
An FFT-based Method for Attenuation Correctionin Fluorescence Confocal MicroscopyJ.B.T.M. Roerdink and M. BakkerCWIP.O. Box 4079, 1009 AB Amsterdam, The NetherlandsA problem in three-dimensional imaging by a confocal scanning laser microscope(CSLM) in the (epi)
uorescence mode is the darkening of the deeper layers due toabsorption and scattering of both the excitation and the 
uorescence light. In thispaper we propose a new method to correct for these e�ects. Our approach, validfor weak attenuation, consists in multiplying the measured 
uorescent intensity bya correction factor involving a convolution integral of the measured signal, whichcan be computed e�ciently by the Fast Fourier Transform. We give analytical andnumerical estimates as to the degree of attenuation under which our method is valid,and apply the method to various test images. We also show a restoration of a realCSLM image. Finally the method is compared with a recent iterative method withregard to numerical accuracy and computational e�ciency.AMS 1991 Mathematics Subject Classi�cation: 68U10, 78A99.Keywords: Fluorescence confocal microscopy, attenuation correction, convolutionmethod, Fast Fourier Transform, 3D image processing.Note: Postscript version obtainable at http://www.cs.rug.nl/~roe/. Final versionappeared in: J. Microscopy 169, 1993, pp. 3-14.1. IntroductionThree-dimensional (3D) images acquired with a confocal scanning laser microscope (CSLM) inthe (epi)
uorescence mode [2,7] su�er from the darkening of the deeper layers in the object dueto scattering and absorption of excitation and 
uorescence light. A way has been devised tocorrect for this e�ect by a layer stripping method, where one iteratively corrects the �rst, secondetc. layer, see Visser et al. [6]. They give a description of the problem in discrete space anddiscuss an implementation of the resulting algorithm. The process is more fully described below(see Section 6). A problem with this method is that it is very computer-intensive, because at then-th layer one has to do a computation involving all the previous n�1 layers, for n = 1; 2; :::; Nz,where Nz is the number of vertical layers (i.e. the layers are orthogonal to the optical axis, which



2is taken to coincide with the z-direction). This causes the computation time to scale as N4z . Foran image of 16 layers, where each layer has a spatial resolution of 256 by 256 pixels, restorationby this layer stripping method may take as much as 10 hours on a RISC workstation. A modi�edalgorithm where voxels (volume elements) in higher layers are `condensed' by a kind of averagingprocedure [6], still has complexity _(N2z ) and requires around one hour on the same workstation.In this paper we develop a di�erent solution to the attenuation problem. Following themodel description of Visser et al., we reformulate the attenuation problem in continuous space.Next, assuming that the attenuation is weak, we construct by analytic methods a correction to thestandard restoration, which takes the form of a multiplicative factor involving a 3D convolutionof the measured signal. As is well known, such convolutions can be e�ciently computed bythe use of Fast Fourier Transform (FFT) methods. In this way, the complexity of computationis reduced to _(Nz logNz). Taking the same example and hardware as mentioned above, thecomputation time using our method is reduced to around 8 minutes. To further reduce thecomputation time one may resort to the use of dedicated hardware for fast convolution.To establish the limit of validity of our method we performed several analytical and numer-ical estimates. The accuracy of the results depends on the depth of the layer considered: deeperlayers are less accurately reconstructed than higher layers. Test results indicate that an intensitydrop of 25% going from the top layer to the bottom layer can be corrected for to within 5% orless. When the attenuation becomes as high as 50% the method becomes less accurate, but isstill able to reduce this attenuation to about 25%.The organization of this paper is as follows. In Section 2 we sketch the imaging processof the CSLM and formulate this in mathematical terms as a nonlinear integral transform of theobject function. In Section 3 we perform a perturbation expansion based upon the assumptionof weak attenuation, yielding a correction factor in the form of a convolution integral. Thediscretization of the correction integral is discussed and some details on its numerical computationby the FFT are given. The accuracy of the method is studied in Section 4 by applying it to atest function which varies only in the z-direction so that its integral transform can be accuratelycalculated and the results can be compared to the known values. Analytical estimates for thegeneral case are given in an Appendix. In Section 5 we apply our method to several arti�ciallyconstructed test images as well as a real image from a confocal microscope, and show the resultingrestored images. We also make an assessment of the restoration accuracy and present sometiming results concerning the computational e�ciency of the algorithm, including a comparisonwith the layer stripping method mentioned above.2. Mathematical formulation of the imaging processWe start our discussion by a short description of the imaging process of a CSLM operating inthe 
uorescence mode. For more details, see e.g. [2,7]. The experimental set-up is shown inFigure 1. A laserbeam is focussed upon a pinhole, expanded again and, through a system oflenses, focussed upon a point in the object. The width of the incoming bundle is characterizedby a semi-aperture angle !, which may be as large as 60� in practice. The radiation absorbedat the point in focus is reemitted as 
uorescent radiation.This is achieved by labeling the object to be imaged with 
uorochromes (particles of
uorescent material). This 
uorescent radiation is emitted uniformly in all directions. Part ofit therefore travels back the same route as the incoming radiation until it reaches a so-calleddichroic mirror, which de
ects this radiation towards the detector where the total radiation inthe bundle is measured. The object is discretized into a number Nz of layers along the opticalaxis, a distance �z apart. The total depth of the sample is denoted by dz. Also, each layer isdiscretized into a rectangular grid of Nx by Ny points, with spacings �x and �y in the x- and
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Figure 1. Sketch of the confocal microscope in 
uorescencemode.
