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Abstract

The Charged Particle Model (CPM) by Jalba et al.,
is a physically motivated deformable model for shape
recovery and segmentation. It simulates a system of
charged particles moving in an electric field generated
from the input image, whose positions in the equilib-
rium state are used for curve or surface reconstruc-
tion. As an alternative we propose to use simulated
annealing to position these particles and present a fast
and simple algorithm that is able to match CPM’s re-
sults on images with well defined contours.

1 Introduction

An important part of the analysis of images and
volume data is segmentation and shape analysis. Seg-
mentation is the process of determining regions in an
image (be it 2D or 3D) that have some particular prop-
erty, for example intensity or texture. Segmentation
is difficult, not only because input data often contains
noise and sampling artifacts, but more so because it is
hard to precisely formulate segmentation criteria.

This is why there is a wide selection of (often
application specific) image segmentation techniques
available. Very popular are the methods that can be
categorized as deformable models where curves (or
surfaces) move in the image domain under the influ-
ence of internal and external forces in search of a low
energy configuration. The internal forces keep the
curve smooth, the external forces move the curve to-
wards features in the input image (e.g., edges).

Two types of deformable models can be distin-
guished [9]: (1) parametric deformable models and
(2) geometric deformable models. In parametric de-
formable models, curves (and surfaces) are explic-
itly represented and manipulated during deformation.
This makes them well suited for direct interaction.

However, parametric deformable models are sensitive
to initialization, have trouble moving into concavities,
and most of them cannot change topology whilst de-
forming.

Geometric deformable models or level set meth-
ods on the other hand can adapt to changing topol-
ogy easily. The central idea of these methods is that
a shape (e.g., curve or surface) is embedded as the
zero level set of a higher-dimensional scalar function.
Through this function the shape is implicitly manip-
ulated [8]. Many variations exist, including versions
that can handle texture [2, 7] and prior (shape) infor-
mation [3].

A recent variation of the deformable model meth-
ods is Particle Based Segmentation (PBS). Here seg-
mentation is a two-stage process. In the first stage,
particles are positioned in the image domain with suf-
ficient density. In practice, like in the methods men-
tioned earlier, this means finding a low energy con-
figuration in some sense. In the second stage one or
more shapes are (re)constructed from the positions of
the particles. Obviously, the quality of the first stage
strongly influences the feasibility of the second stage.

The Charged Particle Model (CPM), introduced in
[4] is an example of PBS. In CPM particles are po-
sitioned by means of a Molecular Dynamics (MD)
like simulation of charged particles in a potential field
generated from the input image. To be able to better
cope with noise in the images and to improve effi-
ciency, CPM uses a multi-scale approach with a Gaus-
sian pyramid. In this paper we will try to simplify
the process of positioning the particles by using sim-
ulated annealing instead of MD. The main question
we will try to answer is whether it is possible to use
simulated annealing to obtain similar results as the
CPM method. Additionally, we explore different par-
ticle types and a simpler way of calculating a potential
field. For the curve and surface reconstruction we use



the same existing methods as CPM.

2 Charged Particle Model

The Charged Particle Model (CPM) is an image
segmentation method inspired by classical electrostat-
ics. It simulates a system of positively charged parti-
cles moving in an electrostatic field generated by fixed
negative charges placed at each pixel position in the
input image, with charge magnitude proportional to
the edgemap of the input image. The edgemap is de-
fined as

f(x, y) = |∇(Gσ(x, y) ∗ I(x, y))| , (1)

where Gσ is a Gaussian kernel and I the input im-
age. This means the positively charged particles are
attracted to the edges in the input data. The charged
particles also repel each other and this ensures that the
particles are distributed evenly on the contours once
the system of moving particles reaches an equilibrium
state.

The relative influence of the two forces - from the
electrostatic field and from the inter-particle interac-
tion - are controlled by a parameter. Knowing the
forces on the particles, the Newtonian equations of
motion are integrated over time. To be able to reach
an equilibrium state a damping factor β is added.

