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Nonlinear Operator for Oriented Texture

Peter Kruizinga and Nikolay Petkov

Abstract—Texture is an important part of the visual world of  [6], and Mitchell [7], the fractal dimension approach [8], and a
animals and humans and their visual systems successfully detect. method based on general operator processor (GOP) operations
discriminate, and segment texture. Relatively recently progress [9]. They used the boundary error in the segmentation result as

was made concerning structures in the brain that are presumably . In 1101 Ohani d Dubes di d
responsible for texture processing. Neurophysiologists reported & COmparison measure. In [10] Ohanian and Dubes discusse

on the discovery of a new type of orientation selective neuron four types of texture features, by comparing the error rates
in areas V1 and V2 of the visual cortex of monkeys which they in the segmentation result. They considered co-occurrence
called grating cells Such cells respond vigorously to a grating matrix features, Gabor features [11], [12], Markov random

of bars of appropriate orientation, position and periodicity. In . .
contrast to other orientation selective cells, grating cells respond f|eld features [13], and fractal features. Other recent studies

very weakly or not at all to single bars which do not make part of N Wh_iCh the classification result comparison. method was
a grating. Elsewhere we proposed a nonlinear model of this type used include [14]-[16]. The segmentation algorithms that were
of cell and demonstrated the advantages of grating cells with applied in these studies classify individual pixels using their
respect to the separation of texture and form information. In  ;5qociated feature vectors. In a recent study, Oglal

this paper, we use grating cell operators to obtain features and . ' . . i '
compare these operators in texture analysis tasks with commonly [17] gsed a d!ﬁere_m segmentatlc_)n algorlth_m f[hat. performs
used feature extracting opera’[ors such as Gabor-energy and the p|Xe| ClaSSIflcatlon on the _baSIS Of the d|Str|bUt|c-)n Of the
co-occurrence matrix operators. For a quantitative comparison feature vectors in the surrounding of the concerned pixel. They
of the discrimination properties of the concerned operators a compared the following four texture features: gray level dif-
new method is proposed which is based on the Fisher linear orencas Laws texture features, center-symmetric covariance

discriminant and the Fisher criterion. The operators are also feat d local bi it A . bet
qualitatively compared with respect to their ability to separate eatures, and local binary patlerns. comparison between

texture from form information and their suitability for texture ~ four segmentation algorithms was made by Wan@l. [18]

segmentation. using co-occurrence matrix features. A more theoretical study
Index Terms—Grating cells, texture analysis, texture features, WaS carrled out by Conners and Harlow [1]. They made a
visual cortex. comparison of the texture features that were used by We=izka

al. [2] and used the amount of texture-context information that
is contained in the intermediate matrices as a quality measure
of the texture features.

EATURE-BASED classification and segmentation meth- |n this paper, we assess the properties of a new type of

ods operate on a feature vector field that is the result @xture operator and compare it with existing texture operators.
the application of a vector operator on an input image. Certdimis new operator has been inspired by the function of a
operators will be particularly effective for processing texturgecently discovered type of an orientation-selective neuron in

Several authors have made a comparison of the performaggégas V1 and V2 of the visual cortex of monkeys, called the

of various operators and features for texture segmentatigpating cell [19], [20]. About 4% of the cells in V1 and 1.6%
Most of these studies are based on the so-called classificaig®ihe cells in V2 can be characterized as grating cells and it
result comparison [1]. In this method a segmentation algorithi estimated that about 4 million grating cells in V1 subserve
is applied to a feature vector field and the segmentatighe central 4 of vision [20]. Similarly to other orientation se-
performance and suitability of the used features are evaluafgghive neurons, such as simple, complex, and hyper-complex
by using the number of misclassified pixels. One of the firgh||s [21]-[23], grating cells respond vigorously to a grating
studies based on this principle was performed by Westkaof hars of appropriate orientation, position, and periodicity.
al. [2]. They compared texture features based on the Fourigr contrast to other orientation selective cells, grating cells
power spectrum, on co-occurrence matrices, ar_1d on gray ley@dnond very weakly or do not respond at all to single bars,
differences. Du Bukt al. [3] compared seven different typesis means, bars which are isolated and do not make part of a
of texture features, including the co-occurrence matrix featurSFating. This behavior of grating cells cannot be explained by
as proposed by Haralick [4], the methods of Unser [5], Lawgear filtering followed by half-wave rectification as in the
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even to decline. Similarly, the response rises with the lengttherex(z) = 0for 2 < 0, x(2) = = for = > 0. Later on below

some cases inhibition is observed. The responses to movinyVe use the following family of two-dimensional (2-D) Ga-

gratings are unmodulated and do not depend on the directlwor functions [41] to model the spatial summation properties

shows a switching characteristic, in that turn-on and saturation

contrast values lie pretty close: the most sensitive grating cellg ,, » o, o(, ¥) = exp<—