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Figure 2. Geometry of light cone with apex at a pointP (x; y; z) in the object.R: radius of spherical bundle; !: semi-aperture angle; (�; �):polar angles of light ray; dz: depth of the sample. The opticalaxis coincides with the z-axis.y-direction, respectively. By moving the scan table of the CSLM each objectpoint of the 3D gridso formed is brought into focus and the corresponding 
uorescent intensity (energy per unit oftime) measured.We now proceed to formalize the above description in a mathematical way. Our treatmentclosely follows [6] to which we refer for details on the assumptions underlying the model and



4their physical justi�cation.The incoming bundle, with intensity per unit area denoted by I, converges to the objectpoint as a spherical bundle of radius R. The reader is referred to Figure 2, where the directionof the incoming bundle (the positive z-direction) is drawn downward. Hence the object extendsover the range 0 � z � dz in the vertical direction. The total intensity I0 of the bundle thereforesatis�es the relation I0 = Z !0 d� sin � Z 2�0 d� IR2 cos � = �IR2 sin2!: (2:1)Here � is the angle of a light ray with the z-axis, and the cos � factor stems from the fact thata uniform incoming bundle converges to a spherical bundle. As is seen from Figure 2, the raysconverging to the object point are contained in a circular cone (`light cone') with angle !.Attach a �xed Cartesian coordinate system to the object, and let the point in focus bedenoted by r := (x; y; z). Also, introduce a polar coordinate system moving along with theobjective. The total attenuation of a ray along the line segment with polar angles � and � (withrespect to the optical axis) and arriving at r is determined by the line integral,l(�; �;x; y; z) = Z z0 dz0cos � a (x+ (z � z0) tan � cos �; y + (z � z0) tan � sin�; z0) ; (2:2)where, for any point r0 of the object, a(r0) is the attenuation coe�cient at that point. The totalexcitation intensity Ie(r) arriving at the point r can be written as a superposition of contributionsalong rays ending in r:Ie(r) = Z !0 d� sin � Z 2�0 d� IR2 cos � exp��l(�; �;x; y; z)�: (2:3)It is convenient to de�ne a forward attenuation coe�cient 
f (r) by
f (r) := Ie(r)I0 = 1� sin2! Z !0 d� Z 2�0 d� sin � cos � exp��l(�; �;x; y; z)�: (2:4)The de�nition is chosen in such a way that 
f reduces to unity when the attenuation is zeroeverywhere.The excitation light is transferred into 
uorescent light with an e�ciency ��(r), where�(r) depends on the density of 
uorochromes at the point r and � is a proportionality constant.The intensity of emitted 
uorescent light is thereforeIf (r) = ��(r)Ie(r): (2:5)The 
uorescent light is isotropically emitted and the part which travels back the same way asthe incoming radiation is detected. Let this detected intensity corresponding to the point r infocus be denoted by F (r). Then, assuming that the attenuation coe�cient of the excitationlight equals that of the 
uorescence light, we getF (r) = Z !0 d� Z 2�0 d� sin � 14�If (r) exp��l(�; �;x; y; z)�: (2:6)Note that the extra factor `cos �' in Eq.(2.3) is absent here because of the assumption of isotropicemission.



5De�ne a backward attenuation factor 
b(r) by
b(r) := 2F (r)(1� cos !)If (r) = 12�(1� cos !) Z !0 d� Z 2�0 d� sin � exp��l(�; �;x; y; z)�; (2:7)which again equals unity if there is no attenuation. Combining the results so far we haveF (r) = 12
f (r)
b(r)�(1� cos !)I0�(r): (2:8)De�ne the normalized signal f byf(r) := 2F (r)�I0(1� cos!) = 
f (r)
b(r)�(r): (2:9)This equation shows that �(r) is the 
uorescent density which would be measured if the atten-uation was completely absent. Our eventual aim is to perform an attenuation correction of themeasured signal, or, in other words, to reconstruct the density � from f . The attenuation factorsin (2.9) still contain the unknown function a(r). To proceed, we assume that a(r) is functionallydependent upon the density �(r): a(r) = g(�(r)): (2:10)In some cases, such as DNA labeled with 
uorochromes, the attenuation is (approximately)proportional to the 
uorescent density: g(�(r)) / �(r); (2:11)while in other cases, such as geological sandstone samples, a relation of the formg(�(r)) = 8<: a1 �(r) � ha2 �(r) > h (2:12)is assumed [6]. Here the extinction at the stone points (small 
uorescent density) is larger thanat the points in the 
uorescent liquid (high 
uorescent density), i.e. a1 > a2.We observe that instead of reconstructing the density �(r) one may also reconstruct theattenuation function a(r) as done by Visser et al. [6]. Eq. (2.10) shows that, if �(r) has beenobtained, one only has to compute g(�(r)) in each point r to obtain the desired result. For thecase of linear attenuation the two densities are essentially identical.Inserting the attenuation factors in (2.9) we getf(r) = �(r)� 1� sin2! Z !0 d� Z 2�0 d� sin � cos � exp ��Z z0 dz0cos � g (�(r̂))�� 12�(1� cos!) Z !0 d� Z 2�0 d� sin � exp ��Z z0 dz0cos � g (�(r̂))� ; (2:13)where r̂ is the vectorr̂(r; �; �; z0) = (x+ (z � z0) tan � cos�; y + (z � z0) tan � sin�; z0): (2:14)This formula expresses the measured signal f as a nonlinear integral transform of the unknowndensity �. Since there is little hope to �nd an explicit analytical solution of this equation, wefollow an approach which is based on the assumption of weak attenuation, meaning that theexponential factors in this equation are `small' in some sense.



