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Abstract. The ever growing size and complexity of software systems is making it increasingly harder to
built systems that both meet current and future requirements. During architecture design, a lot of impor-
tant design decisions are taken. In this paper, we present an architecture design notation based on
UML's activity diagrams. The notation allows for the specification of architecture fragments and sup-
ports composition of these fragments as well as superimposition of the fragments on each other. This
notation allows us to make various compositions of architecture fragments (reflecting design decision
alternatives) to adapt the architecture to new requirements. We have found that our notation is very
suitable for modelling separate concerns at the architectural level and for creating.

1 Introduction

The ever-growing size and complexity of software systems is making it increasingly harder to built systems
that both meet current and future requirements. In [Van Gurp & Bosch 2001], we identified that development
of systems consists, to a large extent, of taking design decisions. Typically these design decisions accumulate
and consequently it is often hard to discard decisions taken early in the development due to the consequences
such an action would have on the subsequent design decisions. Eventually, new requirements will invalidate
some of these decisions. The process of incorporating new requirements properly can be expensive. Conse-
quently, a less than optimal solution is often preferred to preserve the architecture that resulted from the earlier
design decisions. The use of such quick-fixes erodes the architecture and adds to the problem rather than solv-
ing it.

Currently there is ongoing research that focuses on separation of concerns. E.g. Aspect Oriented Program-
ming (AOP)[Kiczalez et al. 1997], Subject Oriented Programming (SOP)[Harrison & Ossher 1993] and Multi
Dimensional Separation of Concerns (MDSC)[Tarr, Ossher & Harrison 1999]. However, considering that the
most important design decisions are those taken early in the development, these approaches share a flaw: they
all operate on the implementation level and detailed design level only. In this paper we propose an architecture
level design notation that is specifically designed for modelling concerns on an architectural level while pre-
serving information about the design decisions taken during the architecture design phase.

1.1 Problems

Lack of architectural separation of concerns. Many important design decisions are typically taken early in
the development of a system. Especially during architecture design, many important decisions are taken. How-
ever, despite this, few architecture design techniques take separation of concerns into account. Such techniques
do exist for the detailed design and implementation phases (e.g. [Kiczalez et al. 1997][Harrison & Ossher
1993][Tarr, Ossher & Harrison 1999]). Methods and techniques for achieving separation of concerns at the
architecture level are lacking, though.
Poor support for withdrawing design decisions. A second problem is that many architecture design methods
work in an iterative fashion and accumulate design solutions as the architecture evolves. Because of this, each
new design solution added to the architecture becomes dependent on all of the previous decisions. However,
some decisions do not really affect all of the system and could be imposed on an early version without affect-
ing later versions.
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If, for instance, we have a set of design decisions, D1, D2 and D3, that are applied to an architecture A, the
normal course of development would be to first change the architecture to incorporate D,1 then D2, and then
D3. However it would be difficult to first do D2 and then D3 and then apply D1 to the original architecture (i.e.
without D2 and D3 applied). With stepwise refinement, D1 has to be applied to the full architecture because
the only architecture available is that with D2 and D3 already applied. The original architecture is lost in the
process. This causes problems when there exists a variant of D1: D1’ that needs to be inserted instead of D1.
Imposing new design decisions on an existing architecture. Often, design decisions need to be taken that
have an effect on design decisions already taken. A good example of this is imposing a caching algorithopti-
misem on an architecture to improve efficiency of the communication. After a building a first version of the
architecture without caching, testing might show that communication needs to be improved. Typically adding
caching can be added to a system in a transparent fashion. However expressing this on an architectural level
may be cumbersome since the component structure is changed. Ideally, we would like to model the architecture
without caching and then specify how caching can be added to this architecture rather than re-specifying the
architecture to include caching. In addition, when taking future design decisions, we do not want to add depen-
dencies tot the caching design decision unless this is required or cannot be avoided (i.e. further design deci-
sions are dependent on the architecture without caching).

1.2 Example

As an example, consider the fire alarm system we use as the domain for our example in Section 3. This exam-
ple is based on an earlier case study by [Bosch & Molin] and [Molin & Ohlsson]. In the original version of the
fire alarm system, a number of design decisions are taken to optimisebehaviour the architecture for real time
and performance requirements. As a result an application level scheduler is introduced and a blackboard archi-
tectural style is used to streamline communication between the software representations of sensors and actua-
tors.

In the final architecture of this system, several concerns are mixed:
• Domain Behaviour. The domain behaviour in a fire alarm system consists of actuators that are triggered by

measured deviations in a set of associated sensors.
• Concurrency. For each component, a design choice has been made as to whether it is actively scheduled or

passively scheduled (i.e. only active when called by another component). This results in the introduction of
a tick method in the components that is called by the scheduler. Components that provide a tick method can
be actively scheduled by the scheduler. Components that do not provide such a method are only executed
when they are called by other components. This is called passive scheduling.

• Communication. The architecture uses a blackboard architecture. This means that the communication
between sensors and actuators is intercepted by a blackboard component, which minimizes redundant com-
munication between the components.

In this paper we explore an alternative to the blackboard architecture: caching. The decision whether to use a
blackboard or a cache also has consequences for scheduling. In a blackboard architecture, sensors can be ac-
tively scheduled (i.e. they post their values on the blackboard at regular intervals). In a caching architecture,
however, the cache is responsible for requesting sensor values. This means that in the latter situation, sensors
are passively scheduled.

This small example shows the essence of the problems we are dealing with. The concerns concurrency and
communication are mixed. Consequently, design decisions affecting one of these concerns, also have an effect
on the other concerns. In addition, these design decisions are not associative and consequently, it is hard to
replace the blackboard with a cache. The reason for this is that doing so requires a different scheduling strategy
(passive scheduling for sensors instead of active scheduling).

