shown in Figure 3 correspond to parame-
ter values for which best results were obtained according to the performance measure
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introduced in (11). We also computed the percentage of false positivesefp as the num-
ber of false positives divided by the number of correctly detected edge pixels (efp =
card(EFP)/card(E)), and the percentage of false negativesefn as the number of false
negatives divided by the number of ground truth edge pixels (efn = card(EFN)/card(GT)).
The performance measures and percentages of false positives and false negatives are
displayed below each image.

The results show that the bar cell contour detector indeed suppresses edges in the
presence of surrounding texture. The second row (Goat 3) and third row (Gazelle) are
very good examples of this behaviour. The example on the second row (Goat 3) shows
also that the Canny edge map contains so many spurious edges that it is hard to distin-
guish the contours of the object. In contrast, distinguishing the object contours in the bar
cell edge map can be done without difficulty. The performance measure is consistently
higher for the bar cell contour detector (Fig. 4), and this is mostly due to a reduced
percentage of false positives. This is in agreement with the proposed model of the bar
cell: edges resulting from a texture background are suppressed, and object contours are
retained. An interesting case is the synthetic image on the fourth row. The response of
the bar cell operator agrees with our perceptual interpretation of the image: two lines
superimposed on oriented texture.

4 Discussion

The non-CRF inhibition algorithm presented in this paper treats different classes of
edges and lines in different ways:singlecontour lines and edges are not effected by the
inhibition, since they are considered as non-texture features, whilegroupsof lines and
edges are suppressed, since they are viewed as texture features. The model of non-CRF
inhibition we use in this study is simple and straightforward: the response of an orien-
tation and scale specific operator in a given position is suppressed by the responses of
the same operator in other positions outside the CRF. The model makes use of a single
parameterα that is the coefficient with which the weighted summation inhibition term
is taken into account. The value of this parameter can be determined in an optimization
problem derived from a specific goal, e.g. maximization of the performance of the oper-
ator for a certain set of images. Actually, for almost all natural images used we obtained
the best results with a value ofα around 1. One can think of more intricate or general
non-CRF inhibition models, such as the division normalization proposed in [12], where
the inhibition weights of the responses of all orientation and scale channels and all
positions are not fixed in advance but are determined such that mutual dependencies
between the ultimate responses are minimized.

Inhibition mechanisms have been applied previously to biologically motivated edge
detectors in order to improve certain aspects of their function. A symmetric Gabor filter,
will, for instance, respond not only along a line but also alongside the line at a certain
distance from it. Similarly, the largest response of an antisymmetric Gabor filter to a line
will be displaced from the line. In [13–15], various inhibition mechanisms have been
proposed to remove these flanking responses. These works differ from the current work
in two major aspects. First, the inhibition mechanisms act within the CRF. Second,
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Original Ground truth Canny Bar cell

Hyena P = 0.28, P = 0.51,
efp = 59%, efn = 50% efp = 37%, efn = 25%

Goat 3 P = 0.14, P = 0.32,
efp = 83%, efn = 55% efp = 36%, efn = 60%

Gazelle P = 0.25, P = 0.42,
efp = 70%, efn = 33% efp = 43%, efn = 36%

Triangle P = 0.04, P = 0.91,
efp = 95%, efn = 0% efp = 2%, efn = 6%

Fig. 3. Natural scenes with objects on textured background (first column), their corresponding
ground truth edge maps (second column), edge maps obtained with the Canny edge detector
(third column), and edge maps obtained with the bar cell contour detector (last column). Note
that for a given image the best performance results (top end of the whisker) need not be obtained
for the same combination of parameters of the two methods. The best performance result for the
“Gazelle” image, for instance, is obtained at a finer scale (i.e. smaller value ofσ) of Canny’s
algorithm than the scale of the bar cell operator.

the purpose of the inhibition is quite different: it deals with the removal of flanking
responses, rather than with the suppression of texture edges.

In this paper we address an anisotropic inhibition mechanism only. However, there
is physiological evidence that isotropic inhibition is equally important: approximately
one third of the cells with non-CRF modulation exhibit anisotropic inhibition while
another third are accounted for isotropic inhibition [16]. Elsewhere [17] we studied the



58 C. Grigorescu, N. Petkov and M. A. Westenberg

  C   B   C   B   C   B   C   B   C   B   C   B   C   B   C   B   C   B   C   B   C   B 

0

0.2

0.4

0.6

0.8

1

P
er

fo
rm

an
ce

G
ol

fc
ar

t

B
as

ke
t

B
ru

sh

T
ire

T
ria

ng
le

E
le

ph
an

t

H
ye

na

G
oa

t

G
oa

t 2

G
oa

t 3

G
az

el
le

Fig. 4.Box-and-whisker plots of the performance of the Canny edge detector (denoted by C) and
the bar cell contour detector with anisotropic inhibition (denoted by B) for some of the images
used in our experiments.

effect of both mechanisms. For natural images like those shown in Figure 3 we obtain
slightly better results using the isotropic inhibition, but perceptual effects like the ones
illustrated by Figures 1(b) and (c) can only be adequately explained by anisotropic
inhibition.

Applying inhibition on the Gabor energy may suggest that suppression takes place
at the complex-cell level. The same inhibition mechanism can be applied to the Gabor
filter output. This would correspond to suppression at the simple cell level.

The inhibitory term is computed by integrating in the surround of the response for
a given preferred spatial frequency and orientation. This, however, does not mean that
there will be inhibition only by gratings of that same frequency and orientation: within
a certain frequency range gratings and textures of nearby orientations and frequencies
will have an inhibitory effect as well. This range is determined by the band-pass char-
acteristic of the Gabor filter [6].

Due to the limited space, various aspects could not be treated in this study. In this
work we model only inhibitory modulations exhibited within the non-CRF. The physi-
ological and psychophysical literature contains evidences for contextual facilitation as
well [18]. Recent findings also show that the inhibition surround is not spatially sym-
metric, as suggested by our isotropic weighting function, but rather originates from
particular sectors of the surround [19]. Other limitations of the current study are the



Improved Contour Detection by Non-Classical Receptive Field Inhibition 59

fixed size of the inhibition surround and the limited range of the inhibition factorα. All
these aspects are worth undertaking further investigations.
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