6 To make precise what is meant by `small' in this case, it is essential to introduce a quat-itative measure for the degree of attenuation. It is clear that the amount of attenuation willdepend on the �rst place on the values of the function g in Eq. (2.10). This can be quanti�edby introducing the following `norm' kgk of the function g, which measures the maximum valueof g over the 3D region V occupied by the sample:kgk = maxr2V g(�(r)): (2:15)Secondly, the total attenuation of a light ray|for a given maximum value of g|depends on thetotal depth dz of the sample. This implies that a measure for the degree of attenuation of thesignal when traversing the complete sample is provided by the dimensionless parameter� := kgkdz: (2:16)Now introduce a dimensionless depth variable ~z = z=dz running between 0 and 1, and de�ne anormalized attenuation function ~g by~g(r) := g(�(r))= kgk : (2:17)Then the two exponential factors in Eq. (2.20) can be rewritten asexp"�kgk dz Z ~z0 d~z0cos � ~g ��(~̂r)�# ; (2:18)where ~̂r is de�ned by~̂r(~r; �; �; ~z0) = (x+ (~z � ~z0) tan � cos�; y + (~z � ~z0) tan � sin�; ~z0): (2:19)This shows that as a result of the renormalization a prefactor of the form � = kgk dz emerges.To simplify the notation, we drop all the tildes again but assume for the rest of this paper thatthe renormalizations of the attenuation function g and the depth variable z have already takenplace, so that the �nal result for the measured signal coincides with Eq. (2.13) apart from theaddition of a factor � in the exponents:f(r) = �(r)� 1� sin2! Z !0 d� Z 2�0 d� sin � cos � exp ���Z z0 dz0cos � g (�(r̂))�� 12�(1� cos !) Z !0 d� Z 2�0 d� sin � exp ���Z z0 dz0cos � g (�(r̂))� : (2:20)It should be noted that if the physical scale of the sample is modi�ed, without changing theratios between the dimensions in the x-, y- and z-directions, this is accounted for by a modi�edvalue of � without changing the form of (2.20). The same holds for (additional) rescalings off; g or �.3. Approximate inversion of the integral transformIn this section we will �nd an approximate solution of the basic equation (2.20) by using thestandard mathematical technique of perturbation expansion in a small parameter. The basicidea is simple: from Eq. (2.20) one sees that the solution �(r) will be a function of|amongothers|the variable �, so that one can write�(r) = �(r; �); (3:1)



7to explicitly indicate this �-dependence. If attenuation could be completely neglected then wewould have � = 0 and hence �(r) = �(r; 0) = f(r), that is the restored signal equals themeasured signal. Now if the attenuation is nonzero but small, as determined by the magnitudeof �, then we can perform a Taylor expansion of �(r; �) in the parameter �, and retain only thelowest order terms, which requires that � << 1. When only the term which is linear in � isretained we get an attenuation correction of the restored signal to �rst order in �. This �rstorder term in � turns out to involve a convolution integral of the measured signal f which can beevaluated e�ciently by FFT methods. Needless to say the application of this method in practicewill only be justi�ed if the attenuation, that is, the parameter �, is indeed small. The questionof how large an error is commited for a given value of � will be taken up in Section 4.Weak attenuation expansionAs a starting point we expand �(r) in powers of �,�(r) = �0(r) + ��1(r) + �2�2(r) + :::; (3:2)substitute this in (2.20) and collect terms of like powers in �. Putting � equal to zero results inf(r) = �0(r): (3:3)Next we collect terms of �rst order in �. This yields0 = �1(r)� �0(r) � Z !0 d� Z 2�0 d� sin � Z z0 dz0cos � (Cf cos � + Cb) g (�0(r̂(r; �; �; z0))) � ;(3:4)where Cf := 1� sin2! ; Cb := 12�(1� cos!) ; (3:5)are the normalization constants referring to the forward and backward attenuation factors, re-spectively. Hence, to �rst order in � we �nd the following approximation ~�(r) for the density:~�(r) = f(r) f1 + � c(r)g ; (3:6)where c(r) is de�ned byc(r) = Z 2�0 d� Z !0 d� (Cf sin � + Cb tan �) Z z0 dz0 g (f(r̂(r; �; �; z0))) : (3:7)Convolution formNext we show that (3.7) can be written as a 3D convolution. Recalling thatr̂(r; �; �; z0) = (x+ (z � z0) tan � cos�; y + (z � z0) tan � sin�; z0);we perform a change of variables, f�; �g ! fx0; y0g, wherex0 = x+ (z � z0) tan � cos �;y0 = y + (z � z0) tan � sin�: (3:8)The Jacobian of this transformation isJ = ������ @x0@� @x0@�@y0@� @y0@� ������ = ������ (z � z0) cos�cos2� �(z � z0) tan � sin�(z � z0) sin�cos2� (z � z0) tan � cos � ������ = (z � z0)2 tan �cos2� : (3:9)



