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Abstract

We propose a computational step, called surround suppression, to improve detection of object contours and region boundaries in natural

scenes. This step is inspired by the mechanism of non-classical receptive field inhibition that is exhibited by most orientation selective

neurons in the primary visual cortex and that influences the perception of groups of edges or lines. We illustrate the principle and the effect of

surround suppression by adding this step to the Canny edge detector. The resulting operator responds strongly to isolated lines and edges,

region boundaries, and object contours, but exhibits a weaker or no response to texture edges. Additionally, we introduce a new post-

processing method that further suppresses texture edges. We use natural images with associated subjectively defined desired output contour

and boundary maps to evaluate the performance of the proposed additional steps. In a contour detection task, the Canny operator augmented

with the proposed suppression and post-processing step achieves better results than the traditional Canny edge detector and the SUSAN edge

detector. The performance gain is highest at scales for which these latter operators strongly react to texture in the input image.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Edge detection is considered a fundamental operation in

image processing and computer vision, with a large number

of studies published in the last two decades. In the context of

this paper, the term ‘edge’ stands for a local luminance

change for which a gradient can be defined and which is of

sufficient strength to be considered important in a given

task. Examples of edge detectors are operators that

incorporate linear filtering [6,13,25,35,41], local orientation

analysis [17,36,59], fitting of analytical models to the

image data [8,16,22,40] and local energy [12,24,30,39].

Some of these methods were biologically motivated

[24,25,35,39]. Since these operators do not make any

difference between various types of edges, such as texture

edges vs. object contours and region boundaries, they

are known as non-contextual or, simply, general edge

detectors [58].

Other studies propose more elaborate edge detection

techniques that take into account additional information

around an edge, such as local image statistics, image

topology, perceptual differences in local cues (e.g. texture,

colour), edge continuity and density, etc. Examples are dual

frequency band analysis [48], statistical analysis of the

gradient field [2,38], anisotropic diffusion [4,9,45,57],

complementary analysis of boundaries and regions

[32 –34], use of edge density information [10] and

biologically motivated surround modulation [19,31,46,47].

These operators are not aimed at detecting all luminance

changes in an image but rather at selectively enhancing only

those of them that are of interest in the context of a specific

computer vision task, such as the outlines of tissues in

medical images, object contours in natural image scenes,

boundaries between different texture regions, etc. Such

methods are usually referred to as contextual edge detectors.

The human visual system differentiates in its early stages

of visual information processing between isolated edges,

such as object contours and region boundaries, on the one

hand, and edges in a group, such as those in texture, on the

other. Various psychophysical studies have shown that the

perception of an oriented stimulus, e.g. a line segment, can

be influenced by the presence of other such stimuli
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(distractors) in its neighbourhood. This influence can, for

instance, manifest itself in the decreased saliency of a

contour in presence of surrounding texture [11,27] (Fig. 1),

in the so-called orientation contrast pop-out effect [43], or in

the decreased visibility of letters, object icons, and bars

embedded in texture [47,54]. These visual perception effects

are in agreement with the results of neurophysiological

measurements on neural cells in the primary visual cortex.

These studies show that the response of an orientation

selective visual neuron to an optimal bar stimulus in its

receptive field1 is reduced by the addition of other oriented

stimuli to the surround [28,29,44]. Neurophysiologists refer

to this effect as nonclassical receptive field (non-CRF)

inhibition [29,44] or, equivalently, surround suppression

[26]. Statistical data [26,29,44] reveals that about 80% of

the orientation selective cells in the primary visual cortex

show this inhibitory effect. In approximately 30% of all

orientation selective cells, surround stimuli of orientation

that is orthogonal to the optimal central stimulus have a

weaker suppression effect than stimuli of the same

orientation (anisotropic inhibitory behavior), see

Fig. 2(a)–(c). In 40% of the cells, the suppression effect

manifests itself irrespective of the relative orientation

between the surrounding stimuli and the central stimulus

(isotropic inhibitory behavior), see Fig. 2(e)–(g).

In [19,47], it was suggested that the biological utility of

non-CRF inhibition is contour enhancement in natural

images rich in background texture. In that study, contour

detection operators were proposed that combine two

biologically motivated steps: Gabor energy edge detection

followed by non-CRF inhibition. In the current study, we

demonstrate that the usefulness of non-CRF inhibition is

not limited to biologically motivated contour detection

operators only. We incorporate a non-CRF inhibition step

into a typical gradient-based edge detector, the Canny

operator that is widely used in image processing and

computer vision, and show that this results in better

enhancement of object contours and region boundaries in

presence of texture. Since the terminology related to

receptive fields is less appropriate in this more general

computer vision context, throughout the paper, we refer to

the mechanism inspired by non-CRF inhibition as surround

suppression. Furthermore, we propose a new post-processing

method based on hysteresis thresholding of the suppression

slope, a measure characteristic of the context in which an

edge appears (stand-alone contour vs. a texture edge).

The paper is organized as follows. Section 2 reviews

gradient-based edge detection, describes two mechanisms

of surround suppression, anisotropic and isotropic, and

introduces the suppression slope thresholding technique. In

Section 3, we use a measure defined elsewhere [19] to

evaluate the performance of the proposed contour and

boundary enhancement steps. The Canny edge detector

augmented with these steps is compared with the traditional

Canny edge detector [6] and the SUSAN operator [53].

