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Abstract

An undirected weighted graph may be constructed from
diffusion weighted magnetic resonance imaging data. Every
node represents a voxel and the edge weights between nodes
represent the white matter connectivity between neighbor-
ing voxels. In this paper we propose and test a new method
for calculating trajectories of fiber bundles in the brain by
applying Dijkstra’s shortest path algorithm to the weighted
graph. Subsequently, the resulting tree structure is pruned,
showing the main white matter structures of the brain. The
time consumption of this method is in the order of seconds.

1 Introduction

The complexity of the human brain is enormous. In a
volume of about 1.5 liter run some 105 kilometers of myeli-
nated nerve fibers, connecting many cortical brain regions.
Most of these fibers are grouped into fiber bundles of vari-
ous widths. A single nerve fiber is a tube, with a diameter of
typically one micron. Diffusion of water molecules in the
longitudinal direction is free while transverse diffusion is
limited. With diffusion-weighted magnetic resonance imag-
ing (DW-MRI) the per-voxel averaged directional diffusion
of water in biological tissue may be measured, resulting in
a symmetric diffusion tensor D [1]. For a voxel in an area
with well-aligned nerve fibers the largest eigenvector of D
points in the main fiber direction. In the last decades DW-
MRI has matured to the extent that it is now possible to use
this modality for detecting and visualizing fiber bundles in
the millimeter range. It has been used, for example, to build
atlases of the brain [7], to study chronic brain diseases [15],
and to assess acute stroke [11]. For an overview see [12]
and [14].

In order to understand the functioning of the healthy or
affected brain it is important that it is determined to which
cortical regions fiber bundles connect and which trajecto-
ries they follow. Many techniques have been proposed that,
starting from the tensor field, visualize DTI data. A sim-
ple approach is to visualize the fractional anisotropy (FA),
a scalar quantity representing a certain ratio of the eigenval-

ues of D. It is useful for visualizing white matter density.
More demanding is (deterministic) fiber tracking, a tech-
nique to reconstruct and visualize fiber bundles. In the most
straightforward approach trajectories are generated by fol-
lowing the direction of the greatest local eigenvector, start-
ing from a given voxel [14]. Instead of only using the great-
est eigenvector of D, some methods use the entire diffusion
tensor [10]. Also, level set methods have been applied [17],
where the front propagates with a velocity depending on the
eigenvectors of D.

What these methods have in common is that the ten-
sor field is interpreted as a way of locally describing the
direction of highest velocity, and in fiber tracking this di-
rection is followed. Alternatively, we propose to approach
fiber tracking as a way of finding a lowest-weight path in a
graph, which is constructed by connecting each voxel to its
neighboring voxels with a weighted edge. The weights are
defined such that paths that follow the principal diffusion
direction have a low weight. Having a weighted graph, a
minimum-weight fiber tract between two given points may
be calculated using Dijkstra’s algorithm [5]. In this paper
we report on our experiments with this approach, called
shortest path fiber tracking (SPFT). Dijkstra’s algorithm
does not simply give a single shortest path, but, for a given
source voxel, a tree of shortest paths. This allows us to
not only show a single shortest path, but also to produce an
overview of white matter density, structure, and direction,
by visualizing a pruned version of this tree. Furthermore
we investigate a method to visualize SPFT results by clus-
tering outer branches of the tree.

In the field of DTI visualization the SPFT method can be
categorized as follows. In the first place it is a deterministic
method; every run gives exactly the same result. However,
it does not have the drawbacks of most other determinis-
tic methods; paths are constructed using non-local informa-
tion, yielding globally optimal paths. The paths generated
by SPFT consist of edges connecting points of the voxel
grid. This differs from most other methods, where paths are
defined by non-grid points.

There are a few methods described in literature that also
construct a graph from DW-MRI data and apply graph algo-
rithms. In [8] an iterative adaptation of Dijkstra’s algorithm
is used to determine most probable paths between voxels



and to produce probabilistic brain anatomical connection
maps. In a recent publication [20] a variation of Dijkstra’s
algorithm is used to compute optimal paths of maximum
probability. The advantage of our method is its simplicity
of assigning weights, and consequently its performance. On
a similar dataset the method described in [20] is reported to
take about 15 minutes, whereas our method runs in under
5 seconds. This makes our method suitable for interactive
visualization.