8Hence we get, after interchanging the order of integration,c(r) = Z z0 dz0 IB(x;y;r) dx0dy0 cos2�(z � z0)2 tan � (Cf sin � +Cb tan �) g (f(x0; y0; z0)) ; (3:10)where B(x; y; r) denotes the disc with center (x; y) and radius r. Here r is given byr = (z � z0) tan!; (3:11)and HB(x;y;r dx0 dy0 is a shorthand notation to indicate that the x0; y0-integration is to be carriedout over the disc B(x; y; r). Performing another change of variables, r0 = (x0; y0; z0) ! r00 =(x00; y00; z00), where x00 = x� x0 y00 = y � y0 z00 = z � z0;and using that, for � � ! � �=2,cos � = (1 + tan2�)�1=2 = � z002x002 + y002 + z002�1=2 ; (3:12)we �ndc(r) = Z z0 dz00 IB(0;0;z00 tan!) dx00 dy00 1z002 �Cf cos3� + Cb cos2�� g (f(r � r00))= Z z0 dz0 IB(0;0;z0 tan!) dx0 dy0 �Cf z0(x02 + y02 + z0)3=2 + Cb 1x02 + y02 + z02�g (f(r� r0)) :(3:13)Finally, making use of the fact that the density �(x; y; z) is zero for z < 0 or z > d, we can write(3.13) manifestly as a convolution integral:c(r) = Z 1�1 Z 1�1 Z 1�1 dr0 �(r0) g (f(r � r0)) ; (3:14)where �(r) is the space-invariant kernel given by�(x; y; z) = (Cf z(x2+y2+z2)3=2 + Cb 1x2+y2+z2 ; 0 � z � dz; x2 + y2 � (z tan!)20 elsewhere (3:15)
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Figure 3. The correction term c(r) is obtained byputting the light cone at point r and performing theconvolution of the signal function with the kernel(3.15), which has support inside this light cone ofheight dz.



9This formula shows that the kernel �(r) has support in the circular light cone of heightdz. The value of the convolution at a point r is obtained by putting this cone with its apex atr and calculating the convolution of the kernel function inside the cone with the signal functiong (f(r)), see Figure 3.The divergence of �(r) at r = 0 is harmless since the support of the kernel also goes tozero there (apex of the cone). For example, one easily checks that the integral of �(r) over thecone is �nite and equals 2dz.Numerical computationTo evaluate the integral (3.14) numerically, we subdivide the region of interest into a grid ofNx � Ny � Nz voxels, each voxel being a box of dimensions �x; �y; �z in the x-, y- and z-directions, respectively, and assume the signal function f(r) to have a constant value in eachvoxel. De�ne the 3D arrays R;C; F and G byRijk := ~� (i�x; j�y; k�z) ;Cijk := c (i�x; j�y ; k�z) ;Fijk := f (i�x; j�y ; k�z) ;Gijk := g(Fijk); (3:16)for i = 1; ::; Nx; j = 1; ::; Ny; k = 1; ::; Nz. Then the approximation (3.6) is replaced byRijk = Fijk(1 + � Cijk); (3:17)and the integral (3.14) by the discrete convolutionCijk = Mx2Xi0=�Mx2 +1 My2Xj0=�My2 +1 MzXk0=1Ki0j0k0 Gi�i0;j�j0;k�k0; (3:18)where K is the discrete counterpart of the convolution kernel (3.15),Kijk : = Z (i+ 12 )�x(i�12 )�x dx Z (j+ 12 )�y(j� 12 )�y dy Z k�z(k�1)�z dz �(x; y; z)� �x�y�z � (i�x; j�y; (k � 1=2)�z) : (3:19)Here Mx;My;Mz denote the support of the kernel in the three space directions in units of�x; �y; �z, respectively. So Mz = dz=�z = Nz, where dz is the depth of the sample, andsimilarly, Mx = 2dz tan(!)=�x;My = 2dz tan(!)=�y, where in all cases rounding o� to integervalues is understood. The di�erent treatment of the x; y-summations versus the z-summationstems from the fact that the kernel is symmetric in the x; y-directions, while it extends only overnon-negative values in the z-direction. To obtain su�cient accuracy of this discretization it isrequired that the grid is taken �ne enough.As is well known, one can evaluate the discrete convolution (3.18) e�ciently by FFTmethods. Care has to be taken to make sure that appropriate zero padding of the signal G andthe kernel K is performed in order to avoid undesired wrap around e�ects, see e.g. [3], where theconvolution kernel is called the `response function' and the function to be convolved the `signalfunction'. In our case, the convolution kernel extends over the complete depth of the sample,so that zero padding results in a doubling of the arrays in the vertical dimension, while in thex; y-directions the signal array Cijk has to be extended by amounts Mx=2;My=2, respectively.The response function Kijk is also extended by zeros to make the dimensions equal to those ofthe zero-padded signal array, where the i and j indices have to be renumbered in wrap aroundorder to make them run over non-negative integers only [3].



