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Abstract. Mutual informariecn Is used in a model free and
non-parametric general purpose method to define time-delays
becween stochascic signals. For each of two staclionary
stochastic signals we define a past and a future by cucting
both infinite sample sequences into two parts: the past and
the Ffucure. The time-delay is «considered <o be cthe
time-shifc between the cutting momencs for which the mucual
informacion becween both infinite length past vectors and
both infinite length future vectors reaches a minimum. For
stacionary stochascic signals and under cercaln convergence
conditions cthis mutual informaction possesses one unique
minimum. We present some Ctheorecical elaborations and
discuss this method in relarion to other merhods.

1. Introductiomn,

For the estimation of time-delays between recordings of
electroencephalogram (EEG) signals several methods are In use such
as the cross—correlation method and the mutual information method
of Mars [1,2]. These two methods search for the maximum
correspondence of pairs of samples ( x(t),v(tt+r) } as a function of
the time-shift r, disregarding the dependence of subssquent szample
pairs, Other more sophisticated methods, such as the maximum
likelihood delay estimation method of Knapp and Carter [3] assume a
Signal.model which is not realistic for EEG's. A large number of
phase measurement methods, defined in the <£frequency domain and
based on the same model, are reported [4].

We do not know of any general purpose method, implemented in the
time domain, estimating time-delays using a minimum of & priori
assumptions, other then cross—correlation. In this article we

propose such a method.

2. Information theoretical definition of a delay:.

In this section we present a mutual information based definition

of a delay. Assume x and y are time discrete stationary
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stochastic processes. We consider a part of length 24 of the x
signal surrounding the sample m: m-M = n = m+M-1. %We cuz this parc

of the stochastic signal x into ctwo pileces: cthe past vector
n

P (m:M) and the future vector P (m;M):
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We calculate the mutual information between past and Ffuture:
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For infinite length vectors we omit the Y in gx(m'ﬁ) and E;(m;M),
For stationary processes this mutual information is independent of
m. Under cervain weak convergence conditions the limit exiscs [10].
If the limit exists the mutual information bestween past and fucura
is a well defined quantity inherent to the sctochastic procescs. It
has «the atctractive property that it can reasonably well be
approximated by choosing a finite M.

To define time-delays we extend the concept to = peir oI an = and
a ¥ signal. We concatenate both past vectors of x and v, in which
the segments of the y signal are j samples snifted cowzards the
future with respect to the corresponding segments of x, according

to the scheme:
(2.2) B(m,JiM) = (B (m;) B (mbj;20))"
: ¥

and in a similar way for the future., We determine, in the limit
f — «, the mutual information for x and y together betwsen their
joint past and their joint future as a funccion of j. If <this
mutual information reaches a minimum as a function of j, cthen we
have creatad an optimal distinction between the past and the
future. This means that there exists for this specific time-shifc a
joint process with a minimum transport of information between the
past and the fucture. For this shift j the % and the ¥ signal are,
according to an information theoretical criterion, synchronous. We

define: the vy signal is j samples delayed with respect to the x
signal if:.

(2.4) H{EB(m,5);E(m,§)) = I{B(m,i);F(m, i)} for i € Z
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with analoguous to (2.2):
(2.5) I(2(m,3):E(m,3)) = Lim  T{2(m,j:M);E(m, ;00

This mutual information 1is symmetric for exchange of the roles of

the past and the f[uture. We execute the limiting process in two

steps:

(2.6) I{P{(m,j);E(m,j)} =
= 1&T'M2_%m [ H{E(maj;Ml)} - H{E(m.j;Ml)IE(m,j;MZD} ]
= l‘&iﬁjmm;m [ H{E(m,j;Ml)] - MI-L J

1
Due to the symmetry the joint 1imit is independent of the order in

which we take these steps. Taking the limit for Mz — @ reduces the
entropy of the future cenditioned on the past to Ml-L [10}: Ml
times the entropy per sample pair (gh,xmj) of the joint process,
which is independent of the timeshiftc J.

We call this delay definition bty a2 minimum mutual information

between the past and the future an information thecrectical delay

definition: no other theory is involved than the information theory.