When embedding a fire alarm in a larger system (e.g. a building management application that integrates
other systems such as climate control systems, for instance), a relevant design choice is which version of the
fire alarm is to be used. This choice is influenced by the requirements of the larger system. In our example, the
choice would be whether to use the cache version or the blackboard version. Ideally, it would not matter which
version is used since both implement the same functionality. If this is the case, we would say the fire alarm
architectures are substitutable (i.e. one can transparently replace the other). However, in practice, the mixing of
concerns in the implementation makes this difficult.
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1.3 Solutions

We address the identified issues by introducing a UML based notation for defining and composing architecture
fragments. Since the composition of fragments is made explicit, to a large extent, it does not suffer from the
problems outlined above. Of course some mixing of concerns is necessary to express the functionality of the
system. However, this mixing of concerns is limited to constraints on the composition of fragments. The re-
mainder of this paper consists of a discussion of the notation and the discussion of an example case where this
notation is used as well as an analysis.

1.4 Related Work

Architecture. The notion of software architecture was already identified in the late sixties. However, it wasn’t
until the nineties before architecture design gained the status it has today. Publications such as, for instance,
[Shaw & Garlan 1996] and [Bass et al. 1998] that discuss definitions, methods and best practices have contrib-
uted to a growing awareness of the importance of an explicit software architecture. The IEEE currently pro-
vides the following definition: “the fundamental organization of a system embodied in its components, their
relationships to each other and to the environment and the principles guiding its design and evolu-
tion.“[IEEE1471 2000].

More in line with our view on architecture is the following definition: “Software architecture is a set of con-
cepts and design decisions about the structure and texture of software that must be made prior to concurrent
engineering to enable effective satisfaction of architecturally significant explicit functional and quality require-
ments and implicit requirements of the product family, the problem, and the solution domains.” [Jazayeri, Ran
& Van Der Linden 2000]. This definition supports our notion that it is possible to compose an architecture from
such basic components as domain components and architecture fragments.
Patterns. At the same time the notion of an architecture was developed, the notion of a design pattern also
became important [Buschmann et al. 1996][Gamma et al. 1995]. Design patterns and architectural patterns iso-
late particular design solutions that can be applied during detailed or architectural design. The resulting pattern
is a generic solution to a recurring problem. The notation discussed in our paper could be used to model archi-
tecture patterns. The example we discuss in Section 3, for instance, uses the blackboard architectural style dis-
cussed in [Buschmann et al. 1996].
Architecture Erosion. A motivation for writing this paper was the idea that due to requirement changes,
architectures tend to erode over time. In [Van Gurp & Bosch 2001], we presented a case study that demon-
strates how architecture erosion works. One of the conclusions in this paper is that due to requirement changes,
particular design decisions may need to be reconsidered. Since the architecture is the composition of all design
decisions [Jazayeri, Ran & Van Der Linden 2000], any changes in these decisions will affect the architecture.
PSEUDO CODEThe notion of architecture erosion was first identified in [Perry & Wolf]. In [Jaktman, Leaney
& Liu 1999], a set of characteristics of architecture erosion is presented.
Separation of Concerns. An approach to prevent architecture erosion is to pursue separation of concerns. By
separating concerns, the effect of changes can be isolated. E.g. by separating the concern synchronization from
the rest of the system implementation, changes in the synchronization code will not affect the rest of the sys-
tem. Examples of approaches that try to improve separation of concerns are Aspect Oriented Programming
[Kiczalez et al. 1997], Subject Oriented Programming [Harrison & Ossher 1993] and Multi Dimensional Sepa-
ration of Concerns [Tarr, Ossher & Harrison 1999]. A problem with these approaches is that they focus on the
implementation level whereas important design decisions are taken prior to the implementation. Our approach
addresses this issue by providing an architectural level notation that allows for separation of concern.
Composition. Our composition technique bears some resemblance to the notion of super-imposition discussed
by one of the co-authors [Bosch 1999]. In this approach, program fragments are imposed on an existing pro-
gram structure. The main advantage of superimposition compared to existing techniques such as inheritance or
wrapping is that the change is transparent to users of the original program structure. However, whereas the
approach [Bosch 1999] suggests is an implementation/detailed design technique, our notation is intended for
use on the architectural level.
Scripting. In [Ousterhout 1998], scripting languages are characterized as a simple means to glue together
objects and components. Our notation could be viewed as an architectural scripting language. Our notation,
and especially the associated pseudo code notation, is not concerned with such details as Classes, Types and
Properties. It describes components purely in terms of the functionality they provide. This simplifies the com-
position and the graphical notation makes it very readable. An explicit goal of our notation is to facilitate
describing architectures while reusing existing architecture fragments. So in a way it is very similar to a script-
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ing language. It also shares the same benefits. Since distracting details like types and data format are omitted,
the notation is very flexible.
Notations. Our notation is based on UML’s Activity Diagrams [OMG UML]. The reason we use this notation
instead of, for instance, ACME [Garlan et al. 1997], Rapide [Luckman 1996] or WRIGHT [Allen 1997], is two-
fold. The first reason is that we need a more fine-grained notation in order to do compositions of architecture
fragments. Notations like ACME apply a boxes and arrows approach to modelling architectures. However, the
semantics of individual components are determined by how the box works internally rather than how it cooper-
ates with other components. A second reason is that UML’s activity diagrams can be seen as a means of identi-
fying domain components and complementary to Use Case diagrams typically used in the early phases of
development [Fowler & Scott 1998].

Rapide is an ADL that allows one to specify systems in terms of partially ordered sets of events and can
simulate architecture designs; ACME is a common interface format for architecture design tools. Unlike most
ADLs, our notation also describes the control flow inside the components (rather than just the externally visi-
ble behaviour) and allows for composition of different components, or fragments as we prefer to call them.
Therefore, our notation uses a white box approach (we describe internal functionality of components as well as
communication between components) while the ADL’s uses a blackbox approach (only the communications
between components are taken into consideration). With our white box approach [Roberts & Johnson 1998] we
can describe superimposition [Bosch 1999]. WRIGHT is close to our approach because it is based on CSP
[Hoare 1985]. In our approach a more subjective notation is used and it is based on trace theory [Snepscheut
1985] that has less basic principles but is sufficiently expressive, nevertheless.