Finally, in Section 4, we summarize the results, review

similar work, and draw conclusions.

2. Surround suppression augmented operators

In the following, we propose two gradient-based contour

and boundary detection operators that incorporate surround

suppression. As a first step in our method, we compute a

scale-dependent gradient, a technique similar to that

proposed by Canny [6]. We start by reviewing scale-

dependent gradient computation briefly, and then introduce

two types of surround suppression and a new post-processing

step.

2.1. Scale-dependent gradient computation

Gradient methods for edge detection compute the

luminance gradient for each pixel of the image. When

using finite differences in a very small neighborhood, the

gradient is susceptible to image noise and discretization

effects. In order to diminish such influences, it is customary

to apply first some type of smoothing. For example, in

Canny’s original formulation, the input image f ðx; yÞ is first

smoothed by convolving it with a two-variate Gaussian

function gsðx; yÞ :

fsðx; yÞ ¼ ðf p gsÞðx; yÞ; ð1Þ

where

gsðx; yÞ ¼
1

2ps 2
exp 2

x2 þ y2

2s 2

 !
: ð2Þ

The scale-dependent gradient of f ðx; yÞ; defined as the

gradient of the smoothed function fsðx; yÞ,

7fsðx; yÞ ¼

�
›fsðx; yÞ

›x
;
›fsðx; yÞ

›y

�
;

Fig. 1. (a) An isolated contour is more salient than (b) the same contour

embedded in texture [11].

1 The concept of receptive field or, more precisely, classical receptive

field (CRF) used in neurophysiology corresponds to the concept of support

of the impulse response used in image processing. It is the area in which an

impulse stimulus affects the firing rate of the neuron. In neurophysiological

practice, the CRF of an orientation selective neuron is determined by using

a bar stimulus of certain optimal size and orientation.
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is then computed using finite differences. However, this

method of differentiation has the drawback of being

analytically ill-posed. The derivative of a mathematical

distribution (in our case an image), can be obtained by

convolving the distribution with the derivative of a smooth

test function (e.g. a Gaussian) [49]. In agreement with this

proposition and following [56], we choose to compute

7fsðx; yÞ by evaluating the right-hand side of the following

equation:

7fsðx; yÞ ¼ ðf p 7gsÞðx; yÞ; ð3Þ

which has the advantage that 7gsðx; yÞ is analytically well-

defined and no finite difference computations are needed.

Let 7xfsðx; yÞ and 7yfsðx; yÞ be the x- and y-components

of the scale-dependent gradient Eq. (3):

7x fsðx; yÞ ¼ f p
›gs

›x

� �
ðx; yÞ; ð4Þ

7y fsðx; yÞ ¼ f p
›gs

›y

� �
ðx; yÞ:

The scale-dependent gradient magnitude Msðx; yÞ and

orientation Qsðx; yÞ are then given by:

Msðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð7x fsðx; yÞÞ

2 þ ð7y fsðx; yÞÞ
2

q
; ð5Þ

Qsðx; yÞ ¼ atan
7y fsðx; yÞ

7x fsðx; yÞ

� �

The local maxima of the gradient magnitude Msðx; yÞ in

orientation Qsðx; yÞ are good indicators of possible edge

locations in an image. The derivative of a Gaussian is

an optimal step-edge detector in that it maximizes the

signal-to-noise ratio in presence of Gaussian noise while

maintaining good localization of the response, as first

shown by Canny [6] and further studied by Tagare and

de Figueiredo [56].

2.2. Surround suppression

Next, we extend the gradient magnitude operator defined

above with a term which takes into account the context

influence of the surroundings of a given point. Let

DoGsðx; yÞ be the following difference of two Gaussian

functions:

DoGsðx; yÞ ¼
1

2p ð4sÞ2
exp 2

x2 þ y2

2ð4sÞ2

 !

2
1

2ps 2
exp 2

x2 þ y2

2s 2

 !
: ð6Þ

We define a weighting function wsðx; yÞ as follows:

wsðx; yÞ ¼
HðDoGsðx; yÞÞ

kHðDoGsÞk1
; ð7Þ

where

HðzÞ ¼
0 z , 0

z z $ 0;

(

and k·k1 is the L1 norm.

We implement surround suppression by computing an

inhibition term for every point of an image. This term is a

weighted sum of the values of the gradient in the

suppression surround of the concerned point (Fig. 3). The

distance between this point and a surround point is taken

into account by the weighting function ws: In the following

subsections, we introduce operators that deploy surround

suppression in two different ways: anisotropic and isotropic.

Fig. 2. Responses of two visual neurons showing anisotropic (left) and isotropic (right) inhibitory behavior, respectively (redrawn from [44], courtesy of H.C.