Even though the CPM paper [4] focuses on two-
dimensional images, it shows that CPM also works
for three-dimensional input.

3 Simulated annealing

As shown above, in CPM the equilibrium state,
a low energy state, is obtained by simulating a dy-
namic system; the Newtonian equations of motion
with damping are integrated over time. So besides
a position each particle also has a velocity, but for the
reconstruction part only the positions are used. We
can simplify this process by reformulating this part
of the segmentation process as a combinatorial opti-
mization problem, for which various solutions exist.

Consider a system of N identical particles where
xi denotes the position of particle i and where the
system state X is defined as X ≡ {x1, x2, ..., xN}.
The particles move in a fixed potential field φf (x),
and between every pair of particles i and j a potential
φp(xi, xj) is given. So the total potential energy of
the particle system is

φ(X) ≡ Σiφf (xi) + ΣiΣj>i φp(xi, xj). (2)

For PBS it is required that the total potential energy is
minimized, so in principle we are looking for

{Xmin | φ(Xmin) ≤ φ(X) ∀ X}.

It is however not computationally feasible to calculate
Xmin exactly, so we will be satisfied with finding a

1: X̂i+1 ← GetNewState(Xi)
2: ∆E ← E(X̂i+1)− E(Xi)
3: if ∆E ≤ 0 or p(∆E, T ) > random(0 . . . 1) then
4: Xi+1 ← X̂i+1 {Accept}
5: else
6: Xi+1 ← Xi {Reject}
7: end if

Figure 1: Pseudo-code for one iteration of the simu-
lated annealing algorithm.

near minimum state Xnm that has approximately min-
imal energy.

Simulated annealing (SA) is a method for finding
an approximation of the global minimum for com-
binatorial optimization problems like the one stated
above. This probabilistic algorithm has its roots in
the Metropolis Monte Carlo technique.

Using SA for positioning particles instead of a dy-
namic approach like in CPM has a number potential
advantages. First, by not needing velocity, the search
space becomes smaller and this could improve the
convergence speed. Also, SA’s ability to look beyond
local minima makes the segmentation method suit-
able for automatic segmentation as the whole image is
sampled. Finally, and perhaps more importantly, us-
ing an SA approach results in various simplifications.
Not only is the SA algorithm itself short and simple
(as we will shown next), force evaluations are also no
longer needed, only potentials.

At each step of the SA algorithm a random nearby
state X̂i+1 is generated from the current system state
Xi. A downhill move (a state with lower energy) is
always accepted, an uphill move is accepted with a
probability p(∆E, T ) that depends on the energy dif-
ference between the states and on a global parameter
T , serving as a fictitious temperature that is gradu-
ally decreased during the process. The dependency
is such that the current solution changes almost ran-
domly when T is high, but increasingly goes downhill
as T goes to zero. The allowance for uphill moves pre-
vents the method from becoming stuck at local min-
ima. Figure 1 shows the short and simple pseudo-
code of the algorithm. For accepting or rejecting up-
hill trial moves we use the standard Metropolis crite-
rion [6] given by

p(∆E, T ) = e
−∆E

cT , (3)

where c is a constant.

The above is a general description of the SA algo-
rithm. For our goal, segmentation by SA, two deci-
sions have to be made: how to generate a new state
and what annealing (cooling) schedule to use.



1: T = 0
2: Equilibrate the system for 10 temperature steps
3: T = 0.01
4: while uphillMoves/moves < 0.1 do
5: Do one temperature step and count the number

of uphill moves
6: T = 2 ∗ T
7: end while
8: T0 = T/2 {Undo last temperature increase}

Figure 2: Pseudo-code for determining T0.

3.1 Annealing schedule

The goal of SA is approximating the optimum of a
high dimensional function. For this it is not required
that during SA the system is quasi static, it is only
required that, at every temperature, parameter space
is sampled with sufficient density.

For discussing the role of temperature in SA we
will use the following terminology. A trial move is
an attempt to move a particle to a new position. A
temperature step is a series of s trial moves at a con-
stant temperature. We take s = 10N , where N is the
number of particles.