general, grating cells are more selective than simple cells, #' =(r—¢) cos ©—(y—n)sin O

having half-response spatial frequency bandwidths in the range Y =(x—&)sin ®+ (y —n) cos © 2

orientation bandwidths of about 20For comparison, simple Where the arguments and y specify the position of a light

range 0.4 to 2.6 octaves with median 1.4 octave; their medigframeters as follows. _

orientation bandwidth is about 2G34]. The pair (£, ), which has the same domaift as the

grating cells is to detect periodicity in oriented patterns. IRo0rdinates. The standard deviatierof the Gaussian factor

previous work, we proposed a computational model of gratir?&term'nes the (lineasize of the receptive fieldts eccentric-

cells, which explains the results of the neurophysiologicg k ' ’

experiments [35], [36]. In this paper we focus on the properti@§termined by the parametey called thespatial aspect ratio

is compared with other, commonly used texture operatofd3l- The valuey = 0.5 is used in our simulations and, since
s value is constant, the parameteis not used to index a

of the bars up to a given length after which saturation and we extend this simple model with local contrast normalization.
of movement. The dependence of the response on contr@ssimple cellst
12 2,12 /
%) <2 “h ¢)

start to respond at a contrast of 1% and level off at 3%. In o
of 0.4 to 1.4 octaves, with median 1 octave, and half-response
cell spatial frequency bandwidths at half response vary in tgPulse in the visual field and, 7, o, v, A, ©, and ¢ are

The above properties suggest that the primary role BRIM (¢ ¢), specifies thecenter of a receptive fielth image

y and herewith the eccentricity of the receptive field ellipse is

of the grating cell operator as a texture analysis operator./if1as been found to vary in a limited range(o23 < < 0.92
For a quantitative comparison, however, we do not use e

classification result comparison method that is used in mdg€eptive field function. _
previous studies because this method characterizes the joinfn® Parameten\, which is the wavelength of the cosine
performance of a feature operator and a subsequent classiffgrior cos(2m(¢'/A) + ¢), determines the preferred spatial-
We rather propose a new method which characterizes thgduencyl/A of the receptive field functione, ,, 5, e, o(; ).
feature operator only. This method is based on a statistida]€ ratioo/A determines the spatial frequency bandwidih
approach to evaluate the capability of a feature operator 3dinear filter based on the functian _ _
discriminate two textures by quantifying the distance betweenP€ Valois et al. [34] propose that the input to higher
the corresponding clusters of points in the feature spalEPCeSSiNg stages is provided by the more narrowly tuned

according to Fisher's criterion [37], [38]. simple cells with half-response spatial frequency bandwidth
The paper is organized as follows: in Section Il we revieRf approximately one octave. This value of the half-response

the Gabor filter; the output of the Gabor filter is used as input &patial frequency bandwidth corresponds to the value 0.56 of
the grating cell operator. Gabor-energy features that are closil§ "atioo/A, which is used in the simulations of this study.

related to Gabor filters are introduced. The computationg|'c€* ando are not independent{A = 0.56), only one

model of grating cells is given in Section Ill. In Section Iv.Cf them is considered as a free parameter which is used to

the co-occurrence matrix features are described. The textlfi€x @ receptive field function. For ease of reference to the
analysis properties of the grating cell operator, the GaboyRatial frequency properties of the cells, we choase be
energy operator, and a co-occurrence matrix based operdfy frée parameter. . N

are examined and compared in Section V in a series of e paramete© (© € [0, 7)) specifies theorientation

computational experiments. In Section VI we summarize ttf¢ the normal to the parallel excitatory and inhibitory stripe
results of the study and draw conclusions. zones—this normal is the axig’ in (2)—which can be

observed in the receptive fields of simple cells, Fig. 1(a).
The value of the spatial aspect ratio and the spatial-frequency
II. GABOR FILTERS bandwidth determine the orientation bandwidth of a linear

Gabor filters are closely related to the function of simplfitér based on the functiop. Fory = 0.5 andb = 1.0 octave
cells in the primary visual cortex of primates [26], [39], [40](?/A = 0.56) the half-response orientation bandwidth of a
Since simple cells play a substantial role in the following, winear filter based o is approximately 19
first briefly introduce a computational model of this type of 1our modification of the parametrization used in [41] takes into account
cell. The response ofa simple cell which is characterized bythe restrictions found in experimental data, see [42] for further details.

a receptive field functiory(a:, U) to a luminance distribution 2The half-response spatial frequency bandwikitfin octaves) of a linear

. ) filter with an impulse response according to (2) is the following function of
image f(z, ), (z, y) € £, is computed as follows{ denotes e ratio s/ A: P P gto (2) 9

the visual field domain): Z+l /111_2
Che. AT YV 2
b = log, a l 111_2 .
r=x| [[ e vt vy dedy @ versely A
Q o n2 2°41

A=
[V
(V]
I
L
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@) (b)

Fig. 1. Two-dimensional Gabor function in (a) space and (b) spatial fre-
guency domain.