1.5 Remainder of the paper

In Section 2 we introduce our approach. Section 3 discusses an extensive example where this approach is used.
In Section 4 we provide an analysis of the use of our approach on the case presented in Section 3. And, finally,
we conclude our paper in Section 5.

2 Notation

In [Van Gurp, Bosch & Svahnberg 2001], we outline the development process as a process of constraining
variability. The process starts with collecting and interpreting requirements, creating an architecture design, a
detailed design, an implementation, a compiled system, a linked system and a running system. At each phase
decisions are taken about the design of the system. For instance, during requirements analysis, decisions are
taken about which features to include and which features to exclude from the system. Each decision removes
variability because a design decision picks one alternative out of several others, therefore limiting the amount
of variability.

In this paper we focus on the architecture design phase. While this phase can be revisited later in the devel-
opment (which is not uncommon in iterative development methods such as extreme programming [Beck
1999]), most of the architecture design is created very early in the development process. The reason for this is
that as the development process progresses, the legacy of the later phases (e.g. detailed design and implemen-
tation) starts to become an obstacle for radical architectural changes. Radical architectural changes have a
strong effect on this legacy and are therefore not very cost effective. Consequently, the architecture design is
something that is typically fixed early in the development process even though many requirements are still
unknown then.

Based on this assumption, it is safe to say that the architecture design process gets most of its input from the
requirements analysis and previous experience with building similar systems. The latter knowledge is available
as architectural styles [Buschmann et al. 1996], design patterns [Gamma et al. 1995] and the developer’s per-
sonal experience. This knowledge is used to take suitable architecture design decisions to create an architecture
that can be used to build a system that can both meet the available requirements and that is flexible enough to
meet expected/likely future requirements.

An architecture design decision may have one or more of the following effects on an architecture:
• It can introduce new design rules.
• It can impose constraints on the existing architecture.
• It can introduce new structural elements to the architecture.
• It can remove structural elements from the architecture.
• It can superimpose new behaviour on some or all elements of the existing architectural structure.
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The notation we introduce in this paper primarily supports the latter three types of design decisions and can
easily be extended to provide support for first two types. Our approach revolves around so-called activities.
Activities represent behaviour the system exposes. Activities take place in a certain order and may also execute
asynchronously. The reason activities take a central place in our approach is that when the architecture of a sys-
tem is conceived, the only knowledge available about the future system are the requirements that mostly define
what functionality the system is going to expose (e.g. use case diagrams). In addition, quality requirements can
be expressed as additional activities that are superimposed on the functional architecture. Consequently, speci-
fying the initial architecture is a matter of breaking down the functionality and organizing it into a suitable
structure. This strategy of starting with a functional design is also a part of the architecture design outlined in
our book on Software Product Lines [Bosch 2000]. Consequently, our notation can be used in conjunction with
this method and is in fact a very natural way of using it. In the example we present later on, we start with a
functional design. From there on we explore several design alternatives to address the quality requirements. By
means of composition and superimposition these design steps are kept transparent with respect to the original
design as much as possible.

The notation we use is based on UML’s activity diagrams. A UML Activity diagram can be used to model
the functionality of the system at a very high level of abstraction (which is required during architecture). By
grouping activities in so-called swimlanes, architectural or domain components can be identified and specified
in terms of their functionality. An additional property of activity diagrams we discovered and exploit in this
paper is that it is easy to specify compositions of fragments of activity diagrams. In addition it is possible to
superimpose such fragments on an existing diagram.

2.1 Formal Notation

In order to specify the composition or fragments, we use a formal notation that is equivalent to the graphical
notation. Because one of the aspects in UML’s activity diagrams is concurrency and synchronization, we use
basic formal theories to describe the behaviour of communicating components. They date back to [Hoare
1985] and [Milner 1993]. The formal notation, used in this paper, first appeared in the trace theory approach of
[Snepscheut 1985]. In this notation, a trace structure consists of an alphabet (set of activities) and a trace set
(all sequences of activities that are allowed in the structure; including their prefixes). We adopt the weaving
composition function of trace structures. In addition to this algebra, we also provide a pseudo code notation for
enhanced readability. We use the formal notation only to precisely define the semantics of our graphic and
pseudo code notations.

In this paper we use for single activities and for sequences of activities. The operator
denotes concatenation: activity b follows after a. The operator denotes choice: either P or Q will be the
next sequence of activities. Concurrency is denoted by and means that P and Q can run in parallel. Com-

Table 1: Notations

Activity diagram Algebra notation Programming notation

action1 ; action2

if B
then action1
else action2
fi

fork
action1 ; s

||
action2 ; s

end

a b c, , P Q R, , a b•
P Q↔

P Q||

action1 action2

action1 action2•

action2 action3

action1 action2↔

action1 action2

action1 s•( ) action2 s•( )||
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mon activities in P and Q are used for synchronization. For example uses b as synchroniza-
tion. P and Q can only proceed with such a common activity if both P and Q are ready to do so at the same
time. The resulting order of activities in our small example is . This composition function is called
weaving in trace theory. When the common b is an internal activity for synchronization purposes only, we use
the composition function blending. With blending, the internal activity is left out the resulting behaviour. In the
above example the blending results in (i.e. first a and then c and d in parallel). We use blending to
formally describe the internal synchronization (see Example1 in Table 1) and for composition of fragments
(see Section 2.2).

UML Activity Diagrams use so-called swimlanes to group related activities. In our notation, swimlanes can
be formally described by using the above operators together with internal activities defining the in-going and
outgoing triggers of the swimlane. Such a representation of a swimlane is called a fragment (see table 2 for an
example). The interface of the fragment is given in the parameter list where in is used for the required inter-
face and out for the provided interface. in-activities are the in-going triggers for the fragment (correspond to
the initial states of the UML activity diagrams) while out-activities are the outgoing triggers (the final states).
Composition of fragments means mapping required to provided interfaces, as is explained in the next section.