Nothdurft, J. Gallant, D.C. van Essen, and Cambridge University Press). (a),(e) Response to a single bar of optimal size and orientation inside the CRF,

delineated by a dotted rectangle. (b),(f) Decreased response is recorded when texture consisting of identical bars with the same orientation is present in the area

outside the CRF. (c) For one of the cells (left) the inhibitory effect is small when the orientation of the surrounding bars is orthogonal to that of the optimal

stimulus in the CRF (anisotropic surround inhibition). (g) For the other neuron (right), the inhibitory effect does not depend on the relative difference in the

orientation between the surrounding bars and optimal stimulus in the CRF (isotropic surround inhibition). (d), (h) In absence of the optimal stimulus, the

response of both cells is reduced to the level of spontaneous activity.
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2.2.1. Anisotropic surround suppression

In the case of anisotropic suppression, the difference in

the gradient orientations in the central point and a surround

point is taken into account by an additional factor. For a

point ðx; yÞ in the image with a gradient orientation Qsðx; yÞ

and a point ðx 2 u; x 2 vÞ in the suppression surround with a

gradient orientation Qsðx 2 u; y 2 vÞ; we define this factor

as follows:

DQ;sðx; y; x 2 u; y 2 vÞ

¼ lcosðQsðx; yÞ2Qsðx 2 u; y 2 vÞÞl: ð8Þ

If the gradient orientations at points ðx; yÞ and ðx 2 u; y 2 vÞ

are identical, the weighting factor takes a maximum

ðDQ;s ¼ 1Þ; the value of the factor decreases with the

angle difference Qsðx; yÞ2Qsðx 2 u; y 2 vÞ; and reaches a

minimum ðDQ;s ¼ 0Þ when the two gradient orientations are

orthogonal. In this way, edges in the surround of point ðx; yÞ

which have the same orientation as an edge at point ðx; yÞ

will have a maximal inhibitory effect. The visual cell whose

response to various oriented stimuli is illustrated by the left

diagram in Fig. 2 exhibits this type of behavior.

For each image point ðx; yÞ we now define an anisotropic

suppression term tA
sðx; yÞ as the following weighted sum of

the gradient magnitude values in the suppression surround

of that point:

tA
sðx; yÞ ¼

ðð
V

Msðx 2 u; y 2 vÞwsðu; vÞ

� lcosðQsðx; yÞ2Qsðx 2 u; y 2 vÞÞldu dv; ð9Þ

where V is the image coordinate domain. The two weighting

factors (wsðu; vÞ and the cosine) take into account the

distance and the gradient orientation difference, respect-

ively. This integral can be computed efficiently by

convolution, as described in detail in Appendix A.

We now introduce an operator CA
sðx; yÞ which takes as its

inputs the gradient magnitude Msðx; yÞ and the suppression

term tA
sðx; yÞ:

CA
sðx; yÞ ¼ HðMsðx; yÞ2 atA

sðx; yÞÞ; ð10Þ

with a half-wave rectification function HðzÞ defined as in

Eq. (7). The factor a controls the strength of the suppression

of the surround on the gradient magnitude. If there is no

texture in the surroundings of a given point, the response of

this operator at that point will be equal to the gradient

magnitude response Msðx; yÞ: An edge passing through that

point will be detected by this operator in the same way as it

is detected by the gradient magnitude. However, if there are

many other edges of the same orientation in the surround-

ings, the suppression term tA
sðx; yÞ may become so strong

that it cancels out the contribution of the gradient

magnitude, resulting in a zero response. Defined in this

way, the operator will respond to isolated lines and edges

and to (texture) region boundaries, but it will not respond to

groups of such stimuli that make part of texture of the same

orientation, see Fig. 4(c). The response at texture bound-

aries is higher than the response in the interior of a texture

region because the inhibition term takes smaller values at

such boundaries.

Fig. 3. The central region with radius r1; r1 < 2s; can be considered as the

support of the scale dependent gradient operator 7fs: The suppression

originates from an annular surround with inner radius r1: The contribution

of points at distances larger than r2 ¼ 4r1 can be neglected, so that r2 can be

thought of as the outer radius of the suppression surround.

Fig. 4. (a) Synthetic input image. (b) The gradient magnitude operator detects all lines and edges independently of the context, i.e., the surroundings in which

these lines and edges are embedded. (c) The gradient magnitude operator augmented with anisotropic surround suppression responds selectively to isolated

lines and edges, to lines that are surrounded by a grating of a different orientation, and to region boundaries. Interior texture edges are suppressed. (d) The

gradient magnitude operator with isotropic surround suppression responds selectively only to isolated lines and edges and also to (texture) region boundaries.

Interior texture edges and lines embedded in texture of any orientation are suppressed.
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2.2.2. Isotropic surround suppression

We implement isotropic surround suppression by

computing a suppression term tI
sðx; yÞ that does not depend

on the orientation of surround edges; only the distance to

such edges is taken into account. The suppression term

tI
sðx; yÞ is defined as a convolution of the gradient magnitude

Msðx; yÞ with the weighting function wsðx; yÞ:

tI
sðx; yÞ ¼

ðð
V

Msðx 2 u; y 2 vÞwsðu; vÞdu dv: ð11Þ

We introduce a second contour operator CI
sðx; yÞ which

takes as its inputs the gradient magnitude and the isotropic

suppression term tI
sðx; yÞ:

CI
sðx; yÞ ¼ HðMsðx; yÞ2 atI

sðx; yÞÞ: ð12Þ

As before, the factor a controls the strength of suppression

exercised by the surround on the gradient magnitude. This

operator responds to isolated lines and edges in the same way

as the operator with anisotropic suppression, but it does not

respond to groups of such stimuli of any orientation that make

part of the interior of a texture region, see Fig. 4(d). At the

boundary of an edge texture region with another region that is

not rich in edges, this operator will respond more strongly

than to the texture interior. In this way, such boundaries

will be enhanced in the operator output. Boundaries of

two texture regions that are defined by orientation contrast

will, however, not be detected by this operator.