Finally, the parametep (<p c (—7r, 7r]), which is a phase Fig. 2. Spatial-frequency domain coverage by the Gabor-energy filterbank
offset in the argument of the harmonic factes(27(z//A) +  USe%:
@), determines the symmetry of the functign,, » o, .(x, ¥):
for ¢ = 0 andy = = it is symmetric with respect to the centeras follows:
(£, m) of the receptive field; forp = —37 and ¢ = 47, the

function is antisymmetric and all other cases are asymmetric 0, ifa=0
mixtures of these two. In our simulations, we use §othe T&m N8 o

following values: ¢ = 0 for symmetric receptive fields to SE6m A 0.0 = y | e A otherwise (5)
which we refer as “center-on = « for symmetric receptive TemA0e

fields to which we refer to as “center-off,” and = —ir ag,n, A

andp = %w for antisymmetric receptive fields with opposite

polarities. where R and C' are the maximum response level and the

An intensity map of a receptive field function with asemisaturation constant, respectively. For further details of this

particular position, size, orientation, and symmetry is shown mOdel of simple cells we refer to [36].
Gabor-Energy FeaturesA popular set of texture features

Fig. 1(a). Fig. 1(b) shows th di tial f
9. 1(a). Fig. 1(b) shows the corresponding spatial frequency, - ' | “ihe use of Gabor-filters (3) [11], [12], [44], [45]

response. i : o .
Using the above parametrization, one can compute tﬂgcordmg to a multichannel filtering scheme. For this purpose,

responsese. , ». o, of a simple cell modeled by a receptivean image is filtered with a set of Gabor-filters with different

field function g , » o. (2, %) to an input image with gray preferred orientations, spatial frequencies, and phases. The
level distributioh?‘(;: y““) azs follows filter results of the phase pairs are combined, yielding the

First, an integral so-called Gabor-energy quantity [11], [46], [47]:

_ .2 .2
e A6 ://f(% Do o o(e g dody () Ee,n,0,2 \/7£,n,®,>\,0+7£,n,®,>\,—(1/2)7r (6)
@ where ¢, o a0 and 7¢ , o A, —1/2)~ are the outputs of
) . . o _the symmetric and antisymmetric filters. The Gabor-energy
is evaluated in the same way as if the receptive field functiganity is related to a model of complex cells which combines
9e.n.\, 0, o(2, y) were the impulse response of a linear systefthe responses of a quadrature phase pair of simple cells.
In order to normalize the simple cell response with respect {9 the experiments described in Section V, we use Gabor-
the local average luminance of the input image,, x e, IS energy filters with eight equidistant preferred orientations

divided by the average gray leve} , » within the receptive O = 225°, © = 45°, ---, © = 180°) and three preferred
field which is computed using the Gaussian factor of ”?patial frequencies\(= 5.47, A = 8.20, and\ = 10.93; image
function ge,, 5, o, size = 256 pixels), resulting in 24-dimensional (24-D) feature

vectors. The choice of three preferred spatial-frequencies and

z—&)? +*(y—n)? eight preferred orientations is aimed at an appropriate coverage

af,n,AI//f(w, v) eXp<—( &S 7 =) )dwdy- P ppTop J
Q

202 of the spatial-frequency domain (Fig. 2). If one takes a smaller

number of orientations, e.g., six instead of eight, there will

(4)  be orientations to which none of the channels of the filter

bank will respond sufficiently and this will have a negative

The ratio r¢, , z, @, /0, n, » IS proportional to the local effect on the discrimination performance for textures that are
contrast within the receptive field of a cell modeled bgominated by the concerned orientations. This means that
the functionge , » o »(x, ). In order to obtain a contrastthe discrimination performance will depend on the choice
response function similar to the ones measured on real newfloriented texture. Similar arguments apply to the spatial-
cells, we use the hyperbolic ratio function to calculate the siffrequency discrimination. Fig. 3 illustrates the application of

ple cell response; , A e, from the ratiore , x o,/ac, o, the filterbank on an input image which contains texture.
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on and center-off simple cells with symmetrical receptive
fields. The model of a grating subunit is conceived in such
a way that the unit is activated by a set of three bars with
appropriate periodicity, orientation and position. In the next,
second stage, the responses of grating subunits of a given
preferred orientation and periodicity within a certain area are
added together to compute the response of a grating cell. This
model is next explained in more detail:
o A quantity g¢ ,, e, , called the activity of a grating subunit
6=22.5 with position (&, i), preferred orientatior® and preferred
grating periodicity A, is computed as follows:

. {1, if Vo, Mgy 0,5n 2> pMe 50,2
1, O, N = -
€ 0, if3In, Mgy o,xn<pMenon

Input image

Ar=5.47 A=8.20 2=10.93

(7)