10The restoration procedureThe complete procedure of reconstructing the 
uorescent density from measured data as de-veloped above contains the following steps:1. Read the data Fijk; i = 1; ::; Nx; j = 1; ::; Ny; k = 1; ::; Nz from a �le.2. Compute the convolution Cijk of the data Gijk = g(Fijk) with the kernel Kijk.3. Determine the appropriate value of the attenuation constant �.4. Compute the endresult according to the approximation (3.6).Input parameters of the algorithm are the dimensions Nx; Ny; Nz of the data array, thescanning steps �x; �y; �z, the semi-aperture angle ! and the attenuation constant �. For thedetermination of the correct value of � one may resort to a calibration experiment in which ahomogeneous test sample is used [6]. In this paper we will consider test densities for which thevalue of � is known.4. Accuracy of the methodOur restoration method as outlined in the previous section contains two sources of inaccuracy:�rst the error involved in using the approximation (3.6), second the error caused by the dis-cretization into voxels, necessary for applying the discrete convolution algorithm. In order toassess the importance of the �rst error source we consider a spatially constant test function�, for which the signal density (2.20) and the approximate inversion formula can be expressedin terms of a one-dimensional integral which can be evaluted to high numerical precision (nodiscrete convolution used). In particular we investigate the range of values of the attenuationparameter � for which the approximation (3.6) gives a satisfactory representation of the exactresult. Conclusions reached from this test function do not necessarily hold for more complicateddensity functions, but may give a �rst indication of the accuracy to be expected. Restorationsof spatially varying density functions using the discrete convolution algorithm are considered inthe next section.To substantiate the outcome of this numerical experiment we present in an Appendix someanalytical error estimates which enable us to make a more general assessment of the error causedby truncating the expansion (3.2).Restoration of a test functionConsider a test function which has a constant value �0 (depth dz = 1),�(x; y; z) = �0; 0 � z � 1: (4:1)For the functional dependence of g(�) as a function of � we consider the following three cases,as typical representatives of the kind of behaviour which one may encounter in practice:(i) g (�) = �(ii) g (�) = e�� (4:2)(iii) g (�) = �e��:The signal function f (which depends on the depth z only) corresponding to this density is (seeEq. (2.20)) f(z) = �0
f (z)
b(z); (4:3)



11where the corresponding forward and backward attenuation factors are given by
f (z) = 2�� sin2! Z !0 d� sin � cos � exp�� Z z0 dz0cos � � g(�0)�
b(z) = 2�2�(1� cos!) Z !0 d� sin � exp�� Z z0 dz0cos � � g(�0)� : (4:4)Performing a change of variable, x = cos �, we get
f (z) = 2sin2!I1(z); 
b(z) = 11� cos!I0(z); (4:5)whereI0(z) = Z 1cos! dx e��g(�0)z=x;I1(z) = Z 1cos! dx xe��g(�0)z=x = 12 he��g(�0)z � cos2! e��g(�0)z= cos! � �g(�0)zI0(z)i :(4:6)So all quantities can be expressed in terms of the 1D integral I0(z), the so-called `exponentialintegral' [1], which can be evaluated from tables or computed numerically.The approximate restoration, denoted by ~�� to indicate the �-dependence, is given by~��(z) = �0
f (z)
b(z)f1 + � c(z)g; (4:7)where, using (3.7) and (4.3),� c(z) = � Z 2�0 d� Z !0 d� � sin �� sin2! + tan �2�(1� cos!)�Z z0 dz0 g (�0
f (z0)
b(z0))= � Z z0 dz0 g (�0
f (z0)
b(z0)) ; (4:8)with � given by � = ��2(1� cos !)sin2! � log(cos !)1� cos ! � : (4:9)One easily infers from the formulas above that the restoration ~��(z) depends on � and zthrough the combination �z only, ~��(z) = ~�1(�z): (4:10)In other words, a small value of � may be counterbalanced by a large depth z, which is inagreement with the observation below that the restoration accuracy of our approximate methoddecreases with increasing depth. Also, it is su�cient to vary either � or z, so we will express allresults in terms of the `e�ective' depth variable �z.In Table 1 we present the results of the restorations for the three cases (4.2). We havechosen � = 0:5; dz = 1:0, so that a substantial attenuation is obtained at the deepest level. Inall cases we use Nz = 10 depth levels. We observe that indeed the accuracy decreases withincreasing depth. The (maximum) value of �z permitted if a given accuracy is to be attainedcan be easily determined from Table 1 for the various cases.