2.3. Binary map computation

Binary contour and boundary maps can be extracted from

the surround suppressed responses CA
sðx; yÞ and CI

sðx; yÞ by

non-maxima suppression and hysteresis thresholding

similar to the way this is done using the gradient [6,55]. In

the following, we will use the shorthand notation Csðx; yÞ for

either CA
sðx; yÞ or CI

sðx; yÞ: For briefness, we will use the term

contour for either an object contour or a region boundary.

2.3.1. Thinning by non-maxima suppression

Non-maxima suppression thins the areas in which

Csðx; yÞ is non-zero to one-pixel wide candidate contours

as follows: For each position ðx; yÞ; two responses Csðx
0; y0Þ

and Csðx
00; y00Þ in adjacent positions ðx0; y0Þ and ðx00; y00Þ that

are intersection points of a line passing through ðx; yÞ in

orientation Qsðx; yÞ and a square defined by the diagonal

points of an 8-neighbourhood are computed by linear

interpolation, cf. Fig. 5. If the response Csðx; yÞ at ðx; yÞ is

greater than both these values (i.e. it is a local maximum

along the concerned line), it is retained, otherwise it is

assigned the value zero.

2.3.2. Hysteresis thresholding using the contour strength

Next, a binary map is computed from the candidate

contour pixels by hysteresis thresholding. This process

involves two threshold values tl and th; tl , th. Commonly,

the high threshold value th is computed as a ð1 2 pÞ-quantile

of the distribution of the response values at the candidate

contour pixels, where p is the minimum fraction of candidate

pixels to be retained in the contour map. Candidate contour

pixels with responses higher than th are definitely retained in

the contour map, while the ones with responses below the low

threshold tl are discarded. Candidate contour pixels with

responses between tl and th are retained if they can be

connected to any candidate contour pixel with a response

higher than th through a chain of other candidate contour

pixels with responses larger than tl:

2.3.3. Hysteresis thresholding using the suppression slope

An additional processing step that we present in the

following further improves contour detection results.

Consider the synthetic input image presented in Fig. 6(a)

and two points A and B in the image. These are points in

which the gradient magnitude (after the application of

surround suppression) has local maxima and are, thus,

potential contour points.

Note that, where positive, the surround suppressed

response Csðx; yÞ depends linearly on the suppression factor

a; cf. Eqs. (10) and (12). From this linear dependence, it

follows that the ratio

Csðx; yÞ

Msðx; yÞ
¼ H 1 2 a

tsðx; yÞ

Msðx; yÞ

� �
; ð13Þ

as a function of a; takes values on a line with a slope gðx; yÞ;

that we call the suppression slope, given by:

gðx; yÞ ¼ atan
tsðx; yÞ

Msðx; yÞ

� �
: ð14Þ

The suppression slope gðx; yÞ depends on the amount of

texture surrounding the concerned point. For instance, the

slope at the contour point A is smaller than the slope at a

point in a textured area, like B, see Fig. 6(b).

If the value of the suppression slope is large in a given

point, this means that the surround suppression is significant

at that point. Consequently, the concerned point is

considered to lie in a texture region and can be eliminated

from the contour map. A threshold condition can be

imposed on the value of the suppression slope gðx; yÞ to

discriminate between contour and texture points: points at

which this slope takes values that are larger than a given

threshold value can be eliminated form the contour map. A

large threshold value will eliminate only a small amount of

potential texture edges, while a small threshold value will

eliminate such edges more substantially.

Fig. 5. Interpolated responses at positions ðx0; y0Þ and ðx00; y00Þ: Non-maxima

suppression retains the value in the central pixel ðx; yÞ if it is larger than the

values at ðx0; y0Þ and ðx00; y00Þ:
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Although a single threshold has the advantage of

simplicity, it leads in most cases to a streaking effect in

the final result (discontinuous segments originating from

the same contour). To reduce this effect, we apply

hysteresis thresholding on the values of gðx; yÞ: A low

hysteresis threshold gl is computed as a pðgÞ-quantile of

the distribution of suppression slope values, where pðgÞ is

the minimum fraction of contour pixels to be definitely

retained in the final contour map. (Only pixels obtained

by the first hysteresis thresholding operation are con-

sidered). A high suppression slope threshold value gh is

selected as a multiple of gl: In our experiments, we

choose a fixed ratio gh ¼ 2gl: Points with gðx; yÞ , gl are

labelled as contour points and retained in the final contour

map; the points with gðx; yÞ . gh are considered texture

edge points and are eliminated. Finally, those points with

gl , gðx; yÞ , gh which can be connected through a chain

of other similar points to a contour point are retained,

otherwise eliminated.

To summarize, we perform the following post-proces-

sing steps on the surround suppressed response of the

gradient magnitude Csðx; yÞ :

(i) thinning by non-maxima suppression of Csðx; yÞ;

(ii) binarization by (hysteresis) thresholding applied on the

result of (i);

(iii) selection of contour pixels from the result of (ii) by

(hysteresis) thresholding of the suppression slope.

This process is illustrated for a natural image in Fig. 7.