The temperature at the start of the simulation (T0)
should be high enough, such that the system can step
over local minima, i.e., such that a certain percentage
of uphill moves are accepted.

We propose to use the system’s behavior at differ-
ent temperatures to determine T0. First set the tem-
perature to zero and simulate a few steps at this tem-
perature to equilibrate the system. Then choose a low
temperature Tl and run the simulation while doubling
Tl until the number of uphill moves is 10% of the to-
tal number of moves. That temperature is used for T0.
Figure 2 shows the pseudo-code for this scheme.

The SA is started with T0 and in M steps the tem-
perature is lowered to Tf , the final temperature. For
the cooling schedule we will use the widely accepted
proportional cooling schedule [5],

Ti = Ti−1α, α =
(

Tf

T0

)1/M

. (4)

3.2 Generating a new state

For our particle system, a simple and effective pro-
cedure for generating a new trial system state is ran-
domly choosing one of the particles and adding a ran-
dom displacement to it. This displacement should be
large when the temperature is high and small when
the temperature is low. So we let the maximum dis-
placement dmax depend on the temperature as

dmax = c1 ∗ T, (5)

where c1 is a constant that represents the maximum
displacement at the start of the simulation. To ensure
the search space is sufficiently sampled, we suggest
to choose c1 such that at the start of the simulation
the maximum displacement is larger than half of the
largest image dimension.

The actual displacement is calculated by generat-
ing a random length (≤ dmax) and a random direction.

3.3 Grid based approach

Positions of particles in CPM are real-valued vec-
tors, i.e., particles can position themselves anywhere
in the input data space. For SA a similar approach
would be possible, but (initially) restricting the par-
ticle positions to integer values results in a smaller
search space, and thus faster convergence.

In CPM, using integer positions would not make
sense because in CPM the low energy state is found
by carefully following trajectories. Rounding to inte-
ger positions would cancel all that effort.

Besides faster convergence, there are additional
advantages. First of all, simple (fast) integer arith-
metic can be used. For evaluation of the potential
no interpolation is necessary. Second, even more im-
portantly, a grid based approach simplifies the range
query for neighbor finding. As positions are integer
values, we can simply mark on a grid G where the
particles are. Finding the nearest neighbors of a par-
ticle resolves to looking at grid points in G within the
cut-off radius rC . Neighbor finding in CPM is done
by constructing a kd-tree each timestep and querying
it for each particle. This accounts for a significant part
of the running time.

Of course rC should be kept small as increasing it
increases the number of evaluated grid-points per step
quadratically.

4 From input to potential

The electric field in CPM is obtained by a num-
ber of steps. First the edgemap of the input image
is calculated using eq. (1). The edgemap is mapped
to a grid of fixed charges for which a potential field
is calculated. Finally the electric field is obtained by
computing the gradient of the potential field. Figure
3 illustrates this process schematically.

For an SA approach only energies need to be eval-
uated. For that reason we could just use the edgemap
as potential, skipping the step of assigning values to
charges and calculating the potential field. This sim-
plifies the pre-processing step greatly. Furthermore,
calculating the potential from charges is an expensive
operation, in particular when the method is scaled to
three dimensions.
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Figure 3: CPM overview
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Figure 4: Graphs of Coulomb and Lennard-Jones po-
tential.

5 Particle types

In section 3 on simulated annealing the inter-
particle potential φp was not yet specified. We can
turn to physics theory for suggestions. In CPM, the
Coulomb potential from electrostatics is used, i.e., the
potential between two particles is proportional to the
inverse of the inter-particle distance r:

VC =
1

4πε0

q1q2

r
. (6)

The Lennard-Jones (LJ) potential is used to model
the long range attractive force and the short range re-
pulsive force of atoms and molecules. It is defined
as

VLJ = 4ε
[(σ

r

)12

−
(σ

r

)6
]

, (7)

where σ is the distance for which the potential is zero.
The (σ

r )12 term describes short range repulsion and
the (σ

r )6 term describes the long range attraction. Fig-
ure 4 shows the graphs of the Coulomb potential and
the LJ potential (for σ = 3) respectively. In the LJ
graph one can see that the first derivative is zero for a
value of r slightly larger than σ. This means that this
r0 is the distance particles try to maintain.