The contribution of this paper can be summarized as fol-
lows. We present and test a new fiber tracking method,
SPFT, that

• gives a fast (in the order of seconds) first impression of
global white matter structure

• uses global information

• can be used for clustering.

In the following section we explain how the weighted
graph is constructed and how the paths are created. Section
3 reports on experiments performed. In section 4 we discuss
the advantages and disadvantages of our approach. Finally,
in section 5 we conclude this paper and suggest possible
future work.

2 Constructing a weighted graph and short-
est paths from DTI data

Consider a diffusion tensor field D over the brain, where
Di, i = 1 . . . N is the diffusion tensor of voxel i and N
the number of voxels. We assume that voxels are evenly
spaced on a rectangular three-dimensional grid. Moreover,
we assume that every diffusion tensor represents the average
diffusion in the corresponding voxel, as measured by DW-
MRI. In the following we use 26-connectedness, i. e., every
voxel that is not at the boundary of the scanned volume has
26 neighboring voxels.

A mask is generated by using the brain extracting tool
called bet2 from the FSL package [16]. The mask is used
to exclude areas without white matter, such as the skull and
air surrounding the head. Also voxels in cerebrospinal fluid
regions are excluded, characterized by a high value for the
trace of the diffusion tensor. We used 9× 10−4 as the max-
imum trace value.

A diffusion tensor D represents local diffusion, which
means that the local flux J of particles, due to diffusion,
over an infinitesimal plane A with unit normal r is given by
the matrix-vector product

J = Dr. (1)

In general J is not in the direction of r. The flux Jr in the
direction of r is given by

Jr = r ·Dr. (2)

Let ri,j ≡ rj − ri and let r̂i,j be the corresponding unit
vector, where ri and rj are the centers of voxels i and j,

respectively. Using (2), and following the notation in [9],
the diffusion coefficient in voxel i in the direction r̂i,j is
denoted as

d(ri,j , i) ≡ r̂i,j ·Dir̂i,j . (3)

According to [9] the connectedness C between two
neighboring voxels i and j can be defined as

Ci,j =
d(ri,j , i) + d(rj,i, j)

2
. (4)

For SPFT it is required that a high Ci,j value is transformed
into a low edge weight Wi,j . In order to enhance the ef-
fect of high C-values with respect to low values we use a
nonlinear decreasing function S to map connectedness to
weights:

Wi,j = S(Ci,j). (5)

In our experiments we used a decreasing sigmoidal func-
tion of the form

S(x) =
1

1 + ea(x−b)
, (6)

where a is a positive constant that determines the steepness
of the sigmoid and b is a constant that determines the x-
position of the steepest point of S.

In our experiments we used a = 15, but any value in
the range 14. . . 16 works just as well. The value of b dif-
fers per data set and is determined as follows. First, all Ci,j

are scaled to the range 0 . . . 1 by dividing by the maximum
of the C-values. Then, in the histogram of the C-values a
value is chosen such that 98% is smaller, and b is set to this.
The reason for this is that outliers in theC-values will other-
wise influence the scaling too much and almost all weights
of the graph would be near 1.0.

Dijkstra’s algorithm [5] solves the single-source shortest
path problem: given a weighted graph G = (V,E), where
V is a set of vertices and E a set of edges, find a short-
est path from a given source vertex s ∈ V to every vertex
v ∈ V . A shortest path is defined as a path of which the sum
of the weights of its edges, i. e., the path weight, is minimal.
Dijkstra’s algorithm returns for every vertex v ∈ V , the
shortest path to s and the weight of the path. The short-
est paths are represented by a shortest path tree where each
vertex has a reference to a predecessor in the shortest path
from that vertex to the source vertex. Note that Dijkstra’s
algorithm only works for graphs with non-negative edge
weights. By implementing the priority queue used in Dijk-
stra’s algorithm with a Fibonacci heap, the complexity of
the shortest path algorithm becomes O(|V | log |V | + |E|),
where |E| is the number of edges and |V | the number of
vertices [4].