The programming notation uses boldface keywords like fragment, begin, end, etc. Curly brackets {
and } are used for constraints. We use two kinds of constraints in our notation: composite constraints (for com-
position of fragments, see the next subsection) and natural language constraints (for all other constraints) The
latter type of constraint may be useful in the later stages of development, e.g. in detailed design.

2.2 Composition & Superimposition

Composition of a number of fragments can be done using the ||-operator together with the synchronization
mechanism. Common activities are used as internal activities for synchronization (in [Snepscheut 1985] this is
called blending (weave both behaviours by synchronizing on the common events and omit the common events
in the result)).

As an example consider the second system Example2 and the composition with Example1 by connecting

fork
action1

||
action2

end

The swimlane Example can be
described by:

fragment Example1
(in in1; out out1, out2)
begin
in1 ;
A ;
fork
B ;
if condition then out1
else s
fi

||
C ; s

end ;
D ;
out2

end

fragment Example2
(in inX; out outY)
begin
inX ; X ; Y ; outY

end

Table 1: Notations

Activity diagram Algebra notation Programming notation

action1 action2

action1 action2||

Example1

A

B C

D

in1

out1

out2

Example1 in1 out1 out2,;( )

in1 A
B out1 s↔( )•( ) C s•( )||( )

••

D out2•
•

=

Example2

X YinX outY

Example2 inX outY;( )

inX X Y outY•••
=

a b• c•( ) b d•( )||

a b• c d||( )•

a c d||( )•
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outY with in1 (we map an outgoing trigger with an in-going trigger). outY (or in1) is used as the common
internal activity and the blending of both behaviours is represented by the corresponding figure in table 2. By
connecting outY with in1 both these internal activities disappear in the composition, but all other internal
activities remain and can be used for further compositions. The resulting composition is again a fragment in the
sense that it can be used for further compositions as well.

The connection operator is both symmetric and associative i.e. and In

[Snepscheut 1985] it is proven that the corresponding blending-operation is both symmetric and associative. It
should be noted, though, that blending is only associative as long as internal activities are common to at most
two of the involved fragments. This rule applies to our notation because we explicitly declare internal activities
as equal, pairwise for each || operation, because we assume all possible internal activities to be unique.

The associative property makes it possible to compose fragments in any particular order. Only the activities
denoted by in and out in the parameter list of the fragment are used for the composition. For each composi-
tion, a number of in-activities are coupled to a out-activity in the other fragment, declared equal and used as a
common (or internal) activity in the composition. The other activities in the body of the fragment are used nor
disrupted in any sense (except for superimposition). Also the description of the fragment is not changed. Thus,
fragment descriptions remain unchanged under composition as long as the coupling of in and out-activities
is done pairwise (in Section 3.5 we will show an example were we do not connect these activities pairwise).

A second form of composition that is supported in our notation is superimposition [Bosch 1999]. Superim-
position allows for composition of a fragment with activities inside a fragment (i.e. the fragments internal
behaviour is enhanced). In order to express this in our notation, all arrows in the UML-swimlanes are consid-
ered to be anonymous internal activities. Formally, we assume that instead of , the concatenation consists
of a finite and suitable number of internal activities, e.g. , where each is an anonymous
activity. In our program notation these anonymous activities are present at each semicolon. We can indicate
by writing and by writing .Both these internal activities can then be used as if they were
listed in the parameter list with in or out. The keywords before and after are also used in the pseudo code
notation. In case the internal activity goes just before, or just after a decision-node, we will use the condition X
together with the if to denote the internal activity, for example ifX.before denotes an anonymous activity just
before the decision-node and ifXtrue.after an anonymous activity just after the decision-node following the
true-arrow. Many reflective OO languages (e.g. CLOS [Kiczalez et al. 1991]) use a similar mechanism.

In table 3 an example is given: Observable is superimposed on Example2, in order to apply the observer
pattern [Gamma et al. 1995]. The resulting fragment gains an extra input and an extra output state. Note that
we are still able to change Example2 independently of this composition, as long as in Example2 the provided
and required interface is not changed.

Table 2: Composition of fragments

Activity diagram Algebra notation Program notation

(where inX = outY = s),

The result is:

fragment Composition
(in inX; out out1, out2)
begin
fork
example (in1, out1,

out2)
||
example2 (inX, outY)

with in1 = outY
end

end

a b|| b a||= a b c||( )||( ) a b||( ) c||( )=

Example1

Example2

X Y

A

B C

D

inX

out1

out2

Compostion

Example2 inX s,( )

Example1 s out1 out2,,( )
||

=

nX X Y A
B out1 s↔( )•( ) C s•( )||( )

•

out2•
•

•••

a b•
a e1• e2 … en b•••• ei

e1

a.after en b.before
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2.3 Interfaces

When composing fragments the internal description is not needed, except when using superimposition. There-
fore we introduce fragment interfaces. A fragment interface is a fragment without internal activities. Fragment
interfaces can be used in compositions instead of real fragments. The advantage of this is that different frag-
ments ‘implementing’ the fragment interface can be substituted in that composition.

When associating a fragmentinterface with a concrete fragment, the fragment must have the same in- and
out-parameters. The fragmentinterface only describes the outside of the corresponding fragment in the activity
diagrams. The program notation for fragment interfaces is fragmentinterface IName (parlist). By con-
vention, we add a prefix (I) to the name to distinguish it from ordinary fragments. To indicate that a fragment is
a realization of one or more fragment interfaces, we use the following syntax: fragment Name implements
IName1, IName2, ...

2.4 Deriving a detailed design

Our notation is intended for use on the architectural level. While our notation is UML based, we feel that it is
necessary to elaborate on how to use the resulting composition as a starting point for detailed design. An im-
portant thing to realize is that there may be more than one possible detailed design for a given architecture de-
sign. When creating the detailed design additional design decisions are made.

The UML diagrams, typically used during detailed design, are class diagrams and collaboration diagrams.
Because of this, we use these notations as detailed design notations. Since architecture level diagrams lack cer-
tain information present in a detailed design, we do not consider such things as implementation inheritance or
class variables. Specifying such information really is part of the detailed design and since we are primarily
concerned with the architectural level, such details are irrelevant for the time being.

