DATA VISUALIZATION: PRINCIPLES AND PRACTICE, 27 EpITION

Exercises for

Chapter 4: Visualization Pipeline

1 EXERCISE 1

The visualization pipeline offers an intuitive architectural model to design complex data-
processing and/or data-visualization applications by combining lower-level functionality in
a so-called dataflow graph. Think of two visualization applications related to your own pro-
fessional or daily experience. Describe these applications in terms of a dataflow graph. For
each graph node, explain what the functionality of the respective node is, and also the kinds
of datasets it reads and writes. Try to be as specific as possible.

2 EXERCISE 2

The visualization pipeline is, often, implemented in software as a set of data-processing mod-
ules that are connected in a directed graph (the dataflow graph). Here, each graph node is
such a module; and each (directed) edge is the connection of a module’s output to another
module’s input. Can you imagine such a graph which would contain loops (cycles)? If so,
sketch a conceptual visualization application represented by such a graph, and explain why
a loop would be useful. If not, explain which problems would occur if loops were present in
the dataflow graph.

3 EXERCISE 3

The dataflow model used for constructing visualization applications is often supported by
so-called visual builders, where users can interactively construct a visualization application

Page 1 of 4 Chapter 4 exercises Page 1 of 4



DATA VISUALIZATION: PRINCIPLES AND PRACTICE, 2" gpITION

by placing modules on a canvas and connecting their inputs and outputs to form a dataflow
graph. Describe another application domain (apart from data visualization) where you know
that, or imagine that, this kind of visual programming would be an effective paradigm. For
that domain, give a few examples of modules by describing their functionality, inputs, and
outputs.

4 EXERCISE 4

Visual application builders (VABs) offer an alternative to classical textual programming (CTP)
constructing dataflow applications such as those present in visualization contexts. However,
there are also contexts in which VABs are less effective and/or efficient to use than CTP. Con-
sider the VAB examples illustrated in Chapter 4. Based on this information and/or your con-
crete experience with a VAB

* Enumerate four advantages of VAB vs CTP
* Enumerate four advantages of CTP vs VAB

* Present a possible system design which would combine the advantages of VAB and CTP
while limiting their separate disadvantages.

Hints: First, consider the tasks that a programmer or end-user would like to accomplish by
using both application-building paradigms.

5 EXERCISE 5

Visualization techniques and tools can be classified using the five-element model of Marcus
et al. (task, audience, target, medium, and representation) described in Section 4.3, Chap-
ter 4. Give two examples of visualization applications of your choice, and explain, for each
example, which are the five elements of the above model.

6 EXERCISE 6

Visual programming is a useful tool for quickly prototyping relatively simple visualization ap-
plications. However, building a large and complex application whose dataflow graph consists
of hundreds of modules, and where each module has many inputs and outputs, can be chal-
lenging in terms of the manual effort required to find the right modules, place them at good

Page 2 of 4 Chapter 4 exercises Page 2 of 4



DATA VISUALIZATION: PRINCIPLES AND PRACTICE, 2" gpITION

positions on the canvas, and connect the right inputs and outputs. If you were the designer
of the next-generation visual programming tool, propose three functions you would add to a
visual-programming tool in order to speed up the building process.

Hints: Think where the bottlenecks are for a beginner user in terms of the operations needed
to construct the right dataflow graph. Think also about the repetitive actions an advanced
user needs to do.

7 EXERCISE 7

Consider the conceptual data visualization pipeline. Here, data read from an input source
is transformed by various filters, next it is mapped to geometric primitives, which are finally
rendered on the screen. Consider now that the user is interested to select any visible element
in the final image, e.g. a polygon or vertex, and ask the visualization system “From which raw
data elements has this element come? And via which operations?"

Your visualization system is implemented based on the operator-dataset model outlined in
Figure 4.5 (also shown below). That is, the pipeline consists of a sequence of computational
functions or operators that read, respectively write, dataset object. How would you imple-
ment the above ‘back tracing’ functionality in such a system?

> F,
/ read inputs . \\

inputs inputs
outputs write . J outputs
\ read inputs write
=1 outputs
(O dataset
= operation
—» reference
= dataflow

Visualization pipeline as a directed graph of datasets and operators (see Chapter 4).

Hints: Start from the end towards the beginning. Any visible element that the user can select
is, in essence, a geometric primitive coming from the last dataset-object that the visualization
pipeline produces and feeds to the rendering operator. Think of how you can augment the
dataset representation with back-tracing information that encodes, at a low level (cells and
vertices) both origins of these data elements and the operations they were generated by.

Page 3 of 4 Chapter 4 exercises Page 3 of 4



DATA VISUALIZATION: PRINCIPLES AND PRACTICE, 27 EpITION

End of Exercises for
Chapter 4: Visualization Pipeline

Page 4 of 4 Chapter 4 exercises Page 4 of 4