The difference in behavior is illustrated by figure
5. In an SA simulation where a Coulomb potential is
used the particles are distributed evenly on the edge of
the object, as shown in figure 5(a). In a similar sim-
ulation using LJ potential the particles tend to cluster

together at approximately distance r0. The interest-
ing property of LJ potential is that one can directly
influence the (minimum) distance between particles.

6 Implementation

6.1 Particle initialization

For now we will assume there are enough particles
at the start of the simulation to segment the objects.
This still needs to be studied in more detail. Options
are pre-calculating the number of particles needed or
a dynamic add and removal scheme like the one CPM
uses.

When the LJ potential is used, the simulation
must start with exactly the right number of particles,
whereas when the Coulomb potential is used the par-
ticles will spread out over the edges. This is why we
use the Coulomb potential for the experiments we de-
scribe in this paper.

At the start of the simulation the positions are just
randomly distributed over the input image.

6.2 Refinement

A grid based implementation returns integer parti-
cle positions and as such the reconstructed curve or
surface through these particles can show artifacts. To
remedy this we will do a refinement step. We have ex-
perimented with two different refinement approaches.

The first is allowing half grid positions for small
T , which basically resolves to doubling the size of
the grid dimensions of G. The potential for particles
not on grid-positions that do not resolve to image po-
sitions can be interpolated.

The other refinement technique is somewhat ad-
hoc. At the end of the simulation we do the follow-
ing. For each particle we calculate the center-of-mass
of the neighboring pixels (including the one on the
particle’s position) in the potential map and then just
move it there. The result is that if a particle is on a
two-pixel wide edge it will be moved to the center of
that edge.

This last method appears to give the best results
(see figure 10) and is fast. So this is what we used to
obtain the results showed in the next section.



6.3 Curve reconstruction

Curve reconstruction from unorganized points is a
well studied problem and like CPM, we use the algo-
rithms by Amenta et al. [1] for this.

7 Results

In this section we will show results of our SA
CPM variation on a number of synthetic and non-
synthetic grayscale images. For all these simulations
we used the Coulomb potential for inter-particle in-
teraction because, while the Lennard-Jones potential
works, it requires that the simulation starts with ex-
actly the right number of particles. The number of
temperature steps (M in eq. (4)) for these experi-
ments is 50.

We will start by answering the question whether
we can reproduce the CPM’s results using SA. Fig-
ures 6, 7, and 8 show simple synthetic input images
combined with the reconstructed curves. Figure 7 for
example is an image that is hard for parametric de-
formable models like snakes because of the concavi-
ties. The spiral of figure 8 has an even more extreme
concavity and SA produces a proper smooth curve
that captures the object in the image. With SA par-
ticles can hop right to the center of the spiral, whereas
- if it were not for the pyramid approach - in CPM
particles will have to follow the spiral to cover the
contours.

So our results indicate that for synthetic images the
results of SA are just as good as those of CPM. For
non-synthetic (natural) images it is another story. Fig-
ures 11 and 12 show that while the results are similar,
CPM’s results appear to be better. In CPM’s results
there are more closed curves and less small curves re-
sulting from noise.

To show that this is not the result of using a differ-
ent potential field (see section 4), we have done SA

(a) Coulomb (b) Lennard-Jones

Figure 5: The type of potential used for inter-particle
interaction influences the behavior of the particles.
When the Coulomb potential is used particles spread
out evenly on the edges (a). Using the Lennard-Jones
potential makes the particles cluster together with a
certain distance (b).

Figure 6: The curve constructed from particles posi-
tioned with SA together with the input image.

(a) CPM (b) SA

Figure 7: The input image, a simple image with con-
cavities, shown together with the constructed curves
created with CPM (a) and SA (b).

experiments using both the proposed simplified po-
tential, as well as the potential calculated from fixed
charges (like CPM). Figure 9 shows that the differ-
ence between the two approaches for defining the po-
tential is small.