12 case (i) case (ii) case (iii)�z �(z) f(z) ~��(z) f(z) ~��(z) f(z) ~��(z)0:00 1:000 1:000 1:000 1:000 1:000 1:000 1:0000:05 1:000 0:873 0:984 0:951 0:999 0:951 0:9980:10 1:000 0:762 0:944 0:905 0:995 0:905 0:9910:15 1:000 0:666 0:889 0:861 0:990 0:861 0:9810:20 1:000 0:582 0:827 0:819 0:983 0:819 0:9680:25 1:000 0:509 0:761 0:779 0:974 0:779 0:9520:30 1:000 0:445 0:694 0:741 0:964 0:741 0:9340:35 1:000 0:390 0:629 0:705 0:952 0:705 0:9140:40 1:000 0:341 0:568 0:671 0:940 0:671 0:8930:45 1:000 0:298 0:510 0:639 0:926 0:639 0:870Table 1. Originals �(z), signal values f(z) and restorations ~��(z) as a functionof �z.Case (i): g(�) = �; case (ii): g(�) = exp(��); case (iii): g(�) = � exp(��).>From these results we conclude that our method is able to yield a substantial attenu-ation correction, especially for those cases in which the attenuation function g(�) decreasesfor large �. Also we observe that the restoration error increases roughly linearly with theproduct �z, in agreement with the error analysis in the Appendix.The next question is how our method works in the case of spatially varying densities.This is the subject of the next section.5. Restoration of 3D imagesIn this section the restoration of 3D images is studied. First we arti�cially construct sometest images and compare the original with the restored images for several values of �, sothat an assessment of the accuracy can be made. Then we show also a restoration of a realCSLM image.Restoration of test imagesWe consider test densities �(r), which vary in the x- and y-directions, but not in the z-direction. To �nd the corresponding signal values f(r) according to Eq. (2.20), multipleintegrals have to be computed numerically for every voxel of the test image to be generated,which takes a lot of CPU-time for realistic image sizes. By taking test images which arez-independent, the z-integrals in (2.20) can be computed analytically, reducing the compu-tation time to generate the test images. Moreover, restorations of the deeper layers can besimply compared to the �rst layer for assessing the restoration accuracy.First we discuss the case of a sinusoidally varying test image, referred to as `trig image'below, �(r) = 14 cos(2�nxx=dx) cos(2�nyy=dy); (5:1)where dx and dy are the spatial dimensions of the sample in the x- and y-directions, andnx; ny are integers determining the spatial frequencies. The values used below are nx =ny = 8.In order to mimick practical densities with discontinuities, we have taken a second testimage, `circle image' for short, consisting of a number of circles with di�erent grey values,also constant in the z- direction.



13First we look at the computational e�ciency of our algorithm. In Table 2 we presentunder `FFT method' the result of some timing experiments of the algorithm by varying, forvarious sizes Nx = Ny of a single image plane, the number Nz of vertical layers. For theFFT method, vertical layer numbers before zero padding are given, so that the convolutionis actually performed with an Nz-value which is twice as large (see Section 3). Displayedis the total CPU time (sum of system and user time), which includes time used for dataI/O (reading/writing of 3D image data from/to �le). Times are given in minutes (m) andseconds (s). Computations were performed on a SPARC workstation (35 Mhz, 26 MIPS).We observe that the computational time is roughly proportional to the numberNz of verticallayers, in agreement with the well known complexity _(Nz logNz) of the FFT.We also did the timing for the layer stripping method of Visser et al. [6], where, start-ing with the �rst layer for which Rij1 = Fij1 by assumption, one successively corrects thesecond layer, the third layer, etc. by computing a discrete approximation to the attenuationfactors 
f and 
b involving the previous layers. The �; �-space is discretized into a number,say N� values of � (`rings') and N� values of � (`segments'). This poses the problem of twodiscretizations, one in �; � space, and one in ordinry `voxel-space', which have to be broughtinto correspondence (in [6] this is done by creating a look-up table which determines towhich segment of which ring each Cartesian point (i; j; k) belongs). Naturally, this causesdiscretization errors which are non-uniform throughout the sample. Also, it is not obvioushow to choose N� or N�, which are extra input parameters of the algorithm. In the FFTmethod, this problem does not occur, because there we only work with the voxel discretiza-tion. Moreover, the layer stripping method is very computer-intensive, because at the n-thlayer one has to do a computation involving all the previous n� 1 layers. Calculating backfrom a given voxel, the number of voxels inside the light cone which need to be consideredat the n-th layer is proportional to n3, causing the computation time to scale as N4z , whereNz is the number of vertical layers. This e�ect is especially severe when ! is large (`highaperture'), which is the case considered here. Therefore in [6] a condensation procedure wasused in which, by an averaging procedure, one e�ectively takes in each of the previous layersa constant number of `e�ective' voxels into account, so that the computation time scales asN2z . Timing results for this modi�ed layer stripping algorithm (N� = 8; N� = 8; �z=�x = 4)have been included in Table 2. We emphasize that the numbers in the Table have a lim-ited value, since they depend on machine type, computational load of the network duringruntime, etc. However, inspection of the numbers does con�rm the approximate linear versusquadratic increase in computation time for the FFT method and the layer stripping method,respectively. Nx Nz FFT method layer method64 8 14s 50s16 27s 3m27s32 55s 14m21s64 1m50s 60m17s128 8 56s 3m15s16 1m59s 13m41s32 4m14s 62m48s64 9m26s 251m57s256 8 4m14s 13m24s16 8m27s 56m15sTable 2. Timing results (CPU time) of the FFT method and the layer strippingmethod, for various values of Nx (= Ny) and Nz .



