
A Crossing with Java Threads and POSIX
Threads

Wim H. Hesselink, 15th October 2001

Abstract

The primitives for Java threads and POSIX threads are compared by
means of a simulation of cars at a crossing. These cars have to be syn-
chronized in such a way that at every moment only cars in one direction
proceed. The initial solution is based on compound await statements.
This solution is subsequently implemented with Java threads and POSIX
threads. These two thread formalisms differ: POSIX threads can wait at
condition variables of a greater generality than available in Java, but the
corresponding queues may be leaky.

Keywords concurrency, thread, Java, POSIX threads, await statement, pro-
gram correctness

1 Introduction

In our favorite design method for concurrent algorithms, at some point the
threads or processes are synchronized by means of atomic synchronization state-
ments of the form:

(0) 〈 await B then S 〉 .

This is the command to wait until predicate B holds and then to execute com-
mand S without interference, cf. [1, 2]. If B is identically true, the await
statement reduces to the atomic statement 〈 S 〉.

Programming languages never offer construct (0), since a general implemen-
tation is regarded as too costly. Some programming languages, e.g., Modula-3
and Java, support threads with some synchronization primitives. The POSIX

committee for the standardization of UNIX has also specified a thread package
with synchronization primitives. In this note, we compare the synchronization
primitives offered by Java with those of the POSIX thread standard.

We focus on an example that is easy enough to deal with and hard enough
to show the differences. The example is a simulation of traffic at a crossing.
At the crossing, traffic is coming from different directions. It is modelled by a
number of threads that represent cars and that repeatedly execute a procedure
cross with an argument dir for the direction. To prevent accidents, it must be
disallowed that cars from different directions are crossing concurrently.

This problem is treated in [5] as the Congenial Talking Philosophers problem.
The case of two directions is the narrow bridge problem of [3], p. 294, a Java
solution of which is given in [6] 7.4. It is also generalization of the classical
problem of readers and writers, when we associate all readers with a single
direction, say 0, and every writer with a unique private nonzero direction.

The paper [5] gives a solution based on busy waiting and atomic read-write
registers. We aim at simpler solutions based on stronger primitives. In Section

1

2, we give an abstract solution based on the await construct (0). We then turn
to implementations of this solution, depending on the available synchronization
primitives. In Section 3, we give an implementation in Java. Section 4 contains
an implementation with POSIX threads. In Section 5, we draw some conclusions.

2 The abstract problem and a solution

We formalize the problem by stating that all threads execute

(1) while true do
0: entry(dir) ;
1: cross(dir) ;
2: depart() ;
3: other activity ;
od .

The problem is to implement entry and depart. Procedure entry may involve
waiting. Procedure depart may need exclusive access to shared data but must
not involve conditional waiting. It is given that cross terminates; the other
activity need not terminate.

We use q.dir for the direction dir of thread q. The safety requirement is that
cars can only cross concurrently when using the same direction, i.e. for all q and
r,

(Safety) q at 1 ∧ r at 1 ⇒ q.dir = r.dir .

The progress requirement is that, whenever there are n cars registered to cross
along direction dir, eventually at least n cars will cross along dir. Finally, it
must be allowed that cars with the same direction cross concurrently.

In this section we give an abstract solution based on await construct (0). In
order to allow concurrent access for cars from the same direction, we introduce
a shared variable cur for the direction currently allowed to cross. All traffic
coming from directions other than cur is suspended. When the suspended cars
from the current direction have passed the crossing and there are suspended
cars for other directions, a new current direction is chosen.

We introduce a boolean shared variable free to indicate the absence of
competing cars, and integer shared variables ncc for the number of crossing
cars and due for the number of cars from the current direction that will be
allowed to cross. The latter serves to enable a fair treatment of the various
directions. Initially, free is true and ncc and due are 0.

Now entry is refined by

entry1(dir) =
〈 await free ∨ (dir = cur ∧ due > 0) then

cur := dir ; free := false ;
due -- ; ncc ++ 〉

and depart is refined by

2

depart1() =
〈 ncc -- ;

if ncc = 0 ∧ due ≤ 0 then
if possible choose due > 0 and new direction cur such that

due cars with direction cur are registered at entry
or else free := true fi ;

fi 〉 .

The new direction must be chosen fairly, e.g., by choosing the new direction cur
in a circular order (round robin). Note that cars with the same direction are
allowed to cross concurrently.

Predicate (Safety) is proved as follows. It clearly follows from

(K0) q at {1, 2} ⇒ q.dir = cur .

We now prove that (K0) is an invariant. Execution of entry1 establishes (K0)
for the acting thread. Predicate (K0) is threatened when some thread p 6= q
chooses a new direction cur in depart1 while q is at 1 or 2. This case does not
occur, however, because of the invariant that ncc always equals the number of
crossing cars:

(K1) ncc = (# x :: x at {1, 2}) .