0=45
where

ne{-3 -2}

L

and p is a threshold parameter with a value smaller than
but near one (e.g.p = 0.9) and the auxiliary quantities
Me 5 0,7, and Mg , o, are computed as follows:

0=67.5"

Mg n,0,0n

o]
6=00 = max {35', 7,0, @

g’

ngCos@§(£/—£)<(n+1)gcos@,

6=112.5° ng sin © < (' —n) < (n—i—l)g sin ©,

0 n=-3,-1,1 .
= n=-2,02

Mg y,0,0 = max{Me y 0, nln=-32} 9)

6=135 " The quantitiesM; , o x », n = —3 --- 2, are related to the
activities of simple cells with symmetric receptive fields along
a line segment of length\ passing through poir{¢, #) in ori-
entation®. This segment is divided in intervals of lengii2

0=157.5" and the maximum activity of one sort of simple cells, center-on
or center-off, is determined in each intervad¢ ., o, 3, for
instance, is the maximum activity of center-on simple cells in
the corresponding interval of leng®y2; M ., o A, —2 is the

o maximum activity of center-off simple cells in the adjacent

8=180 interval, etc. Center-on and center-off simple cell activities

are alternately used in consecutive interveld; , o . is the
2 maximum among the above interval maxima.

- Roughly speaking, the concerned grating cell subunit will

e be activated if center-on and center-off cells of the same pre-

ferred orientatior® and spatial frequency/A are alternately

Fig. 3. Gabor-energy operator channels. The input image is shown in @6tivated in intervals of length /2 along a line segment of

top-right position. The images arranged in anx83 matrix correspond to length 3\ centered on poinf¢, n) and passing in direction

the outputs of the different channels of the filterbank. The rows correspotgi : : : :
to different preferred orientations, and the columns to different preferred: This will, for instance, be the case if three parallel bars

wavelengths. The image shown in the bottom-right position is computed a¥Vith spacingA and orientation® of the normal to them are
pixel-wise maximum superpositior.¢. norm) of all channel outputs. encountered (Fig. 4). In contrast, the condition is not fulfilled
by the simple cell activity pattern caused by a single bar or
two bars, only.

In the next, second stage of the model, the response

Our model of grating cells consists of two stages [35¢ , o » Of a grating cell whose receptive field is centered
[36]. In the first stage, the responses of so-calggdting on point (£, #) and which has a preferred orientation
subunitsare computed using as input the responses of centé© < [0, w)) of the normal to the grating and periodicity

s
Fry
Sy
”

g
|

Superposition

I1l. GRATING CELLS—A COMPUTATIONAL MODEL
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(@ input

Input image

-3

i M M] : Ml i i i
centre-on
responses / \
centre-of
responses

Fig. 4. Luminance distribution along a normal to a set of (a) three squar
bars, and the distribution of the computed responses of (b) center-on and (|
center-off cells along this line.

(b) =547 A=8.20 2=10.93

©

0=22.5"

6=45"

A is computed by weighted summation of the responses ¢
the grating subunits. At the same time the model is mad
symmetrical for opposite directions by taking the sum of
grating subunits with orientation® and® + =

We, n, 0,1 = /QeXp <_ (€ - 5’);(;-032 _ 77/)2)

(e 0,0 Gy 04m,0) A€ d1Y
©e[0, n). (10)

0=67.5"

8=90"

The weighted summation is a provision made to model the
spatial summation properties of grating cells with respect to th
number of bars and their length as well as their unmodulate
responses with respect to the exact position (phase) of
grating. The paramete? determines the size of the area over
which effective summation takes place. A value ®f= 5
results in a good approximation of the spatial summatior
properties of grating cells. For further details of the grating
cell operator we refer to [36]. The choice of the values of
model parameterg in (7) and in/3 (10) results in grating
cell operators with a spatial-frequency bandwidth of abou
one octave and an orientation bandwidth of slightly more thai
20°, which are similar to the respective bandwidth values for
the Gabor operators which provide input to the grating cel
operators.

1) Grating Cell Features:The texture features proposed
here, are based on the grating cell operator (7)—-(10). A set ¢
grating cell operators with eight different preferred orientations
© and three preferred periodicitiesis applied to an image,
yielding a 24-D feature vector in each image point. The sam:
sets of values o (© = 22.5°, © = 45°, --., © = 180°)
and A (A = 5.47, A\ = 8.20, and A = 10.93) are used for
e Gabor-eneray and the graing cal operator flerbanii, 5, SCAlE STl TRES T b ™
Fig. 5 shows the results of the application of such a set of gfne different channels of the filterbank. The rows correspond to different
grating cell operators to an input image (top-right). Note thateferred orientations, and the columns to different preferred wavelengths.

the output is sparser than the output of the Gabor fiIterbanIIhe image shown in the bottom-right position is computed as a pixel-wise
maximum superpositionl(.. norm) of all channel outputs.