14 Next we consider the restoration accuracy. For both types of test images types wehave calculated the signal data Fijk by numerically computing the integrals in Eq.(2.20) fora number of equidistant 3D positions. The discretizations used in these computations weremuch �ner than the voxel discretization, so that we can regard them as `exact' data. Forthe attenuation function we chose the form g(�) = �, which is the `hardest' of the casesconsidered in Section 4. The dimensions of the images were chosen as follows: dx = dy =1:0; dz = 0:1, Nx = Ny = 128, Nz = 8, and the semi-aperture taken as ! = 1:04719. Theresulting data array was then used as input to the convolution algorithm as described inSection 3.We show the results in Figures 4 and 5. The �rst row contains the attenuated testimages f(r), the second and third row the restorations ~�(r) by the FFT method and layerstripping method, respectively. In each row, the �rst, fourth and seventh layer is displayedfrom left to right, out of a total of 8 depth layers. Recall that the original image �(r) in eachlayer is identical to the �rst image in row 1. We observe a considerable enhancement of therestored images over the attenuated images. The common practice of simply rescaling thegrey-values in each layer to the same maximum level (say 255) is avoided here, in order toachieve a correct assessment of the restoration quality of our algorithm. Apart from that,contrast enhancement is not obtained by such rescalings anyway.Finally, to quantify the restoration quality we computed the relative root mean squareerror E(z) :=  PNxx=1PNyy=1f�(x; y; z)� ~�(x; y; z)g2PNxx=1PNyy=1f�(x; y; z)g2 ! 12 ; (5:2)between original and restored image at each plane z = constant, again comparing ourmethod with the layer stripping method. We found that for spatially constant test imagesthe layer stripping method is much more accurate than the FFT method, which is notsurprising since for constant densities the condensation operation makes no di�erence, sothat in e�ect the exact layer stripping algorithm is performed. The accuracy for the FFTmethod is about the same as found in Section 4, meaning that the voxel discretization usedhas su�cient resolution.However, for spatially varying test densities the situation changes considerably, seeTables 3 and 4, where the restoration error is displayed for the trig image (� = 0:5) and thecircle image (� = 0:3), respectively. For comparison we give in column 2 of the Tables theerror before restoration, denoted by `signal error' and computed according to (5.2) with ~�replaced by f . The corresponding errors after restoration are denoted by `FFT error' and`layer error' for the FFT method and the layer stripping method, respectively.�z signal error FFT error layer error0:0000 0:000 0:000 0:0000:0625 0:116 0:016 0:0090:1250 0:217 0:054 0:0220:1875 0:305 0:112 0:0580:2500 0:382 0:181 0:1010:3125 0:450 0:254 0:1610:3750 0:509 0:326 0:2290:4375 0:560 0:393 0:301Table 3. Signal error and restoration error as a function of the e�ective depth�z for the trig image.
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Figure 4. Restoration of the trigonometric image.First row: the attenuated test images; second row: restoration by theFFT method; third row: restoration by the layer stripping method. Ineach row, the �rst, fourth and seventh layer is displayed from left toright. The original image in each layer is identical to the �rst image inrow 1. Restoration errors are given in Table 3.
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Figure 5. Restoration of the circle image.First row: the attenuated test images; second row: restoration by theFFT method; third row: restoration by the layer stripping method. Ineach row, the �rst, fourth and seventh layer is displayed from left toright. The original image in each layer is identical to the �rst image inrow 1. Restoration errors are given in Table 4.