Consequently, we use a subset of the constructs typically found in a class diagram. Rather than specifying
classes, we specify interfaces. The detailed design phase then consists of specifying suitable implementation
classes, defining an inheritance hierarchy for these classes and specifying additional information about the way
these classes collaborate.

A straightforward method to derive a detailed design from a fragment composition is to interpret the frag-
ments as UML-interfaces and the activities as method calls. The composition of the fragments then serves as
information about collaboration and can be used to derive aggregation and containment relations between the
fragment interfaces. Since we have an interface construct in our fragment definition language, we also have
information about which methods should be public and which methods should be private (i.e. those activities
without incoming arrows). It should be noted that the activities specified in a fragment interface are lost in the
blend operation described earlier.

Table 3: Superimposition of fragments

Activity diagram Algebra notation Program notation

The Composition is
given by

fragment Observable
(in change, done;
out notify, proceed)
begin
change ;
notify ;
done ;
proceed

end

fragment ObservableExample2
(in inX, done ; out outY, notify)
begin
fork
Example2(inX, outY)

||
Observable(change, done, notify,
proceed)

with X.after = change
and Y.before = done

end
end

Observable

ObservableExample2

X YinX outY

change notify

proceed done

notify done

Observable

change notify
done proceed•

••
=

inX X notify••
proceed

•
Y outY••
8



Furthermore, the information from the various compositions provides us with the information about how
these UML interfaces relate to each other. Every time an outgoing activity is mapped to an incoming activity in
another fragment, we are dealing with some form of delegation (either a method call or a return from a previ-
ous call). In the composition, the outgoing operation is mapped to an incoming operation, so, in a UML class
diagram this results in a call to one of the public methods on an interface.

UML uses several types of relations, which can all be used to model this type of delegation. The simplest
form is defining an association relation. An association relation says nothing more than that one end of the
association is associated with the other end in some way. By specifying cardinalities, it can be expressed that,
for instance, one end is associated with multiple entities on the other end. Information about these cardinalities
may be present in the fragment definition in the form of constraints. Since the control flow is unidirectional in
the fragment definition, it is probably also a good idea to use navigability on the associations (this makes the
association uni-directional) to indicate this in a class diagram.

More advanced forms of delegation-like relations in UML include aggregation and composition relations.
However, our fragment notation does not provide enough information to derive this type of relation. We con-
sider making decisions regarding this type of relation to be important design decisions that are part of the
detailed design. However, sometimes it is obvious that e.g. an aggregation relation is intended, so specifying
such relations during derivation may be done if possible but in general the architecture design does not provide
the necessary information to make such a decision.

Inevitably superimposition information is lost in the process since we do not have similar detailed design
constructs available. It may be necessary to take additional design decisions such as splitting/merging inter-
faces and specifying additional methods. We have found that the distinction between an architecture design
and a detailed design is a very grey area. In fact the derivation process outlined in this section could be consid-
ered to be part of either development phase.

Once a class diagram has been derived, additional object collaboration diagrams may be defined as well.
Doing so is rather straightforward and boils down to following the arrows in the activity diagram notation we
use. In the next section, we will discuss examples based on our notation. At the end of that section, we will also
discuss a derived detailed design based on one of the examples.

3 Examples

In the introduction we already mentioned the fire alarm case briefly. To illustrate our technique, we applied it
to this case. As mentioned in the introduction, the case is based on a case study we performed a few years ago
[Bosch & Molin][Molin & Ohlsson].

3.1 The fire alarm system

The subject of the case is the creation of an architecture for a fire alarm system. In [Bosch & Molin][Molin &
Ohlsson] we describe an architecture for this domain that was developed together with Telelarm AB, a manu-
facturer of such alarm systems. In this paper we will use the requirements that were associated with this archi-
tecture and use them to create various architectures for the domain. The original architecture will serve as a
reference architecture only. We will interpret the requirements liberally to allow for different architectures and
design decisions.

A fire alarm system consists of sensors, actuation devices, communication devices and so on. In an indus-
trial setting there may be hundreds or even thousands of these devices. The purpose of the software system is to
manage these devices and their software representations. In addition, the communication between these
devices needs to be handled. Since it is vital that a fire alarm is activated within a predetermined time interval
after the sensors detect that there is fire, there are a number of real-time and security requirements on the oper-
ation of the system. It would be dangerous, for instance, if there would be much delay in time between the
detection of a fire and the activation of the alarm. Because of this, a fire alarm system must comply with gov-
ernment-enforced regulations for such delays. Another important element in this case is that the software has to
be able to deal with large industrial setups, meaning that there may be thousands of sensors and actuators.
Functional Requirements.
• Read sensor values
• Evaluate sensor values and determine if they deviate from preset trigger values.
• Trigger actuators when appropriate.
Quality Requirements.
9



• Real-time behaviour. The performance of the system has to scale in such a way that the predetermined
period of 3 seconds between detection and alarm is never exceeded.

• Scheduling. The software will run on a simple OS, meaning that we will have to implement our own sched-
uling.

In the remainder of this section we discuss a number of different approaches to modelling this architecture. We
have used the architecture design method presented in [Bosch 2000] to design the various versions of the archi-
tecture. In this method, the design starts with a functional design. In subsequent design iterations, changes are
incorporated to adjust the architecture to the quality requirements.

3.2 Functional design

The first version of the fire alarm does not take the quality requirements into account and is based on the func-
tional requirements only. The functionality can be described as follows: A sensor can be requested to measure
itself; It then compares its value to some trigger and establishes whether it deviates from the trigger. In our no-
tation this is expressed as follows:

Note that we define both a fragmentinterface and a fragment. When composing fragments in the future we will
use the fragmentinterface to allow for modified fragments (e.g. with extra behaviour superimposed on it).
When a deviation occurs, an actuator (e.g. an alarm bell) needs to be activated. An actuator can be associated
with multiple sensors. To establish whether actuation is needed it has to check for deviations in all its sensors.
The actual actuation strategy is left to the actuator (e.g. all sensors must have deviation or one deviating sensor
can trigger the actuator). The actuator can be modeled as follows:

By composing the actuator and the sensor as in Figure 3, a simple version of the fire alarm can be made. In
this version of the fire alarm, an actuator requests all its sensors for deviations and then decides whether to trig-
ger the alarm. Also note that we compose the FunctionalFireAlarm from fragment interfaces rather than con-
crete fragments. This allows us to replace the components from which the fire alarm is constructed (i.e. sensors
and actuators) with other fragments implementing the same interface.