3 Results

The DT-MRI data used in this paper were acquired from
a healthy volunteer on a 3T MRI system (Philips Intera).
Diffusion Tensor Imaging was performed using a diffusion
weighted spin-echo, echo-planar imaging technique. The



DTI parameters were as follows: 240 × 240 mm field of
view; 128×128 matrix size; 51 slices; 1.85×1.85×2 mm3

imaging resolution; 5485 ms repetition time; 74 ms echo
time. Diffusion was measured along 60 non-collinear di-
rections. For each slice and each gradient direction, two
images with no diffusion weighting (b = 0 s/mm2) and
diffusion weighting (b = 800 s/mm2) were acquired, to
measure APA and APP fat-shifts. The subject’s consent
was obtained prior to scanning. A tensor field was gener-
ated from the diffusion weighted data using the Diffusion
Toolkit [19].

3.1 Visualization

The visualizations shown in this section were created us-
ing Python and the Visualization Toolkit (VTK). For better
depth perception the paths and trees visualized are depicted
using tubes with VTK’s TubeFilter. In some of the images
the paths are smoothed using approximating splines.

3.2 Single shortest path

A first step in visualizing SPFT results is to select one
voxel in a region of interest and visualize its shortest path
to the source voxel. This is illustrated in Figure 1, where a
shortest path (red) is combined with a fiber tract produced
by traditional deterministic fiber tracking (blue). The latter
was created using a modified FACT [13] method provided
by the track program of the Camino software package [3]
and was seeded at the source voxel used for SPFT.

It can be seen that the SPFT path is very similar to the
tract returned by the method for deterministic fiber track-
ing. The shortest path is not as smooth as the traditional
fiber tract. This is partly because of the discretization nec-
essary to be able to create a graph from the data. By in-
terpolating the vertices of the shortest path by a spline the
visual appearance can be improved. Note that in Figure 1
the shortest path is not smoothed to illustrate the jagged na-
ture of the raw SPFT paths.

3.3 Visualizing brain structure

The next step after visualizing just one shortest path is vi-
sualizing the whole shortest path tree. This would of course
create a very cluttered visualization, so instead we have ex-
perimented with visualizing a simplified, pruned tree and
we propose two approaches for pruning. The first, prun-
ing based on tree size, involves counting for each vertex the
number of children in the shortest path tree. Then only those
vertices are selected whose number of children in the short-
est path tree are larger than a threshold tsize. The second
approach, pruning based on tree depth, involves calculating
for each vertex the maximum depth of the tree starting from
that vertex, that is, the maximum path length to a leaf vertex
in the tree. That value is then used for thresholding (tdepth).
Both values, tree size and tree depth, are easily calculated
recursively.

Figure 1. A shortest path (red) combined
with a fiber tract from traditional determin-
istic fiber tracking (blue) seeded from the
same voxel, shown together with a transverse
plane showing fractional anisotropy for con-
text. For the most part the tracts follow the
same path.

Figures 2 to 6 show the results of applying pruning to the
shortest path tree generated by SPFT. In these figures the
pruned trees are smoothed using an approximating spline.
A voxel near the brain stem is used as the source voxel.
Figures 2 and 3 show the effect of the threshold parameter
for both pruning based on size as well as depth. A large
value (a), results in a very simple tree, and decreasing tsize
and tdepth shows more and more detail ((b) and (c)).

In Figure 4 the pruned shortest path tree (size-based
pruning) is shown together with image planes displaying
fractional anisotropy (FA) information, where white means
high FA. What we see here is that the edges of the pruned
tree follow important white matter bundles to a reasonable
approximation. This is also illustrated in Figure 5 where a
transverse slice (four voxels thick) of a minimally pruned
tree is combined with a plane showing FA information.

Of course the position of the source voxel influences
what the resulting tree will look like. However, we found
that when choosing two source voxels far apart, one near the
brain stem and one in the corpus callosum, 72% of the edges
of the shortest path trees match. Figure 6 shows what the
pruned shortest path tree looks like when the source voxel
is chosen in the corpus callosum.

3.4 Voxel clustering

Instead of constructing paths we can look at which vox-
els connect to the outer voxels of the pruned tree and per-
form clustering based on that information. This means
that we cluster voxels together whose shortest paths to the
source voxel go through the same voxel. This may give in-
formation on how certain regions are connected. Figure 7
shows a sagittal slice of colored clusters (a) and the same
slice with FA information (b). For most regions in this im-
age, the colored clusters match the white matter structure
indicated by high FA values.