Fig. 6. (a) Points of local maxima of the surround suppressed gradient magnitude response: a point A from a contour and a point B inside a texture region. (b) At

each point ðx; yÞ; the ratio Csðx; yÞ=Msðx; yÞ is a linear function of a that has a slope gðx; yÞ that is determined by the gradient values in the surroundings of ðx; yÞ

and is different for a contour point and a texture point: the slope for the contour point A is smaller than the slope for the texture point B, gA , gB:

Fig. 7. (a) Original input image (512 £ 512 pixels). (b) Gradient magnitude Msðx; yÞ for s ¼ 1:6: (c) Anisotropic and (d) isotropic surround suppressed

responses for a ¼ 1:0: (e) Binary map obtained from (b) by non-maxima suppression and hysteresis thresholding (p ¼ 0:1) as in Canny’s algorithm. (f), (g)

Binary maps extracted from (c) and (d), respectively, by non-maxima suppression and hysteresis thresholding ðp ¼ 0:1Þ and subsequent contour pixel selection

by hysteresis thresholding of the suppression slope ðpðgÞ ¼ 0:1Þ:
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3. Experimental results

3.1. Subjectively specified desired output

Most state-of-the-art methods for performance evalu-

ation of edge and contour detectors use natural images

(photographs) with associated desired operator output that is

subjectively specified by an observer [5]. Some recent

studies [50–52] show that the performance of such an

operator must be considered task dependent. For object

recognition, for example, some operators may perform

better than others despite similar performance on synthetic

images. The proposed surround suppression mechanisms

aim explicitly at better detection of object contours and

region boundaries in natural scenes.

We took 40 images which depict either man-made

objects on textured backgrounds or animals in their natural

habitat. For each image, an associated desired output binary

contour map was drawn by hand2. A pixel is marked as a

contour pixel in the desired output if (i) it is a part of an

occluding contour of an object or it belongs to a contour in

the interior of an object or if (ii) it makes part of a boundary

between two (textured) regions, e.g. sky and grass or water

and sky. The desired output is thus defined subjectively

similar to the way this is done for image segmentation in

[37]. However, our procedure for defining the desired output

is different in two aspects: (i) we obtain contour and

boundary maps and not region maps; (ii) we use more

explicit selection criteria. Fig. 8 presents three natural

images from the evaluation database together with their

corresponding desired output contour maps.

3.2. Performance measure

We use the performance measure introduced in [19], and

first review this measure briefly. Let EDO and BDO be the set

of contour and background pixels3, respectively, of the

desired output contour map and ED and BD be the set of

contour and background pixels of the contour image

generated by a given operator. The set of correctly detected

contour pixels is defined as E ¼ ED > EDO: False negatives,

i.e. desired output contour pixels missed by the operator,

comprise the set EFN ¼ BD > EDO: False positives, i.e.

pixels for which the detector indicates the presence of a

contour while they belong to the background of the desired

output, define the set EFP ¼ ED > BDO:

The performance measure introduced in [19] is defined

as follows:

P ¼
cardðEÞ

cardðEÞ þ cardðEFPÞ þ cardðEFNÞ
; ð15Þ

where cardðXÞ denotes the number of elements of set X:

The performance measure P is a scalar taking values in

the interval [0,1]. If all desired output contour pixels are

correctly detected and no background pixels are falsely

detected as contour pixels, then P ¼ 1: For all other cases,

the performance measure takes values smaller than one,

being closer to zero as more contour pixels are falsely

detected and/or missed by the operator.

Since a subjectively identified contour does not always

exactly coincide with a local maximum of the gradient

magnitude operator (an effect known from psychophysics),

we consider that a contour pixel is correctly detected by the

operator if a corresponding desired output contour pixel is

present in a 7 £ 7 square neighbourhood centered at the

concerned pixel. In our implementation, we take a pixel

from a list of contour pixels generated by the operator and

look for a matching pixel (within the mentioned neighbour-

hood) in a list of desired output contour pixels. If such a

match is found, both pixels are removed from the

corresponding lists. After the whole list of contour pixels

generated by the operator is processed in this way, the pixels

which remain on that list are considered as false positives.

Such a pixel was marked by the operator as a contour pixel

while it has no counterpart contour pixel in the desired

output. The pixels that remain on the desired output list after

the elimination process are the false negatives: these are the

positions which the operator wrongly failed to mark as

contour pixels.

3.3. Performance evaluation

We compare the performance of the surround suppres-

sion augmented operators defined above with two other

operators: the traditional Canny and the SUSAN edge

detector. Our choice of these detectors is motivated, for the

former, by its wide acceptance, and for the latter by a recent

study [52], which shows that it performs best in an object

recognition task based on edge information when compared

with six other operators.

The SUSAN edge detector [53] is based on nonlinear

processing performed on a circular neighbourhood. Given

an image pixel and a disk of a certain radius centered at that

pixel, the method counts the number of pixels inside the disk

that have intensity values within a certain threshold

difference t from the central pixel. An edge strength is

estimated by subtracting this pixel count from a fraction

(usually three quarters) of the disk area. When this

difference is negative, the edge strength is assumed to

be 0. Edge direction is found by computing a local axis of

symmetry (second order x-axis and y-axis moments) on the

support of the disk. The final binary edge map is computed

by thinning and binarization. For noise removal, a nonlinear

smoothing operation which preserves edge location can be

first applied in a given neighbourhood. We computed

SUSAN edges by running the program first in the so-called

smoothing mode and then applying the edge detector. In our

experiments, the parameters were: d; the radius of

2 The database of images and their desired output contour maps is

available at: http://www.cs.rug.nl/~imaging.
3 The subscript GT (ground truth) was used in [19] instead of DO (desired

output).

