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1. Charged Particle Model

•Charged Particle Model: image segmentation method by Jalba et al.
[1] inspired by classical electrostatics.

•Two stages

1. Simulation of charged particles moving in an electric field generated
from the input image.

2. Construction of a shape (curve or surface) from particle positions.

•Particles are attracted to edges in the input image.

•Particles repel each other.

•CPM searches for a low energy configuration of the particles.

number of free charged particles. Moreover, a straightfor-
ward computation of the electric field EE is of order OðM2Þ,
whereM is the number of pixels in the input image. For large
input images (or volumes), which usually require a large
number of particles, the force evaluation in (10) can become
prohibitively expensive. Therefore, we describe efficient
methods used to compute all constituent parts of the model.

3.5.1 Computation of the Coulomb Force

An efficient approach to approximate the Coulomb force
between free particles is to use a k-d tree [42] data structure to
partition space, such that responses to queries about the
knearestneighborsofaparticlecanbeobtained in logarithmic
time. At each time step, after the tree is constructed, the
Coulombforceateachparticleposition isapproximatedusing
itsk ¼ 10 percentnearestparticles. In thisway, thecomplexity
of force evaluation is reducible toOðN logNÞ.

3.5.2 Computation of the Electric Field

The electrostatic field (see (7)) is computed using the so-
called “particle-particle particle-mesh” (PPPM) method
from molecular dynamics [43]. The field is precomputed,
and its values are kept in two matrices (with the same sizes
as the input image I), one for each component of the
2D vector field.

The basic idea of PPPM is to split the Coulomb potential
representing the force between the fixed charges into a short
range direct interaction part (PP) and a contribution from
the mesh (PM). The Coulomb energy, at vector position
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where Rc is the direct interaction cut-off radius. The direct
contribution vanishes at Rc and, for RRij

## ## ) Rc, there is only
a mesh contribution. The correction term WcðRRÞ compen-
sates for the portion of the interaction already covered by
the mesh potential (see (22) below).

The mesh potential !mesh is obtained by solving Poisson’s
equation on the grid

r2!ðRRÞ ¼ '"ðRRÞ; ð18Þ

where "ðRRÞ and !ðRRÞ are the charge density and the electric
scalar potential at grid point RR, respectively. The charge
density "ðRRÞ is defined as the charge per grid cell area, and
is computed in two steps. In the first step, we use the linear
charge assignment scheme in [43]. Every charge ei is
distributed over its eight surrounding grid points, and the
charge at grid point RRi is computed as
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whereM is the size of the input image I, hx is the mesh grid
spacing in dimension x, and Hy is defined similarly. In the
second step, the charges are spread over a larger neighbor-
hood of grid points, in order to produce a smooth total
charge distribution. This step is implemented using the
approach in [44], in which the charges are spread by a
diffusion process. The method proceeds by solving Pois-
son’s equation, (18), on the mesh. Then, the mesh-energy
term is computed as a weighted sum over the same grid
points used in the first charge-assignment step

Wmesh
i ¼ ei

X

k

HðRRi 'RRkÞ!ðRRkÞ 'Wself
Gauss;i; ð20Þ

where Wself
Gauss;i is a correction term for the mesh energy

which a particle experiences from its own charge distribu-
tion (the self-energy). This constant term per particle is
given by
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Fig. 5. Convergence of the particles. Left-to-right, top-to-bottom: input image and initialization; electric field EE; snapshots at time steps
t ¼ 10; 20; . . . 60.
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Figure 1: Illustration of CPM. Particles move from their initial positions
to the edges of the input image.

2. Alternative: Simulated Annealing for
positioning the particles

•CPM minimizes an energy functional by integrating Newton’s equation
over time.

•Can be reformulated as a combinatorial optimization problem.

•As an alternative, the solution can be approximated by a stochastic
method, simulated annealing (SA).

•Motivation

– Allows various simplifications.

– Only positions are considered, no velocities.

– Faster convergence.

– Ability to look beyond local minima.

•The basic idea of SA is to iteratively:

– Randomly change the current state of the system.

– Always accept a new state with a lower energy configuration.

– Accept a new state with a higher energy configuration with a prob-
ability that depends on the energy difference and a temperature pa-
rameter that gradually decreases over time.

3. Results

•Results for synthetic images

– Reconstructed curves are as good as the curves reconstructed by CPM
(Figure 2).

•Results for non-synthetic images

– Results differ from CPM’s results, but are still similar.

– CPM’s results seem better, with more closed curves (Figure 4).

• SA implementation is about twice as fast as CPM (which uses a multi-
scale approach).

( a ) CPM ( b ) SA

Figure 2: The input image, a simple image with concavities, shown
together with the constructed curves created with CPM (a) and SA (b).

Figure 3: The curve constructed from particles positioned with SA
shown together with the input image, a spiral with a deep concavity.

( a ) CPM ( b ) SA

Figure 4: CPM and SA applied to a non-synthetic natural image.

4. Conclusion

•The SA variant of CPM is simpler and faster.

•For images with well defined edges, the results are similar, if not better.

•For natural, non-synthetic images, the results are different.

•We will explore whether combining SA with a multi-scale approach (like
CPM does) could yield better results.
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