(a) tsize = 1000 (b) tsize = 400 (c) tsize = 100

Figure 2. Decreasing the threshold parameter for pruning based on tree size results in a visualization
showing more detail.

(a) tdepth = 25 (b) tdepth = 15 (c) tdepth = 10

Figure 3. Decreasing the threshold parameter for pruning based on tree depth results in a visualiza-
tion showing more detail.

Figure 4. A pruned shortest path tree com-
bined with a coronal plane showing fractional
anisotropy. The tree shows the shape of part
of the corpus callosum.

3.5 Path weight visualization

Besides a shortest path tree, Dijkstra’s algorithm returns
for each voxel the weight of the shortest path to the source
voxel, which is basically a scalar field we can visualize.
Figure 8 shows a sagittal slice of this weighted distance,
colored using a red to yellow color scale. In addition we
can calculate from the shortest path tree for each voxel the

length of the path to the source voxel. Figure 9 shows this
distance for the same sagittal slice. The neuroanatomical
meaning and origin of the “parieto-occipital” red-yellow
boundary in this figure is something that needs further anal-
ysis.

3.6 Performance

The graph construction and shortest path calculations are
implemented in C, whereas the visualizations are created
using a combination of Python and VTK.

Performance tests on a single core of an AMD Dual
Opteron 280 (2.40 Ghz) were applied to a 128 × 128 × 51
tensor field. The graph building process, which only needs
to be done once, takes on average 1.2 seconds, and the short-
est path calculation takes on average 0.37 seconds. Pruning
the shortest path tree is implemented in Python and needs
about 1 to 2 seconds.

4 Discussion

In our opinion SPFT should be considered as a fast fiber
tracking method, both for previewing and interactive visu-
alization. Computing time for the shortest path tree is under
one second, so it is feasible to interactively change param-
eters to observe the effect. Even though the assignment of



Figure 5. A 4-voxel thick transverse slice of a
minimally pruned tree combined with a plane
showing FA information.

edge weights is simple, computing the shortest path tree al-
ready provides a good visual impression of brain structure.

This article is of the proof-of-principle type, i.e., further
verification and validation is required. Notably a compari-
son with other methods has to be performed and the method
should be tested on both healthy and pathological cases.
Also, because of the noisy nature of DTI data, sensitivity
to noise is something to be investigated. Preliminary testing
showed that the shortest path tree only significantly changes
after adding Gaussian noise with σ > 0.1.

An important issue is the interpretation of the edge
weights. Although our initial edge assignment is based on
diffusion densities, subsequent rescaling makes that it is not
obvious what the ensuing minimization precisely means in
neurophysiological terms. A more principled edge weight
assignment can be based on probabilistic methods, like
Bayesian estimation or Markov Chain Monte Carlo sam-
pling. However, computation times of these all-paths track-
ing methods are much higher, ranging from 15 minutes [20],
30-40 minutes [6] to 18-24 hours [2]. An interesting open
problem is to include the probabilistic edge assignment of
Zalesky [20] in our method without increasing computation
time too much.

Dijkstra’s algorithm gives for every voxel pair a shortest
path, even for voxel pairs that are not actually connected
by a nerve fiber. Probably, such a path will have one or
more relatively high weights. We tried to determine which
paths represent real nerve fiber bundles and which ones are
fictitious by comparing the highest single-step weight of the
path with the average weight of the path. So far, this did not
solve the problem.

5 Conclusion and Future Work

In this paper we have presented a new fast method for an-
alyzing and visualizing DW-MRI data based on Dijkstra’s

Figure 6. Choosing a source voxel on the
corpus callosum results in a pruned shortest
path tree that is similar to the pruned tree
found by using a source voxel near the brain
stem (see for example Figure 2).

shortest path algorithm. With this method one can quickly
obtain an approximate overview of important white matter
bundles or view paths between regions of interest. There is
however, room for improvement. First of all, the computa-
tion of the edge weights needs some more theoretical un-
derpinning to give meaning to what is actually minimized
(see section 4). This can then be combined with a more
extensive validation of the results produced by SPFT. Also,
the tensor model has some known drawbacks with regard to
crossing fibers and we will try to to combine other DW-MRI
modalities such as Q-ball imaging [18] with SPFT. Finally,
our current visualizations are very simple and there might
be interesting innovative ways to explore the shortest path
tree returned by SPFT or variants thereof.
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