C. Grigorescu et al. / Image and Vision Computing 22 (2004) 609–622 615

http://www.cs.rug.nl/~imaging


the neighbourhood in which nonlinear smoothing is applied,

called by the authors of SUSAN the distance threshold (in

pixels), and the above mentioned threshold luminance

difference t:

In our experiments, the Canny edge detector has two

parameters: the standard deviation s of the Gaussian

derivative kernel used for gradient computation and p; the

minimum fraction of candidate edge pixels which must be

retained in the final edge map, further used to compute a

high threshold value th: We work with a low threshold value

tl ¼ 0:5th:

Finally, the proposed surround suppression augmented

operators have the same parameters as Canny’s operator,

and additionally, a suppression factor a and a fraction pðgÞ of

the edge pixels (after thinning and gradient strength

thresholding) which are definitely considered to be contour

pixels. For the additional post-processing step described in

Section 2.3, we fixed the value of the parameter pðgÞ to

pðgÞ ¼ 0:10: Notice that the Canny operator can be obtained

as a special case of the surround suppression augmented

operators for a ¼ 0 and pðgÞ ¼ 1:

The values of various parameters were chosen as follows.

For the Canny edge detector, we used 8 scales, sk ¼ ð
ffiffi
2

p
Þk;

k [ {–1…6}: For the surround suppression operator we

used 4 scales covering the same domain sampled at even

values of k; k [ {0; 2; 4; 6} and 2 surround suppression

factors, a [ {1:0; 1:2}: For both methods, we applied 5 high

hysteresis threshold values on the gradient, corresponding to

p [ {0:5; 0:4; 0:3; 0:2; 0:1}: This results in 40 parameter

combinations for each of these methods.

For the SUSAN edge detector we also chose 40

combinations of parameters, from eight values of

the distance threshold dk twice as big as the values of

sk used in Canny’s case, dk ¼ 2sk; k [ {–1…6}; and

five threshold luminance difference values t [
{5; 10; 15; 20; 25}: The distance threshold values dk lead to

a comparable spatial support (in pixels) of the two types of

operator.

We evaluated the performance of the operators as

formulated in Eq. (15). For each image, we computed a

binary contour map for each combination of parameters and

calculated the corresponding performance value by compar-

ing this contour map with the subjectively defined desired

output. In this way, a set of 40 performance values was

obtained for each input image and each operator.

Fig. 9 shows examples of the best contour maps (i.e. the

maps with the largest value of the performance) obtained at

small, medium, and large scales for all possible values of

post-processing parameters. At small scales ðk [ {–1; 0}Þ

that, for these particular images, correspond to the high

spatial frequencies present in the texture background, the

best contour maps produced by the two suppression

augmented operators consist mainly of the real object

contours and region boundaries (see Fig. 9, left column). In

contrast, the Canny and SUSAN operators produce output

that is rich in texture edges. At medium scales ðk [
{1; 2; 3; 4}Þ; this difference is less pronounced (Fig. 9, middle

column) and at large scales ðk ¼ 5; 6Þ the outputs of the

suppression augmented operators and Canny operator are

very similar (Fig. 9, right column). As can be seen from Fig. 9,

the suppression augmented operators give comparable

output across all scales, while Canny and SUSAN operators

are vulnerable to texture at scales for which operator support

and texture details are in a certain size agreement.

Fig. 8. Natural images (first row) and their associated desired output contour maps (second row).
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This behavior is revealed also by a closer analysis of the

performance values at different scales. Fig. 10 shows the

performance values as statistical box-and-whisker plots

computed for small scales (top part), large scales (middle

part) and all scales used in our experiment (bottom part). For

each method, the best performance value is represented by

the top end of the corresponding whisker. Indeed, at small

scales, the isotropic and anisotropic surround suppression

augmented operators outperform substantially Canny and

SUSAN edge detectors. The same conclusion does not hold

for large scales, mainly because the support of the Gaussian

function used in the Canny detector or the area of smoothing

Fig. 9. A natural input image and its desired output contour map (first row). Best binary contour maps obtained for the Canny edge detector (second row),

SUSAN edge detector (third row), anisotropic and isotropic surround suppression augmented operators (fourth and fifth row, respectively). The best contour

map is the one that results in the best performance value over all combinations of post-processing parameters at small scales ðk [ {-1; 0}; left column), medium

scales (k [ {1; 2; 3; 4}; middle column) and large scales (k [ {5; 6}; right column).
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used by the SUSAN detector are large enough to average out

and thus eliminate the high frequency edges originating

from texture areas.

Over all scales, however, the median values obtained for

isotropic and anisotropic surround suppression are larger

than the ones delivered by the Canny and SUSAN detectors.

Thus, in circumstances in which no information regarding

the best set of parameters is available, by choosing a

random set of parameter values, there is a higher probability

that the results delivered by the surround suppression

operators will be better than those obtained by Canny and

SUSAN.

An interesting case is the synthetic image presented in

Fig. 11(a). Our perceptual interpretation of the image, two

lines superimposed on a grating of parallel lines of a

different orientation, is only mimicked by the anisotropic

suppression operator, Fig. 11(e). The traditional Canny

operator, SUSAN and the isotropic suppression operator,

Fig. 11(c), (d) and (f), respectively, do not deliver results

that match human perception.