0=112.5"

0=135"°

6=157.5°

IIIIIIII
EEEEEEEE
DIBDHIIEI

6=180"

Superposition

IV. CO-OCCURRENCEMATRIX FEATURES In each point of a texture image, a set of gray level co-

A classic method for obtaining features useful for textureccurrence matrices is calculated for different orientations and
segmentation is based on the gray level co-occurrence matricger-pixel distances. From these matrices features are ex-
[4], [48], [49]. This approach is briefly reviewed in thetracted which characterize the neighborhood of the concerned
following. pixel. The gray level co-occurrence matii¥{(4, j) is defined



1400 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 10, OCTOBER 1999

for a neighborhood? of a pixel, as follows:
1 ~ -
i3 = 22 - rFe H. 7 H:
Cy(i, 7) cardH)Card{(7’7+d) FreH 7+de
I(7) :i/\I(F—i— J) :j} (11)

where I(¥) is the gray level in point” and ¢ and j are
gray levels. The elements @ ; represent the frequencies of
occurrence of different gray level combinations at a distanci
d A large variety of texture features have been proposed b
several authors, which are all based on the gray level cc
occurrence matrices. In this study we use the following threl
features that are most commonly used:

Input image
Inertia

Energy

G-1G-1

Energy; = > _ Z( Wi ) (12)
Inertia; = Z (i — 5)? Cyi, 7) (13)

Entropy; = ‘ ' —Cyi, j) log(Cy(i, 7))  (14)

where G is the number of gray levels.

In our experiments we used eight vectgr(siour orientations
and two lengths) resulting in eight gray level co-occurrence
matrices in each point. The neighborhood around each poit
in which the co-occurrence matrices were calculated was si
to 12 x 12. Since three types of features (energy, inertia
and entropy) were extracted from each matrix the procedur
resulted in a 24-D feature vector in each image point. Fig. ¢
illustrates the effect of the application of this filter bank
on an input image (top-right) which contains texture. The
bottom-right image is the maximum-value superposition of all
channels.

V. TEXTURE ANALYSIS PROPERTIES OF THEOPERATORS

An often used approach to measure the performance ¢
texture operators is to apply a segmentation algorithm to th
set of feature vectors obtained by a given operator and t
evaluate the segmentation performance qualitatively, base
on perception, or quantitatively, based on the number o
misclassified pixels. The latter method is sometimes referre
to as the classification result comparison [1] and is commonl
used for comparing different texture operators. In Section V-C
below, we employ this qualitative method to compare the
operators considered above. Before that, two further criteri..
are used to compare the performance of the operators. Fig. 6. Co-occurrence matrix operator channels. The three filterbank

First, the abilities of the operators to detect texture and ¢olumns correspond to the co-occurrence matrix based quantities inertia,
separate texture and form are compared, Section V-A. Tﬂ?eerlgieriggt sgtcrt‘:)zy The rows correspond to different choices of the
general requirement for a good texture operator in this respecf)
is that the feature vectors assigned to points, which make part
of texture or in the surroundings of which there is texture, atbe image points which lie in areas covered by the same texture
substantially larger than the feature vectors assigned to poisit®uld be similar (in the ideal case, they must be identical).
where there is no texture. In multivariate statistical terms, this means that these vectors

Second, the ability of the operators to discriminate differefdrm a cluster in the feature space: a contiguous region with,
textures is assessed in Section V-B. The general requiremantsomparison to the space outside the cluster, a relatively high
in this respect are as follows: the feature vectors assigneddensity of feature vectors [50]. At the same time, the feature

-
I
<)
o
I
<)

Superposition
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vectors assigned to image points which belong to regions
of different textures, should be different. Again in terms of

clustering: the clusters of feature vectors derived from different
textures should be distinct.

A. Detection of Texture and Separation of Texture and Form

We will first look at the ability of the considered operators:
i) to detect texture and ii) to separate form and texture.

1) Method—Use ol.., Norm Features: Since the compo-
nents of the vector-valued operators presented above are not
isotropic and also depend on a scale parameter, no single com-
ponent can be used for texture of arbitrary preferred orientation
or periodicity. Therefore, we use a new scalar feature that
cumulatively reflects the properties of all components of a
vector operator. We choose this cumulative feature to be the
length of the feature vector. For ease of computation we take
the L., norm according to which the length of a vector is
equal to the absolute value of the largest (by absolute value)
component:

17]loo = max{|z1], [z2] - - |nl}. (15)

The bottom-right images in Figs. 3, 5, and 6 are com-
puted according to (15) as a maximum-value superposition
of the feature images output by the different channels of the
corresponding filterbanks.