3. Discussion of the delay definition.

The delay estimate is unambiguous if there exists only one
minimum of the mutual information function. This implies that ne
local maximum can exist. We prove unambiguity by proving the
non—existence of that local maximum. Because of stationarity the
mutual information is independent of a time-shift, so a local

maximum is characterized by:

(3.1) IE(m ,j+1);E{m  ,j+1)) = I{P(m+1l,j);F(m+Ll,j))
H{E(m+l, j~1);F(m+l,j-1)) < I{P(m ,j);E(m ,j)}
Without loss of generality we assume m = j = 0. We separate the
stochastic wvariables X and ¥
(3.2) I{B(O,O),EO;E(l,O),Eol < TE(0,0) ,x ¥ E(1,0))
I{E(O:O),ED,E(I:O);Y_O) < 1[2(010);,5(1.0)::‘_{.0,X0]

The mutual information is defined in the limit for M — =, we write

for finite M the mutual information as a sum and a difference of
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entropies and omit the joint entropy of P(0,8), E(1,0), X, and Y, -

We rewrite the inequalities (3.2) for a finite M:

(3.3) H[E(O,O;M),XOHH{E(I,O;M),;O} < H{E(0,0;M) %,y M+H{E(L,0:M))
H(B(O,O;M),EUHH{E(I,O;M).Y_O} < H[,E(O,O;M)HH{_F_(I,O;M),zO,xO}

These inequalities can be rewritten as:

(3.4) H[_&OIE(I,O;H)} pS H{Eolﬁ(O,O;M),EG}
H(};OIE(O.O;M)) < H{ﬁoli(l.O;I-I),_\zO}

In general if one adds conditions to an entropy, then the resulting
conditicnal entropy is equal to or is less than the corresponding

encropy without these conditions, so:

P

< H{;&OIE(LO;M),}:O} < H za:,OIE(l,O;M)l

(3.5)  H(x |E(1,0;1)) = H{x |200,0;M),¥,) = Hilx |B(O,0;M)} <
{

Taking the limit for M — « does not influence the contradiction.
This proves that there can not exist any local maximum of the
mucual information function, which proves unambiguity. For a finice
M or an estimated mutual informacion function unambiguity 1is not
assured. |

Is our definition a legitimate definition of the delay D(x,¥!}

i5]? We have to prove that the definition satisfies the six

criteria proposed for discrete processes:

1) Di{x,v) = — D{v,x}
2) D{x,x) = 0

3)  D{Ax+u,v} Dix,v) for all A,p € R and A = C

&) DT (x).¥)

I

F=d

D{x, ¥} + k for all k €

!

2)  D{R(x),R(¥)} = - D{x,¥)
6) if n is a stochastic signal independent of x and y then
D{x+n,¥y} = D{x,y!

The operater Tk shifts the sequence of samples k positions to the
past: z = Tk(g) means z = X m,k € Z and the operator R reverses
the time: 'z = R(x) means z =x _m e Z. _

The information rtheoretical delay definitien satisfies. criterion
1) — 5) {10]. We have not been able to prove 6) in general. Lf for
all i and M there exists a j such that. the probability density

functions of F(m,j+i;M) and of F(m,j-i;M) are identical, then the
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autual information function 1s symmetric with respect to J:

L(B(m,§+i) E(m, j+i)) = I(P(m,j~i);E(m,j-i)} and criterion 6) can be
proved (10].
Wnat is the relation of the minimum mutual information method to

some other methods? We defined the delay by:

a) minimize T(P(m,j);E{m, 7))

and consider three other methods:
b) minimize T(P(m,i;M);E(m,j; M)} (for finite M)
¢) minimize H{F(m, j;M)) {for finite M)
d} maximize I(Ex(m;M);Ey(m+j;M) (for finite M)

Method b) is a practical approximation of a) for a finite M. For
this method b) it is sufficient to determine for a large enough M
the minimum of the first term of (2.6): H{E{(m,j;M)}. This leads to
method ¢), which seems to be related to the maximum likelihood
approach [6}. The entropies H{Ex(m;M)} and H{E;(m+j;M)} ars
independent of j and m. So method d) 1is equivalené to c}. This
method d) for M =1 1is called the mutual information delay
estimation method of Mars [1,2]. We conclude that the methods
b) ~7d) are approximations of a) for a finite M and that methods c)

and d) are equivalent.

4., Implementation for normal distributions.

The estimation of the mutual information between the past and the
future for infinite M, method a), is impossible. For finite M this
method b) has some disadventages: its computational complexity and
the poor approximaction of M-L of (2.6) by H{E(m,j;M)|P(m,j;¥)} if j
is large. Also because only entropies of the future are involved

and for historical reasons we prefer maximizing I{E;(m;M);
Ey(m-i-j;bi)} d) to minimizing I{P(m,j;M);F(m,j;M)} b).