Finally, predicate (K0) is threatened when p 6= q executes entry1 and q is at 1
or 2 and dir.p 6= dir.q = cur. We then use (K1) and the invariant

(K2) free ⇒ ncc = 0 ,

to conclude that free is false so that p cannot execute entry1. The verification
of the invariants (K1) and (K2) is easy. This concludes the proof of (Safety).

For absence of deadlock of the crossing, it suffices to require that the crossing
is always free when there are no cars crossing or about to cross:

(K3) ncc = 0 ⇒ free ∨ due > 0 ,
(K4) due ≤ (# x :: x.dir = cur ∧ x at 0) .

It is easy to see that (K3) and (K4) are invariants. Progress follows from the
way cur is modified.

3 Synchronization with Java

We now let the cars be Java threads and we implement the atomicity and await
statements in Java. Java offers so-called synchronized methods. When a thread
has entered a synchronized method of an object, no other thread can execute
any synchronized method of that object. Therefore, in order to implement the
abstract solution of section 2, we introduce an object synch to synchronize the
access to the shared variables free, cur, ncc, and due. So we implement these
variables as instance variables of a shared object synch.

3

Java also offers primitives for thread suspension. When a thread calls wait()
inside a synchronized method of an object, the thread is deactivated and put into
the waiting queue of the object. Threads queued at an object can be awakened
by calls of notify and notifyAll for this object. The call notify() awakens
precisely one waiting thread (if one exists), whereas notifyAll() awakens all
threads waiting at the object.

When all waiting cars would be waiting at the same object, at every notifica-
tion all waiting cars would have to reexamine their guards. To avoid contention,
we decide that cars for different directions shall wait at different objects (traf-
fic lights). Before treating the traffic lights, however, we look at the question
whether an entering car must wait.

Each entering car has to decide whether to stop at a traffic light or proceed
to cross. This is decided in the method mustStop of synch. The object synch
also registers how many cars are queued at every traffic light by means of a
variable count[], where count[j] holds the number of cars waiting at traffic
light j. The decision and the actions of entry are thus implemented by

synchronized boolean mustStop (int dir) {
if (free || (dir == cur && due > 0)) {

cur = dir ; free = false ; due -- ;
ncc ++ ; return false ; // can proceed

} else {
count[dir] ++ ; return true ; // must stop

}
}

We let the directions be numbers j with 0 ≤ j < dirLim. Command depart is
now implemented in the method depart2 of synch, given by

synchronized void depart2 () {
ncc -- ;
if (ncc == 0 && due <= 0) {

int j = (cur + 1) % dirLim ;
while (j != cur && count[j] == 0)

j = (j+1) % dirLim ;
if (count[j] > 0) letGo (j) ;
else free = true ;

}
}

The while loop is a circular search for the first direction with positive count
value. This precludes starvation of directions.

It remains to implement letGo, but that depends on the implementation
of the traffic lights. We use an array of traffic lights, i.e., one object for each
direction. When a new direction is chosen, all cars waiting for that direction
can be awakened.

We now have the problem that the cars that have passed mustStop with
result true need not immediately be waiting at the traffic light. Therefore,

4

letGo must not only notify cars waiting at the traffic light, but it must even
enable cars at the traffic light that have not yet entered the waiting queue.

We therefore apply a semaphore for every direction. Our semaphore is an
object with an integer variable val, initially 0, with two methods

synchronized void up (int n) {
val = val + n ;
notifyAll () ;

}

synchronized void down () {
while (val <= 0) {

try { wait () ; }
catch (InterruptedException e) {}

}
val -- ;

}

A call of up(n) with n ≥ 0 allows n threads to pass down().
We introduce an array light[dirLim] of these semaphores and we imple-

ment method letGo of synch by

void letGo (int dir) {
cur = dir ;
due = count[dir] ;
count[dir] = 0 ;
light[dir].up(due) ;

}

Method letGo is not synchronized, since it is called (only) from the synchronized
method depart2.

Command entry is implemented by

void entry2 (int dir) {
while (synch.mustStop (dir)) light[dir].down() ;

}

The repetition in entry2 is needed since the actions of entry1 are done in
mustStop when it returns false. In this way we get all invariants of Section
2. Repeated testing is also needed because of other cars competing for the
current direction. Method entry2 is not synchronized since it connects two
synchronized objects synch and light[dir].

It remains to verify that depart2 always determines new values for due
and cur according to the specification in depart1. Let NQ(j) be the num-
ber of threads at down of light[j]. Whenever a thread arrives there, it has
incremented count[j] in mustStop. Whenever a thread passes light[j], it
decrements light[j].val in down. Since the sum of these numbers is kept
invariant in letGo, we have the invariant

5

(Ja) NQ(j) = synch.count[j] + light[j].val .

This implies that, as required, method letGo always establishes due ≤ NQ(cur).
Moreover, if method depart2 makes free true, all elements of count are zero,
so that (Ja) implies that there are no threads blocked at the semaphores.