3.3 Fire alarm with cached sensor deviations

The simple approach outlined above works for small systems. However, when multiple sensors and actuators
are used, the communication grows exponentially. Especially, when one sensor is used by more than one actua-
tor. A consequence of this may be that the system no longer complies with the regulations. To address this is-
sue a caching mechanism may be introduced to reduce the redundant communication between sensors and
actuators. A caching component can be expressed as follows:

Figure 1 The Sensor

fragmentinterface ISensor(in request; out returnDeviation)

fragment Sensor implements ISensor
begin

request ;
measure ;
process ;
returnDeviation

end

Sensor

measure

request

process

returnDeviation

Figure 2 The Actuator

fragmentinterface IActuator( in start, receiveDeviation;
out request, notActivited, activated)

fragment Actuator implements IActuator
begin
start ;
sendRequest {do this for all sensors} ;
request ;
receiveDeviation ;
collect ;
if alarm
then activate ; activated
else notActivated
fi

end

Actuator

sendRequest

start

request

receiveDeviation

collect

activate

[no alarm]

notActivated [alarm]

activated
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We are then faced with the choice whether to compose it with the sensor and actuator or whether to superim-
pose this on our previous simple fire alarm composition. Our notation allows for both approaches so we will
discuss them both:

While the above compositions look different, they result in the same system. Arguably the first composition
is more readable, however, the second composition has the advantage that it reuses the FunctionalFireAlarm
composition (at the cost of exposing its internal activities because of the use of superimposition).

3.4 Scheduling

An additional requirement from the domain of fire alarm systems is that the system has to do application level
scheduling. An application level scheduler can be expressed as follows: The scheduler can be composed with
either of the compositions outlined above. As an example we will compose the scheduler with the last one.

The ScheduledCachingFireAlarm meets with all the requirements outlined before. However, it is not the same

Figure 3 The Functional Fire alarm

fragmentinterface IFireAlarm(in start; out notActivated, activated)

fragment FunctionalFireAlarm implements IFireAlarm
begin
fork
IActuator(in start, receiveDeviation;
out request, notActivited, activated)

||
ISensor(in request; out returnDeviation)

with IActuator.request = ISensor.request and
IActuator.receiveDeviation = ISensor.returnDeviation

end
end

FunctionalFireAlarm

Actuator Sensor

sendRequest

start

collect

activate

[no alarm]

notActivated [alarm]

activated

measure

process

Cache

getValueFromCache

[requestCached]

[requestNotCached]

cacheAnswer

request

returnAnswer recieveAnswer

passRequest

Figure 4 The Cache

fragmentinterface ICache(
in request, receiveAnswer;
out passRequest, returnAnswer)

fragment Cache implements ICache
begin
request ;
if requestCached
then getValueFromCache
else passRequest ; receiveAnswer ; cacheAnswer
fi ;
returnAnswer

end

ComposedCachingFireAlarm

CacheActuator Sensor

sendRequest

start

collect

activ ate

[no alarm]

notActivated
[alarm]

activated

measure

processgetValueFromCache

[requestCached]

[requestNotCached]

cacheAnswer

Figure 5 The Scheduled Caching Fire alarm

fragment ComposedCachingFireAlarm
implements IFireAlarm

begin
fork
IActuator (in start, receiveDeviation;
out request, notActivited, activated)

||
ICache (in request,receiveAnswer;
out passRequest,returnAnswer)

||

ISensor (in request; out returnDeviation)
with Actuator.request = Cache.request and
Actuator.receiveDeviation = Cache.returnAnswer and
Cache.passRequest = Sensor.request and
Cache.receiveAnswer = Sensor.returnDeviation

end
end
11



solution as the one chosen in the original case study. In the remainder of this section we will discuss alternative
solutions and demonstrate the flexibility of our notation by reusing as much as possible from what we have de-
fined up till now.

3.5 Blackboard solution

The ScheduledCachingFireAlarm still has one disadvantage: it may potentially poll a lot of Sensors (if they
have not been polled before). Also, there is no way for the cache to determine whether the cached value is still
correct. To solve this a blackboard architecture can be used. In a blackboard architecture, sensors update their
deviations on a central blackboard at regular intervals. The actuators poll the blackboard and receive the latest
value. A blackboard can be expressed like this:

In combination with the scheduler, a replacement for ScheduledCachingFireAlarm can be made. This is done
by first composing Scheduler with Sensor and Actuator to create ScheduledSensor and ScheduledActuator.
Since this is a trivial composition, we leave it as an exercise to the reader and proceed with the composition
with the Blackboard:

SuperImposedCachingFireAlarm

Cache

FunctionalFireAlarm

sendRequest

start

collect

activ ate

[no alarm]

notActivated
[alarm]

activated

measure

process

[dev iation]

getValueFromCache

[requestCached]

cacheAnswer

[requestNotCached]