We assume E{gn} = E[gn} =0 and the joint signal vectors are

normally distributed:

1
(2m)"Ydet C(3)

with C(j) the covariance matrix:

(4.1) £(E(m,j;M)) =

exp ~ & E(m, ) C() Em, 30

125
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KX 'l

E (m;M) E (m) ) ] c c (i)
( E ) L ¥ ’ 5 v M = 3 C
(4.2} Ey<m+J M) Ey(m+j,.1) J J- L ny(J) v

According te Shannon (7] we calculate the joint entropie:

1 .
(4.3) diE(m,j;M)}1 = M log 27 + > log det C{(j) + M
and similar for both marginal entropiss. Calculating the murcual

information leads to:

. 1 det C(j)
(4.4) I{Ex(m;M);Ey(m+J:M)} = -5 log g% ¢ dec C_

% ¥

Searching for the maximum of I{Ex(m;M);E?(m+j;m)} is equivalent to

searching for the minimum of det C(3). The devision of det C(j) by

dec C and det ¢ is a time-shift independent normalization. For
xX ba

% = 1 the mutual information functicn is a monotonic increasin

funccion of [p(j)[, with p(j) the corralation coefficient of &he

binormal distribution. This proves that searching for the position

m

of the maximum modulus of the correlation coefficient is esquivalenc
to our method for M = 1.

&dccording te (4.4) the calculation of the mutual information is
reduced to a simple operation on determinants of covariance
matrices. We estimate by a non-parametric method the cross— and
auto—-correlation functions and we use these estimates to determine
the covariance matrices. Substitution of these covariance matrices
into (4.4) provides us with mutual information estimates. Searching
for the position of the maximum as a function of j provides us with
an estimate of the delay of y with respect to x.

The actual choice of the segment length is based on visual
inspection. We use a large enough M, such that zall ambiguities

which are visible for small M have disapeared.

5. .A theoretical elaboration.

For normal stationary stochastic discrete-time processes we
caleulate the mutual information function for the methods b) and
d). The mutual information fuections of signal model I are presented
in figures 1 and 2. The x signal consists of filtered normal white

noise using a second order filter wirth damping Factor R = 0.98 and
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a frequency fn = 0.05 periods/sample {8, p. 1l66]. The y signal is
the sum of the x signal and normal white noise with a signal cto
nolse ratio sn = 1.0. Most delay estimation methods are based on
the evaluation of the extrema of a criterion as a function of the
time—shift j. In the case of narrowband signals many of Cthese
methods, for example the generalized correlation methed [9] and our
three methods b) ~ d) for small M produce critveria with a large
number of ambiguous extrema. Because our criteria have for M — =
only one extremum, we expsct that all ambiguities resclve for

increasing M. This effect is shown in figures 1 and 2.

=
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If the delaying system is a second order auto-regréssive filter
we have the situation of model II. The x signal consists of normal
white noise., The vy signal is the sum of the second order filtered x
signal, using the same filter as in model I, and normal white neoise
with a signal to noise ratio 1.0. The mutuwal information function

for - this model 1is not symmetrical (figure 3). The classical
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interpretation of a delay looses ite meaning, but our information
rheoratical delay definition maintains its incerpretation. In this
case apparently y 1s delayed wich respect Lo ¥ and this delay
corresponds approximately with the time of the first maximum of the

impuls response of the filcer.

6. Conclusions.

we have pressnted the information theoretical definition of a
delay. Our first experiments iIndicate that for the celay estimation
werween recordings of EEG-signals it is 3 powerZul method.

The only restrictive assumption is that it 1is sensible to use
mucual information for the cdefinition of =z delav. aAdvantages of
rhis definition are: unambiguity can be proved, the results are
inte:pretable evenn 1f the delaving systen is not a pure celay, The
mechod 1% suivable for short data segments becasuse no Feurier
cransform is involved and the method is model-free. A weekness 1is

that it contalns the limit for M — =. FoOr practica

-
4]
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+his seems net to De a problem. The estimation of the criterion
cepends on che ability to estimate the mutual iaformation. The
escimacor of the delay is based on a crizerion for a finite M. Only

for M = 1 121 and¢ for normal processes satisfa

[p]

tory solutions have
been Found. Method &) with M = 1 leads to well established methods:

cross—correlacion method and Mars’ mutual informaction method (1.
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