Remark. By using semaphores for the traffic lights, we avoid that all waiting
threads have to test their guards when the direction changes. This improves the
performance when there are many directions. The narrow bridge in [6] 7.4 can
be simpler since it has only two directions.

4 An implementation with POSIX threads

The POSIX standard specifies mutexes with the main primitives pthread_mutex_lock
and pthread_mutex_unlock, which are abbreviated here by lock and unlock.
Enclosing a program fragment by lock(m) and unlock(m) for a mutex m has the
same effect as encapsulating the fragment in a synchronized Java method. The
unlock must be called by the thread that locked the mutex.

The POSIX standard provides condition variables for conditional waiting.
We regard a condition variable v as a set of threads, which is initially empty. We
only use the POSIX primitives pthread_cond_wait and pthread_cond_broadcast,
abbreviated by wait and broadcast. These primitives are expressed as follows.

(2) wait(v, m) :
〈 unlock (m) ; v := v ∪ {self } 〉 ;
〈 await self /∈ v then lock(m) 〉 .

Note that command wait consists of two atomic commands: one to start waiting
and one to lock when released. Also, note that a thread must hold the mutex
to execute wait. Command broadcast(v) releases all threads waiting in v.

(3) broadcast(v) : 〈 v := ∅ 〉 .

There is one additional complication: a thread waiting at a condition variable
may wake up spontaneously. According to Butenhof, who was involved in the
pthreads standard from its beginning, this is motivated as follows, cf. [4], p.
80: “On some multiprocessor systems, making condition wakeup completely
predictable, might substantially slow all condition variable operations. The
race conditions that cause spurious wakeups should be considered rare.”

The possibility of spurious wakeups implies that, for every conditional call
of wait, the condition must be retested after awakening.

The synchronization of a Java method at a certain object can be emulated
by introducing a mutex m for the object and enclosing the method by calls
of lock(m) and unlock(m). The Java commands wait and notifyAll are
emulated by the POSIX commands wait and broadcast, after the introduction
of a condition variable v as an additional argument. Therefore, the Java crossing
of Section 3 can be directly transferred to POSIX threads. The spurious wakeups

6

are harmless here, since in method down the waiting condition is tested again
after awakening.

The separation of the roles of mutexes and condition variables enables a
leaner solution. We can replace the semaphores of Section 3 by condition
variables. We need only one mutex, mut, and an array of condition variables
cv[limDir]. The entry protocol becomes:

void entry3 (int dir) {
lock (mut) ;
while (!free && (dir != cur || due <= 0)) {

count [dir] ++ ;
wait (cv[dir], mut) ;
count [dir] -- ;

}
cur = dir ; free = false ;
due -- ; ncc ++ ;
unlock (mut) ;

}

Here we decrement count after waiting since the queues of the condition vari-
ables can be leaky.

The depart protocol is also guarded by mutex mut and otherwise similar to
depart2 in Section 3. Since the decrementation of count is moved to entry3,
procedure letGo becomes

void letGo (int dir) {
cur = dir ; due = count[dir] ;
broadcast(cv[dir]) ;

}

Correctness relies on two invariants concerning count[j]. On the one hand,
count[j] is an upper bound of the number of threads in the queue cv[j]:

(Po) # cv[j] ≤ count[j] .

We cannot guarantee equality since there can be threads released from the queue
that have not yet reacquired the mutex and decremented count. The invariant
(Po) implies that all waiting queues are empty when free holds. This precludes
forced starvation of cars.

On the other hand, we have the invariant that count[j] is a lower bound of
the number of threads that need to retest the guard in the repetition of entry3.
This implies that, always, at least due cars with direction cur are waiting at
entry as required in depart1. As is shown in Section 2, this precludes deadlock
of the crossing as a whole.

5 Concluding remarks

The POSIX primitives for synchronization are more flexible than those of Java.
Indeed, the traffic lights were condition variables in pthreads and semaphores

7

in Java. In our view, the Java primitives encourage a better structuring and
separation of concerns, but this is not really supported by the present case. The
spurious wakeups of pthreads form a complication, that forced us to be more
careful when counting the number of waiting threads.

References

[1] Andrews, G.R.: Concurrent Programming, principles and practice.
Addison-Wesley 1991.

[2] Apt, K.R., Olderog, E.-R.: Verification of Sequential and Concurrent Pro-
grams. Springer V. 1991.

[3] Brinch Hansen, P.: Operating System Principles. Prentice Hall, Englewood
Cliffs, 1973.

[4] Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley 1997.

[5] Joung, Y.-J.: Asynchronous group mutual exclusion. Distribut. Comput.
13 (2000) 189–206.

[6] Magee, J., Kramer, J.: Concurrency, state models & Java programs. Wiley
(Chichester, etc.) 1999.

8