17�z signal error FFT error layer error0:000 0:000 0:000 0:0000:025 0:086 0:017 0:0160:050 0:162 0:044 0:0340:075 0:233 0:084 0:0620:100 0:297 0:130 0:0940:125 0:355 0:176 0:1270:150 0:408 0:226 0:1650:175 0:454 0:271 0:200Table 4. Signal error and restoration error as a function of the e�ective depth�z for the circle image.We conclude that in the cases of the circle and trig images the layer stripping methodremains more accurate than our method, but the quality becomes comparable at the deeperlayers. Moreover, it has been observed in other contexts that layer stripping methods arenoise sensitive: errors made in the �rs layers will propagate to deeper layers [5]. In viewof the great increase in computational e�ciency of the FFT method we therefore concludethat the method developed here is a serious alternative for the layer stripping method.Restoration of a real CSLM imageThe method of this paper was applied to a CSLM image (Nx = Ny = 256, Nz = 8) of ageological sample consisting of sandstone cavities �lled with a 
uorescent oily substance,also considered in [6]. The result is shown in Figure 6. Clearly a substantial improvementis obtained, showing the practical usefulness of the method. We determined the value of� in this case by trial and error: the value was chosen so as to give a visually satisfactoryrestoration. More work is needed to develop methods for the automatic determination of �,preferably from the measured data itself.6. DiscussionIn this paper we describe a method for attenuation correction in Fluorescence ConfocalMicroscopy using Fast Fourier Transform methods. Our approach consists in multiplyingthe measured 
uorescent intensity by a correction factor involving a convolution integral ofthe measured signal, which can be computed e�ciently by an FFT-based algorithm. Ourmethod is valid for weak attenuation. We give analytical and numerical estimates as to thedegree of attenuation under which our method is valid. The accuracy of the results dependson the depth of the layer considered: deeper layers are less accurately reconstructed thanhigher layers. For the case of attenuation function g(�) which vary linearly with �, testresults indicate that an intensity drop of 25% going from the top layer to the bottom layercan be corrected for to within 5% or less. When the attenuation becomes as high as 50% themethod becomes less accurate, but is still able to reduce this attenuation to about 25%. Forattenuation functions which go to zero for large �, the restoration accuracy is considerablybetter. Application of the method on spatially varying test densities gives similar results.We also compared the computational e�ciency of our algorithm with the layer strip-ping method of [6]. In its original form this method has computational complexity _(N4z ),Nz being the number of vertical layers, and hence is unacceptably slow, taking many hourson a RISC workstation for a 256 � 256 � 16 image [6]. The layer stripping method `with
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Figure 6. Restoration of the sandstone CSLM image.First row: the attenuated CSLM images; second row: restoration bythe FFT method. In each row, the fourth and seventh layer is dis-played from left to right.condensation' developed in [6] in order to reduce the computation time, still has a compu-tational complexity of _(N2z ), as compared to _(Nz logNz) for our method. Thus, whenthe number of vertical layers gets larger the di�erence in computational e�ciency becomesincreasingly pronounced. For spatially varying image densities the restoration quality usingour method is a little poorer than in the layer method. This may be further improved byusing a `cumulant' estimator instead of the `moment' estimator (3.6) [4].The method of this paper was applied to a CSLM image of a geological sample con-sisting of sandstone cavities �lled with a 
uorescent oily substance, showing the practicalusefulness of the method.Acknowledgements The authors thank F.C.A. Groen and T.D.Visser for manyuseful discussions. T.D. Visser also kindly made the source code of the layer stripping al-gorithm and the CSLM data available to us.AppendixWe perform some estimates for substantiating the numerical results of Section 4. The



19CSLM transform can be written asf(r) = �(r)�Z d� pf (�) exp (��X(�))�� �Z d� pb(�) exp (��X(�))� ; (A1)where pf (�) = sin � cos �� sin2! ; pb(�) = sin �2�(1� cos!) ; (A2)with � := (�; �). Here X(�) is de�ned byX(�) = Z z0 dz0cos � g (�(r0)); (A3)where r0 := r̂(r; �; �; z0).The total error E(r), being the di�erence between the exact density �(r) and theapproximation ~�(r), can be estimated by a sum of two terms,E(r) = j�(r)� ~�(r)j � j�(r)� f(r)j+ jf(r)� ~�(r)j ; (A4)which we now consider separately.For the �rst term, we havej�(r) � f(r)j = j�(r)j ����1� �Z d� pf (�) exp (��X(�))�� �Z d� pb(�) exp (��X(�))�����(A5)Now, 1��Z d� pf (�) exp (��X(�))���Z d� pb(�) exp (��X(�))�= Z Z d�d�0pf (�)pb(�0)n1� e��(X(�)+X(�0 ))o� Z Z d�d�0pf (�)pb(�0) f�(X(�) +X(�0))g (A6)where we have used the inequality e�x � 1 � x; x � 0: Denoting by �max and gmax themaximum values of �(r) and g(�(r)) when r runs over the sample volume, we have����Z d� pi(�)X(�)���� � Z d� pi(�) jX(�)j � Z d� pi(�) 1cos! zgmax = zgmaxcos! :Substituting this in (A6) and the resulting formula in (A5) we getj�(r)� f(r)j � j�(r)j 2�zgmaxcos! � 2gmax�max�zcos ! ; (A7)where we have used that f(r) � �(r) � �max.The second term to be estimated isj~�(r)� f(r)j = � jf(r)j � ����Z d� (pf (�) + pb(�)) Z z0 dz0cos � g (f(r0))����� � j�(r)j � Z d�(pf (�) + pb(�)) Z z0 dz0cos � gmax� 2gmax�max�zcos! : (A8)Combining (A7) and (A8) we arrive at our �nal estimate for the total restoration error:E(r) � 4gmax�maxcos! �z: (A9)This result con�rms our previous observation (see Section 4) that the restoration error isroughly proportional to the product �z.
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