Figure 6 The SuperImposed Caching Fire alarm

fragment SuperImposedCachingFireAlarm
implements IFireAlarm

begin
fork
ICache (in request, receiveAnswer;
out passRequest, returnAnswer)

||
FunctionalFireAlarm (in start; out notActivated, activated)

with Cache.request = FunctionalFireAlarm.sendRequest.after
and Cache.receiveAnswer = FunctionalFireAlarm.process.after
and Cache.passRequest = FunctionalFireAlarm.measure.before
and Cache.returnAnswer = FunctionalFireAlarm.collect.before

end
end

Scheduler

start

schedule

tick

Figure 7 The Scheduler

fragmentinterface IScheduler (in start; out tick)

fragment Scheduler implements IScheduler
begin
start ;
schedule ;
tick {for all scheduled objects}

end

ScheduledCachingFireAlarm

Scheduler SuperImposedCachingFireAlarm

sendRequest

collect

activate

[no alarm]

notActivated
[alarm]

activated

measure

process

[deviation]

getValueFromCache

[requestCached]

cacheAnswer

[requestNotCached]

start

schedule

Figure 8 The Scheduled Caching Fire Alarm

fragment ScheduledCachingFireAlarm implements IFireAlarm
begin
fork
IScheduler (in start; out tick)

||
SuperImposedCachingFireAlarm (
in start; out notActivated, activated)

with Scheduler.tick =
SuperImposedCachingFireAlarm.start

end
end
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Once again, the fragment has the same parameters as the previous compositions. This means that it can be
used in any place the previous compositions are used. Unfortunately, it is not possible to reuse the Functional-
FireAlarm since the control flow is reversed (i.e. the sensor updates the blackboard rather than that the black-
board polls the sensor). However, the BlackboardFireAlarm implements the same interface as the previous
alarm fragments so they can be used interchangeably.

It should be noted that in the above composition we have coupled the Scheduler’s tick-activity to both the
Sensor’s request activity and the Actuator’s start activity. We have declared an activity in three fragments to be
equal and this conflicts with the restriction for the formal blending operator from trace theory to be associative.
Since the Scheduler is put in front of the Sensor and the Actuator, we still have the associative property, how-
ever (proof is left to the reader). In general, however, this may not be the case.

3.6 Detailed Design of the Blackboard-based Fire Alarm

As an example, we will provide a derivation of a detailed design based on the BlackboardFireAlarm from
Section 3.5. The main reason we use that example is because it is the one that resembles the original fire alarm
architecture from [Bosch & Molin] the most.

The BlackboardFireAlarm is a composition of three other fragments (ScheduledSensor, ScheduledActuator
and BlackBoard), two of these fragments are themselves compositions (Sensor, Actuator and Scheduler).
Based on this decomposition four interfaces can be defined (Scheduler, ScheduledSensor, ScheduledActuator
and Blackboard). A class diagram laying out the relations between the interfaces can be found in Figure 11.

fragmentinterface IBlackboard(in: request, newValue ; out: returnValue)

fragment Blackboard implements IBlackboard
begin
fork
request ;
getValueFromCache ;
returnValue

||
newValue ;
cacheTheValue

end

Blackboard

request

getValueFromCache

cacheTheValue

returnValue

newValue

Figure 9 the Blackboard fragment

Scheduler

BlackboardFireAlarm

Blackboard

ActuatorSensor

measure

process

[dev iation]

sendRequest

collect

activ ate

[no alarm]

[alarm]

start

schedule

getValueFromCache

cacheTheValue

noActivated

activated

Figure 10 The Blackboard Fire alarm

fragment BlackboardFireAlarm implements IFireAlarm
begin
fork
IScheduler(in start; out tick)

||
ISensor(in request;out returnDeviation)

||
IBlackboard(in: request, newValue
out: valueStored, returnValue)

||
IActuator(in start, receiveDeviation;
out request, notActivited, activated)

with ISensor.returnDeviation =
IBlackboard.newValue and

IBlackboard.request = IActuator.request and
IBlackboard.returnValue = IActuator.receiveDeviation and
IScheduler.tick = ISensor.request = IActuator.start

end
end

Figure 11 Blackboard Fire Alarm Derived Class Diagram
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While this diagram may appear to be simple, one should realize that this is only the starting point for the
detailed design, not the end result. During detailed design this diagram may be refined in various ways.

An example of such a refinement may be the application of the composite design pattern [Gamma et al.
1995] to deal with scheduling. In the diagram above Sensor and Actuator have no parent interface defining a
tick method. Consequently, there are two separate relations to the scheduler rather than one to this parent inter-
face. Another refinement may be to have multiple class implementations of the Sensor and Actuator interface.
A whole class hierarchy of such implementations could be defined without affecting the architecture level rep-
resentation or breaking its design rules. In Figure 12, a sequence diagram for the architecture is given. In this
sequence diagram, archetypical sensors and actuator interactions are illustrated using the methods defined in
the class diagram of Figure 11.

The diagrams we provide in Figure 11 and Figure 12 can be used as a starting point for the detailed design.
In order to obtain an implementable design (which is the purpose of creating a detailed design), design deci-
sions about such things as data formats, properties of objects, utility classes, inheritance and containment hier-
archies, etc. need to be taken. Since such design decisions may have an architectural impact, there is no way
back and the original architecture design will need to be revised to keep it synchronized with the evolving
detailed design.

4 Analysis

Using our architecture modelling notation approach, we have created a number of different compositions of
fragments. In this section, we will provide an analysis of the application of the notation on the case in
Section 3. Also we will reflect on the issues outlined in the introduction.

4.1 Problems and Solutions

In the introduction we identified a number of problems. In this section we will argue how the notation address-
es the issues outlined in the introduction.
Separation of Concerns. Our notation provides support for superimposition. This means that we can alter a
fragment by imposing another fragment on it. The superimposition mechanism can be used to separately define
concerns and impose them where necessary. An example of this is the way we impose caching on the function-
al firealarm in Section 3.3. The caching fragment is fitted between the actuator and sensor fragment, transpar-
ently changing the way these two fragments interact. The resulting caching firealarm has the same externally
visible fragmentinterface so any composition it is involved in will be unaffected by the change.
Withdrawing design decisions. Compositions of fragments can be altered easily by replacing parts of this ex-
pression with similar (i.e. providing at least the same ins and outs) other parts. An example of an application of
this feature would be to design a system with a fire alarm embedded. Initially the FunctionalFireAlarm could
be used. Later on, it could be replaced by one of the other fire alarm fragments easily (see also substitutability).