One area in which SA does excel is speed. In the
grid-based SA implementation particles quickly con-
verge to a low energy configuration. Timings have
shown that on average, our SA implementation is
about twice as fast as CPM with a multi-scale ap-
proach.

Figure 8: The curve constructed from particles posi-
tioned with SA shown together with the input image,
a spiral with a deep concavity.



(a) CPM (b) SA with potential from charges (c) SA with edgemap as potential

Figure 9: The difference between using the original potential calculated from charged (b) and using the edgemap
as potential (c) is small on this natural image.

(a) Without refinement (b) With refinement

Figure 10: Refinement of the integer positions of the
particles results in a smoother curve.

(a) CPM (b) SA

Figure 11: The reconstructed curves (shown together
with the input image) from CPM and SA are similar,
but not quite the same.

(a) CPM

(b) SA

Figure 12: Another natural image that shows the dif-
ference between the curves produces by CPM and SA:
in SA’s result there are more small noisy curves and
the curves are not as closed as in CPM’s result.



8 Conclusion

The main question we tried to answer in this pa-
per was whether it is possible to reproduce CPM’s
results using simulated annealing. Reasons for con-
sidering SA included that SA would result in a con-
siderable simplification and that convergence to a so-
lution could be faster. We found that for images with
well defined edges, SA works as well as CPM. As ex-
pected, we found that the SA implementation is faster
than CPM; approximately twice as fast. For images
that do not have well defined edges (like natural im-
ages) the results differ; for SA the results have more
small noisy curves and the main curves are not as
closed as those produced by CPM.

We also experimented with the Lennard-Jones po-
tential as an alternative for the Coulomb potential for
inter-particle interaction. We found that the LJ po-
tential has the advantage that it allows us to directly
influence the particle distances, but also that it has the
disadvantage that a simulation has to start with the
correct number of particles.

Finally, we showed that by using SA the potential
calculation can be simplified by using the edgemap as
the potential.

References

[1] N. Amenta, M. Bern, and M. Kamvysselis. A new
Voronoi-based surface reconstruction algorithm.
In SIGGRAPH ’98: Proceedings of the 25th an-
nual conference on Computer graphics and in-
teractive techniques, pages 415–421, New York,
NY, USA, 1998. ACM Press.

[2] T. Chan and L. Vese. Active contours with-
out edges. IEEE Trans. Image Processing,
10(2):266–277, February 2001.

[3] A. Foulonneau, P. Charbonnier, and F. Heitz.
Affine-invariant geometric shape priors for
region-based active contours. IEEE Trans. Pat-
tern Anal. Mach. Intell., 28(8):1352–1357, 2006.

[4] A. Jalba, M. H. F. Wilkinson, and J. B. T. M.
Roerdink. CPM: A deformable model for shape
recovery and segmentation based on charged par-
ticles. IEEE Trans. Pattern Anal. Mach. Intell.,
26(10):1320–1335, 2004.

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
Number 4598, 13 May 1983, 220, 4598:671–680,
1983.

[6] N. Metropolis, A. W. Rosenbluth, M. N. Rosen-
bluth, A. H. Teller, and E. Teller. Equation of state
calculations by fast computing machines. The
Journal of Chemical Physics, 21(6):1087–1092,
1953.

[7] N. Paragios and R. Deriche. Geodesic active re-
gions and level set methods for supervised texture
segmentation. Int. J. Comput. Vision, 46(3):223–
247, 2002.

[8] J. S. Suri, K. Liu, S. Singh, S. N. Laxminarayan,
X. Zeng, and L. Reden. Shape recovery algo-
rithms using level sets in 2-D/3-D medical im-
agery: a state-of-the-art review. IEEE Trans Inf
Technol Biomed, 6(1):8–28, Mar 2002.

[9] C. Xu, D. L. Pham, and J. L. Prince. Medical
Image Segmentation Using Deformable Models,
chapter 3, pages 129–174. SPIE Press, 2000.


