MATLAB Function Reference |
condentropy
Estimate the conditional entropy of the stationary signal x given the stationay signal y with independent pairs (x,y) of samples
Syntax
[estimate,Nbias,sigma,descriptor] = condentropy(x,y) [estimate,Nbias,sigma,descriptor] = condentropy(x,y,descriptor) [estimate,Nbias,sigma,descriptor] = condentropy(x,y,descriptor,base) [estimate,Nbias,sigma,descriptor] = condentropy(x,y,descriptor,base,approach)
Description
Conditional entropy estimation is, like plain entropy estimation, a two stage process; first a two demensional histogram2 is estimated and thereafter the
entropy is calculated. For the explanation of the usage of the
descriptor
of the histogram see
histogram2 .
In case of a disrete stochastic variable i
and j
in the integer subranges
lowerx <= i < upperx
and lowery <= j < uppery
the descriptor should be selected
as [lowerx,upperx,upperx-lowerx;lowery,uppery,uppery-lowery]
. The
R(epresentation)-unbiased entropy will be estimated.
In case of a continuous stochastic variable the descriptor can be left unspecified. In this case the default descriptor of histogram2 will be used.
The estimate depends on the value of approach
'unbiased'
: a N(umber)-unbiased estimate (default),
'biased'
: a N(umber)-biased estimate and
'mmse'
: a minimum Mean Square Error estimate, obtained by
balancing bias and variance after N-bias correction.
base
of the logarithm determines the unit of
measurement. Default base e (nats) is used, alternative choises are 2 (bit)
and 10 (Hartley).
As a result the function returns the estimate
, the N-bias
(Nbias
) of the estimate, the estimated standard error sigma
and the used descriptor
.
See Also
Literature
Moddemeijer, R. On Estimation of Entropy and Mutual Information of Continuous Distributions, Signal Processing, 1989, vol. 16, nr. 3, pp. 233-246, abstract , BibTeX ,
For the principle of Minimum Mean Square Error estimation see:
Moddemeijer, R. An efficient algorithm for selecting optimal configurations of AR-coefficients, Twentieth Symp. on Information Theory in the Benelux, May 27-28, 1999, Haasrode (B), pp 189-196, eds. A. Barbé et. al., Werkgemeenschap Informatie- en Communicatietheorie, Enschede (NL), and IEEE Benelux Chapter on Information Theory, ISBN: 90-71048-14-4, abstract , BibTeX ,
Source code
MATLAB Function Reference |