2) Results: Fig. 7 shows an input image [Fig. 7(a)] and the
superposition £,..-norm) outputs of Gabor-energy [Fig. 7(b)],
co-occurrence matrix [Fig. 7(c)], and grating cell [Fig. 7(d)]
operators. All three operators give strong response in the
texture area of the image and little or no response in the
surrounding background of uniform gray level. We conclude
that all three operators give satisfactory results for detecting
oriented texture.

Fig. 8 illustrates the difference between Gabor-energy and
co-occurrence matrix operators, on one hand, and grating cell
operators, on the other hand, when these operators are applied
to input images that contain contours but do not contain
texture. In this case the co-occurrence matrix operator and the
Gabor-energy operator will give misleading results, if used §. 7. Oriented texture in (a) the input image is detected by (b) Gabor
texture detecting operators, because they respond not onl)33 ol (c) co-oceurrence matrix, and (d) grating cell operators.
texture, but to other image features such as edges, lines, and

contours, as well. In contrast, grating cell operators detect no'Ve conclude that grating cell operators are more effective

features such as isolated lines and edges. In this way gratmqn Gabor-energy and co-occurrence matrix operators in the
cell operators fulfill a very important requirement imposege ection and processing of texture in that they are capable not

on texture processing operators in that, next to successffiffy of detecting texture, but also of separating it from other

detecting (oriented) texture, they do not react to other imalJB29e features, such as edges and contours.
attributes such as object contours.

The difference between Gabor-energy and co-occurrerfee
matrix operators, on one hand, and grating cell operators,The clustering in the multidimensional feature space of
on the other hand, is especially well illustrated when the$eature vectors that originate from the same texture and
operators are applied to images which contain both orientdt discrimination of feature vectors resulting from different
texture and form information, as shown in Fig. 9. Whileextures are closely related: the compactness of a cluster of
the Gabor-energy operator [Fig. 9(b)] and the co-occurrenfaature vectors that belong to the same texture can only be
matrix operator [Fig. 9(c)] detect both contours and texture aeapressed in relation to the distance to other clusters.
are, in this way, not capable of discriminating between theseln the following, we review a method of expressing both
two different types of image features, grating cell operatotse intercluster distance and the compactness of the clusters
detect exclusively (oriented) texture. in one quantity.

(d)

Texture Discrimination
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@) @

(b)

(d) (d)

Fig. 8. While the (b) Gabor-energy operator and (c) co-occurrence matfig. 9. While the (b) Gabor-energy operator and (c) the co-occurrence matrix
operator detect features, such as edges, in an input image (a) which containgpeyator detect both texture and contours in the input image (a), the grating
(oriented) texture, the grating cell operator (d) does not respond to nontextaed! operator (d) detects only texture and does not respond to other image
image attributes. attributes, such as contours.

where /iy and ji, are the means of the two clusters afid!
1) Method—FiSher Linear Discriminant Function anqs the inverse Of the poo'ed Covariance matrix_
Fisher Criterion: In order to determine the mutual relation The Fisher linear discriminant function is invariant under
between two clusters and to measure their |nterclusterd|stan§ﬁy nonsingular linear transformation as is easily shown. If
it is sufficient to look at the projection of the-dimensional g feature vectorst are transformed with a transformation
feature spacep(is the number of features) onto a ONematrix A, ## = A7, then the means of the clusters and the

dimensional (1-D) space, under the assumption that t .8oled covariance matrix are also changpfl:= Au; and
projection is chosen in such a way that it maximizes t§, — ASAT. Thereforey/ = (jir — jis)' AT(ASAT) =1 A7
separability of the clusters in the 1-D space. so thaty/ _ » id o= hz '

The linear transformation that realizes such a projection’is . . . .

: N . L Fig. 10 shows a sample histogram with two projected clus-
calledthe linear discriminant functioand was first introduced ters with a Gaussian distribution. The separability of the two
by Fisher [51]. It has the following form: o ' P Iy

clusters is high, as can be seen from the large distance between
their means;; andr; in comparison to the sum of the standard
y=(jih — i)' s™7 (16) deviationso; and os.



KRUIZINGA AND PETKOV: ORIENTED TEXTURE 1403

¥

Nee—
N

o,/ \ o - . \H
\ , 0

2

Fig. 11. In order to analyze the separability of the two clusters, the feature
Fig. 10. Two distributions of projected feature vector clusters (the horizontegctors are projected on a line. The line on which the clusters are optimally
axis corresponds to the position on the projection line; the vertical axis to teeparable, in this cag@, is called the Fisher linear discriminant.
number of points in the image whose corresponding feature vector is projected

on the same point of the projection line). I TRHE:

The projection of the feature vectors onto the linear dis"
criminant maximizes the so-called Fisher criterion (see, e.(
[37] and [38]):

|771 - 772|
=" (17)
o1+ 03
wheres; and o, are the variances of the distributions of th

projected feature vectors of the respective clustersrarehd
79 are the projected means and ., of the clusters:

m = (i — i)' S i (18)
ny = (i1 — f2)" S ia. (19)
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intercluster distances of clusters in different feature spaces,
which enables us to qualitatively compare different textufég. 12. Nine test images, to be denoted T1 to T9, left to right and top to
operators. The projection of two clusters is illustrated b3Pte™