Substitutability (i.e. a is-a relation) is one of the three properties Szyperski identifies as essential of inherit-
ance (the other two are inheritance of interfaces, inheritance of implementation) [Szyperski 1997]. Since our
notation is an architecture level notation, it does not provide implementation inheritance. However, by provid-
ing an interface construct we can support the other two. An example of this is the IFireAlarm interface we pro-
vide. In our example, several fragments are defined that implement this interface. However, when using the
fire alarm in a composition it doesn’t really matter which one is used (i.e. the different variants are substitut-
able).
Superimposing new decisions. We have used superimposition to add caching to the functionalfirealarm in

Figure 12 Blackboard Fire Alarm Derived Sequence Diagram

aSensortheScheduler theBlackboardanActuator

measure()

process()

cacheTheValue()

sendRequest()

getValueFromCache()
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Section 3.3. Superimposition is transparent to the fragment that is subjected to it. Consequently, no unneces-
sary dependencies are created between design decisions. This allows us to use the functional fire alarm archi-
tecture in some composition and then later we are still able to add caching to this larger composition in exactly
the same way.

4.2 Lessons learned

Abstracting from data. Our notation deliberately has a strong focus on functionality. We have found that
abstracting from such details as data format and types allows us to capture the essence of an architecture. A
Sensor is thus reduced to an entity that returns something when asked for it. What exactly is returned (and
how) is an implementation detail. The fact that there will probably be different kinds of sensors with varying
properties like what is measured, what kind of information is returned and how accurate the measurement is
not an architectural concern. What matters at the architectural level is that there is an entity called sensor (i.e.
the sensor fragment) which performs some archetypical behaviour characteristic of sensors (i.e. the activities)
and fits in with the other architectural entities in a certain way (i.e. the fragment interface).
No clear boundary between architecture and detailed design. Our intention was to create a representation
that is simple yet expressive enough to capture common architecture idioms and patterns (e.g. the architectural
styles from [Buschmann et al. 1996]). We believe that our notation meets these criteria, however, in trying to
keep things simple we have had to ask ourselves the question whether modelling a particular aspect of a design
was an architecture design issue or a detailed design issue (in which case our notation would not need to sup-
port it). We have found that this is a rather grey area and we are aware that architecture and detailed design are
not independent activities. Rather the architecture design evolves with the detailed design and often new
requirements, requiring architectural changes, become apparent when working on the detailed design. This
notion is also a motivation for our future work plans.
Graphic support is essential. In this paper, three notations ranging from very formal to a UML diagram have
been discussed. We have found that it is generally much harder to understand one dimensional text representa-
tions than two dimensional graphics. Traditionally, things like separation of concerns and composition have
been expressed using source code primarily. An important contribution of our paper is that we have shown how
to do it by manipulating diagrams.

4.3 Remaining Issues

Traceability of design decisions. Considering that software development is generally an iterative process (as
opposed to the waterfall model of software development), architecture notations, such as ours, share a common
problem: important information is lost when progressing from one phase to another. Our notation is not differ-
ent in that respect. For instance, a feature of our notation is the ability to define superimposition of fragments
onto existing fragments. When a detailed design is derived however, this information is lost (the full composi-
tion is used to derive the detailed design). When later changes in the evolving detailed design need to be prop-
agated to the architecture design, the original architecture design may no longer be accurate and it will have to
be recovered from the detailed design. Since the detailed design notation has no means to express such things
as superimposition, this information is lost. Note that this is not just an issue with our notation. To the best of
our knowledge, any ADL available today suffers from this problem. This problem used to also apply to the
detailed design phase vs. the implementation phase. However, the emergence of sophisticated CASE tools that
integrate source code and UML notations has addressed this to a large extent. We believe that the solution to
the issue lies in extending the support of such tools to architectural level notations, such as ours. The UML
based nature of our notation may be helpful in achieving this.
Non-deterministic derivation. An issue that also needs to be considered in order to do so is that the detailed
design derivation process is not deterministic. A consequence of specifying architecture fragments in a generic
way is that there are multiple detailed designs that conform to such an architecture. Consequently, the deriva-
tion process has to allow for multiple derivations. Which derivation process is chosen, largely depends on
design decisions that we consider to be part of the detailed design phase.
Separation of concerns in the Detailed Design. Our notation can be used to express separated concerns at the
architectural level. Existing approaches towards separation of concerns mostly work on the implementation
level. This leaves the detailed design as an area where support for separation of concerns has yet to be added.
Once this is accomplished, it is possible to trace concerns throughout the whole development process. Cur-
rently this information is simply not included during detailed design due to a lack of suitable notations. Conse-
quently, concerns are not designed/implemented until work on the implementation has started.
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5 Conclusion

In this paper we have provided a notation for defining architecture fragments and defined its semantics using a
formal notation. To illustrate how the notation works, we have used a pseudo code notation. However, we ex-
pect that in practice the graphic notation may be preferred as a more efficient means of communicating design
decisions whereas the pseudo code notation may be used to provide additional details and prototyping. Also we
have found the graphical way of doing composition and superimposition is quite intuitive.

The main advantages of our notation are:
• It abstracts from distracting details that really belong to the detailed design.
• It provides support for both composition and superimposition.
• It allows for some flexibility in the order in which design decisions are applied.

Because of this, it is easy to define different variants of the same architecture, apply an architectural style and
compose existing architecture fragments.

5.1 Future Work

Our approach is an architectural level approach. We chose to operate on this level first because decisions made
during this phase have a large impact on the subsequent development of a system. Now that we have this ap-
proach in place we can start thinking about extending it to the detailed design level. We feel that such a step is
necessary as information is lost in the derivation process outlined in Section 2.4. This makes it hard to evolve a
system in an iterative fashion since this requires a continuous effort to keep the architecture design in line with
the detailed design.

In addition, we would like to do a more extensive case study to learn more about the effectiveness and
applicability of the notation. In addition we would like to learn more about what concerns drive the architec-
ture design using conventional techniques. At the moment of writing, we are preparing a case study at a local
company that will provide us some feedback.
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