4. Summary and discussion

4.1. Summary

We have shown how a biologically motivated processing

step, called surround suppression, can be added to a

traditional gradient-based edge detector to achieve better

contour detection in natural images. The model of surround

suppression we use is simple and straightforward: the

response of an edge detection operator in a given point is

suppressed by a weighted sum of the responses of the same

operator in an annular neighborhood of that point. In this

way, the proposed additional step acts as a feature contrast

computation, with edges being the features involved. This

step contributes to better contour detection not by means of

responding more strongly to contours as compared with a

traditional non-contextual edge detector but rather by means

of suppressing texture edges. The result of this texture edges

suppression is better contour visibility in the operator

output. We considered two types of suppression, isotropic

and anisotropic, and showed that they give comparable

results on natural images. Certain perceptual effects related

to orientation contrast can, however, be explained only by

the anisotropic suppression mechanism. Furthermore, we

introduced a new post-processing step, we called hysteresis

thresholding of the suppression slope, aimed at further

elimination of the operator response to edges which

originate from textured regions.

Our experiments with a large set of natural images show

that for images rich in texture background, surround

suppression effectively separates contours from texture.

This is important at scales for which the spatial support of

the deployed edge detection operator is comparable to some

characteristic size of the texture available in the input

Fig. 10. Box-and-whisker plots of the performance of the Canny edge

detector (denoted by C), SUSAN edge detector (denoted by S), the

anisotropic (denoted by A), and isotropic (denoted by I) surround

suppression augmented operators for some of the test images. Each box

is a concise representation of essential features of the statistical distribution

of performance values obtained for a given operator and a given input

image and all possible parameter combinations. The plots display

separately the values of the performance for small scales (k [ { 2 1; 0};

top), large scales (k [ {5; 6}; middle), and across all values of the scales

(k [ { 2 1;…; 6}; bottom).

C. Grigorescu et al. / Image and Vision Computing 22 (2004) 609–622618



image. At such scales, a non-contextual edge detector, such

as the traditional Canny operator or SUSAN, generates

strong responses to the texture regions. Object contours can

be difficult to identify in the output of such an operator. In

contrast, an edge detector that is augmented with the

proposed surround suppression step does not respond

strongly to texture edges while it responds to object

contours. Consequently, the proposed suppression augmen-

ted operators outperform considerably non-contextual edge

detectors in terms of a performance measure that favors the

detection of contours only. Specifically, we showed that for

a broad range of scales, the proposed surround suppression

operators perform better than the Canny and SUSAN edge

detectors. The performance difference is particularly large

at scales for which the latter operators respond strongly to

texture available in an input image.

4.2. Related work

A distinction between different types of luminance

transitions, such as texture edges on the one hand vs.

edges that arise from surface discontinuities and occluding

boundaries on the other, was proposed as early as in 1982

[48]. The authors of that work formulated a method to select

only some of the zero-crossings obtained by two difference-

of-Gaussians (DoG) filters, one with a high-bandpass and

the other with a low-bandpass characteristic. The method is

based on the observation that texture edges induce a strong

response only in the high-bandpass filter. Only luminance

changes, such as a step edge, that induce strong responses in

both filters are retained. This method, however, has

the drawback that together with texture edges it removes

the contours of small objects and lines that are narrow

(compared to the support of the low-pass filter). Since the

deployed DoG filters involve no orientation dependence,

this method will furthermore fail to detect region boundaries

defined by orientation contrast.

In [10] it is proposed to make distinction between

different types of edges: dust (short isolated line segments),

(isolated) curves, flow (dense edge patterns with locally

parallel orientation) and turbulence (dense edge patterns

with locally random orientation). Two local complexity

measures, normal and tangential complexity (essentially the

densities of edges in normal and tangential orientation of a

given edge), are proposed and deployed for classification of

edges in one of these four categories. The authors of that

work succeed to explain certain perceptual effects and from

their curve map illustrations one can infer that their method

can be used for contour enhancement. However, since the

goal of that work seems to be quite different, no quantitative

analysis and algorithm evaluation for contour detection was

made. Furthermore, the referred method is quite complex

and it is not clear how crucial parameter selection (e.g. for

tangent statistics extraction) is for success.

A very comprehensive model of intracortical interactions

in area V1 of the visual cortex was proposed in [31]. Next to

inhibition, it incorporates enhancement and dynamical

aspects. That model takes into account most of the know-

ledge available in psychophysics and physiology and is able

to explain a number of effects known in these areas. This was

also the very purpose of that work that also includes a

very good discussion of previous studies in that direction

Fig. 11. (a) A synthetic input image (after [14]). (b) Associated desired contour output that agrees with common contour perception. Responses of (c) Canny

and (d) SUSAN edge detectors, and the (e) anisotropic and (f) isotropic surround suppression augmented operators. Only the anisotropic suppression operator

(e) mimics common contour perception (b).
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[7,20,21]. In contrast, the current article is not focused on

unveiling the biological role of intracortical interactions; we

addressed this problem elsewhere [19,46,47]. In this paper

we propose a simple algorithmic step that can be added to

almost any edge detector in order to achieve improved

contour detection. In the context of this study, obtaining a

practical computer vision algorithm is an aspect that is

considered more important than the original biological

motivation. Therefore a performance comparison of the

two approaches is not appropriate. Instead, we only point out

some essential differences in the two methods. Since our

approach has no time dimension, it is computationally less

demanding: we compute the result in a single step instead of

multiple steps that correspond to a sequence of time steps.