Fig. 11. From all possible projection lines, the Fisher linear .
discriminant is the one on which the Eisher criterion ig:—:xture at random positions. Then the feature vectors are pro-

maximal. Although the distance between the means of tjested on a line using the Fisher linear discriminant function. In
projected feature vector distributions is larger in case §i€ Projection space, the Fisher criterion is evaluated. Fig. 13
projection on®,, the optimal discriminant i®;, since on shows the distributions of the projected grating cell operator

that line the distance between the means of the distributidiggture vectors of two test images (T4 and T5) along the
is largestrelative to the sum of their variances discriminant. As can be seen from this figure, the distributions

2) Results: The discrimination properties of the texture opd0 not overlap, meaning that the clusters of feature vectors are
erators considered in the previous sections are now compaliggar separable in the feature space.
using a set of nine test images, each containing a single typdable | shows the values of the Fisher criterion for each
of oriented texture (Fig. 12). For each pair of these texturd2air of test texture images, based on the grating cell operator
the separability is measured, using the Fisher criterion, in tfeatures. The minimum value listed is 5.44 (for the pair of
following way: a 24-D vector operator of a given type idextures T3 and T7), which means that for the corresponding
applied to the nine test textures. In this way a 24-D featuii@age pair, the projected feature vector distributions will at
vector is assigned to each image point of the texture imagewst overlap for no more than 0.02%. For the other texture
The pooled covariance matrix is calculated for each pair phirs the overlap is even (much) smaller. Therefore, all clusters
textures using 1000 sample feature vectors taken from eaxfhfeature vectors can be separated linearly. Note that the
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: TABLE I
VALUES OF THE FISHER CRITERION FISHER CRITERION
| OBTAINED WITH THE GABOR-ENERGY OPERATOR
[ T1 T2 T3 T4 T5 T6 T7 T8 T9
| H Tl - 584 | 6.97 {810 |499 |68 [7.22 |[605 |8.65
| ‘ ‘ | T2 - 431 1642 (377 | 436 425 1439 | 7.70
i \‘H\‘ ! 1 T3 ; 867 | 483 | 235 |432 |452 |82
| V\‘ | ‘ T4 - 7.33 1932 | 707 |975 | 12.89
” “ \h ’ T5 . 458 | 442 | 493 |78
“ “ Col T6 - 411 | 3.60 |8.67
" | “ “ ‘ T7 - 447 | 9.40
| ! ““ o ! T8 - 7.26
30 2000 5800 ATg z
Fig. 13. Projected versions of two clusters of feature vectors derived from
different textures. Since the distributions of projected feature vectors do not TABLE I
overlap, the original clusters of feature vectors are linearly separable. VALUES OF THE FISHER CRITERION OBTAINED
WITH THE CO-OCCURRENCE MATRIX OPERATOR
TABLE |
VALUES OF THE FISHER CRITERION f T1 T2 T3 T4 T5 T6 T7 T8 TY
OBTAINED WITH THE GRATING CELL OPERATOR - 176 478 | 448 lais | 468 |45l 1526 | 508
T1 T2 T3 T4 T5 T6 17 T8 T9 T2 - 335 | 4.26 | 315 461 |3.94 |459 |4.19
T1 | - 6.24 | 13.53 | 13.05 | 657 | 1165 | 1419 | 17.56 | 19.09 T3 - 477 | 316 {349 |356 |[429 |4.63
T2 - 1075 19.12 | 686 |8.03 |874 |14.89 |12.77 T4 - 435 1520 |445 |562 |558
T3 - 20.77 | 13.85 | 8.72 |544 |9.55 |26.22 T5 - 4.19 | 355 | 457 | 4.36
T4 - 11.06 | 22.39 | 14.52 | 27.36 | 31.62 T6 - 3.54 | 430 | 5.54
T5 - 11.24 {1352 | 18.13 | 14.53 7 - 126 | 4.95
T6 - 6.52 |8.69 | 15.66 T8 - 3.17
7 - 8.82 | 21.04 T9 -
T8 - 22.13
T9 -

case of the Gabor-energy features. On average it is three times
. smaller compared to the values obtained with the grating cell
feature vectors of a cluster are taken from an image thglerator features. The intercluster distances are, however, still
contains merely one texture. This means that ikigriori large enough to separate the clusters as a whole.

known to which cluster the feature vector samples belong t0,The conclusion which can be drawn from these experiments
resulting in a good estimate of the covariance matrix. is that the grating cell operator shows the best discrimination

The values of the Fisher criterion obtained with the gratingroperties, at least as far as oriented textures are concerned.
cell operator for any pair of the used test images are so high

that a linear separation of the clusters is always possib{e. aytomatic Texture Segmentation
Therefore the conclusion is justified that the grating cell
operator has excellent discrimination properties.

Table Il shows the values of the Fisher criterion for pai
of clusters of feature vectors, derived from the nine differe
textures, using the Gabor-energy texture features. The valu

listed in Table Il are all smaller than the corresponding Valu?—\?gorithm' The K-means clustering algorithm [52] was used

obtalr_1ed W'th th_e grating cell operator (Table I). Qn average,, segmentation. It is based on the following cluster criterion:
the Fisher criterion for the Gabor-energy features is more than

two times smaII.er than.th(.a one fqr the .grating cell operator. zec A if V(B: B # A: d(&, fia) < d(Z, iig))  (20)
However, the Fisher criterion is still sufficiently large so that
the clusters are distinguishable. The Gabor-energy featuresahere A and B are clustersjis and jig are the respective
therefore also suitable for oriented texture discrimination. Forean feature vectors, and(Z, /) is the distance between
the segmentation of a texture image into regions containing threo feature vectors’ andy. In our experiments we used the
same texture, i.e., for the classification of individual pixels, thieuclidean distance. Th&-means clustering procedure is as
intercluster distance is not sufficient. follows:

The Fisher criterion was also calculated using the co-1) Initially, K cluster mean vectors are chosen randomly.
occurrence matrix features. The results are shown in Table 111.2) Next, all feature vectors are assigned to one of khe
The average intercluster distance is even smaller than in the clusters using the above criterion.

We carried out a number of texture segmentation experi-
JDents in which a general purpose clustering algorithm was
plied to the feature vectors obtained with the operators
éscussed above.
f) Method—Segmentation Using t#é-Means Clustering
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Fig. 14. Results of segmentation experiments usingifhmeans clustering algorithm. The left-most column shows three input images containing two, five,
and nine textures. The second column shows the exact segmentation of the input images (i.e., the so-called ground truth). The three rightsnsistwolumn

the segmentation results (usifg = 2, K = 5, and X' = 9 for the respective rows) based on the grating cell operator (middle column), the Gabor-energy
operator (second column from the right), and the co-occurrence matrix operator (right-most column).

3) Each cluster mean is updated by computing it as theThe segmentation based on the Gabor-energy operator fea-
mean of all feature vectors that were assigned to thares (Fig. 14, second column from the right) is clearly worse

concerned cluster. than the one based on the grating cell operator. Even the
4) Steps 2 and 3 are repeated until a certain convergelségmentation of two textures is poor. When more differ-
criterion is fulfilled. ent textures are added, segmentation performance decreases

2) Results: In order to compare the texture segmentatio'i"f‘pidly' Pixels are c_;Iassified incorreptly not only at the texture
performance of the grating cell operator with the two oth rder but also inside a texture region. The rightmost column

texture operators, we applied the operators to three test i%_Flg. 14 shows the segmentation results obtained with the

ages to obtain feature vector fields to which themeans co-occurrence matrix operator. The same effect |s_0bserved
segmentation algorithm was applied. The results are sho@n with the Gabor-energy operator. The segmentation of the
in Fia. 14. The leftmost column sh.ows the inout ima e|mage which contains just two texture images is correct, but

9. 4 : . pu 9%+ more than two textures, the segmentation results get worse
with two, five, and nine different textures, respectively. Th

Ver ickly.
perfect segmentations (ground truth) of these images arey quickly

shown in the second column. The other three columns show
the segmentation results based on the three vector operators VI. SUMMARY AND CONCLUSIONS

considered above. _ _ _ In this paper, we compared two well-known texture opera-
It is clear that the results obtained with the grating ceffys, the co-occurrence matrix operator and the Gabor-energy
features are considerably better than the results obtained vi{{erator, with a new biologically motivated nonlinear tex-
the other two types of features. The only misclassified pixigre operator, thgrating cell operator,which was proposed
are located near the texture borders. This is due to the fagdewhere by the authors.
that two or more different textures fall in the receptive field First, we evaluated the ability of the operators to detect
of the grating cell operator, causing an inaccurate estimatetekture and to separate texture and form information. By
the feature vector. Because of the large distance between dbglying the operators to an image that does not contain
clusters of feature vectors, such inaccurate estimates do texture and an image that contains both texture and form,
immediately result in misclassification. we showed that the co-occurrence matrix operator and the
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Gabor-energy operator fail to distinguish between form ary the insights in its function. The second one is due to the
texture information. The energy feature channels of the conderstanding that natural vision mechanisms are optimally
occurrence matrix operator respond to regions of uniforfitted to a natural environment. In this context and under
gray level and both the co-occurrence matrix operator atfte mentioned restrictions, the results of the study can be
the Gabor-energy operator respond to contours and edgescdnsidered satisfactory.
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