Similarly, taking into account enhancement, as this is done in

[31], implies considerable additional computational effort in

each step that would improve contour detection results only

incrementally. Finally, only anisotropic inhibition is taken

into account in [31].

Other contextual edge detection techniques based on

suppression have been previously proposed within the

framework of anisotropic diffusion [4,42,45]. For instance,

in [45] a locally adapted smoothing factor controls the

amount of suppression applied to the gradient map

computed at a given scale. Smoothing is more pronounced

at image locations where the gradient magnitude is small,

favoring the high-contrast edges over the low-contrast ones.

In these approaches, however, suppression has no effect on

nearby edges which have equally strong gradients. When

applied to images such as the one shown in Fig. 4(a), for

instance, they will not suppress the lines which are part of

the gratings. Consequently, anisotropic diffusion seems

more suitable for edge enhancement regardless of the

underlying perceptual context (texture vs. contours). Our

technique is particularly intended for texture suppression

and better contour detection.

Many methods of comparing edge detection algorithms

were proposed in the literature, often deploying a multitude

of different evaluation criteria [5,23,50–52]. We used a

single comparison method because the inclusion of

additional evaluation criteria would, in a way, bring the

study out of focus. The additional suppression and post-

processing steps we propose are aimed at eliminating texture

edges, so that object contours can pop out. Consequently, the

performance measure we use is conceived to quantify the

improvement in this specific respect. The proposed steps are

not intended to improve (or worsen) any of the other

properties of edge detectors, e.g. edge localization that is

often used for comparison in the edge detection literature [5].

The localization properties of our contour detectors are, in

fact, very similar to those of Canny’s edge detector.

4.3. Discussion and conclusions

Normally, edge and contour detection are considered to

be intermediate operations: the results they provide are

used as input to further processing operations aimed at the

completion of some more complex task such as object

identification. It is of interest how the proposed suppres-

sion and post-processing steps would affect the ultimate

result. As the proposed steps will eliminate texture edges,

it is evidently not appropriate to deploy them in tasks in

which texture edges are essential, e.g. texture classifi-

cation or region based segmentation. In other tasks, such

as shape-based object identification, the proposed suppres-

sion and post-processing steps can have a very important

contribution to the quality of the final result. This is

achieved through the simplification effect that these steps

have on edge maps (see left column of images in Fig. 9).

Clean object contour maps, free of texture edges, are of

primary importance for shape-based object recognition

methods that rely on contour information. Typically, in

such methods some local descriptor is computed for each

contour point, determined by the geometrical arrangement

of other contour points in the neighborhood [1,3,15,18].

The local descriptors of the contour points of a reference

object are compared with the local descriptors of a test

object in order to establish point correspondences.

Subsequently, a measure of similarity between the two

objects is computed and a decision is taken whether they

belong to the same category. Texture edges in the

background of a test object change the local descriptors

to such an extent that no correspondences can be found to

the contour points of an identical reference object.

Consequently, texture edges in the background have

devastating effect on such shape recognition methods.

In conclusion, surround suppression can be incorporated

as an additional processing step not only in Canny operator,

but also in virtually any edge detection operator that relies

on some form of enhancement of luminance transitions

based on feature extraction using spatially limited support.

The suppression step may be expected to improve contour

detection performance in images that contain objects of

interest on a cluttered or textured background.
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Appendix A

In the following we present a method for the efficient

computation of the anisotropic suppression term tA
sðx; yÞ

introduced in Eq. (9). For this purpose we re-write Eq. (9)
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as follows:

tA
sðx; yÞ ¼

ðð
V

Msðx 2 u; y 2 vÞwsðu; vÞ

£ lcosðQsðx; yÞ2Qsðx 2 u; y 2 vÞÞldu dv

¼
ðð

V
Msðx 2 u; y 2 vÞwsðu; vÞ

				
£ cosðQsðx; yÞ2Qsðx 2 u; y 2 vÞÞdu dv

				
¼
ðð

V
Msðx 2 u; y 2 vÞwsðu; vÞ

				
£ cosQsðx; yÞcosQsðx 2 u; y 2 vÞdu dv

þ
ðð

V
Msðx 2 u; y 2 vÞwsðu; vÞ

£ sinQsðx; yÞsinQsðx 2 u; y 2 vÞdu dv

				
¼ cosQsðx; yÞ

ðð
V

Msðx 2 u; y 2 vÞ

				
£ cosQsðx 2 u; y 2 vÞwsðu; vÞdu dv

þ sinQsðx; yÞ
ðð

V
Msðx 2 u; y 2 vÞ

£ sinQsðx 2 u; y 2 vÞwsðu; vÞdu dv

				 ðA1Þ

Note that:

7x fsðx; yÞ ¼ Msðx; yÞcosQsðx; yÞ ðA2Þ

7y fsðx; yÞ ¼ Msðx; yÞsinQsðx; yÞ

Substituting Eq. (A2) in (A1), we further obtain:

tA
sðx;yÞ ¼ cosQsðx;yÞ

ðð
V
7x fsðx2u;y2 vÞwsðu;vÞdudv

				
þ sinQsðx;yÞ

ðð
V
7y fsðx2u;y2 vÞwsðu;vÞdudv

				
¼ cosQsðx;yÞð7x fs pwsÞðx;yÞj

þ sinQsðx;yÞð7yfs pwsÞðx;yÞ

				 ðA3Þ

and the right-hand side of this relation can be evaluated

efficiently using convolutions.
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