
J Math Imaging Vis
DOI 10.1007/s10851-016-0649-5

Efficient and Robust Path Openings Using the Scale-Invariant
Rank Operator

Jasper J. van de Gronde1 · André R. Offringa2 · Jos B. T. M. Roerdink1

Received: 1 May 2015 / Accepted: 17 March 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Some basic properties of a slightly generalized
version of the scale-invariant rank operator are given, and
it is shown how this operator can be used to create a
nearly scale-invariant generalization of path openings that is
robust to noise. Efficient algorithms are given for sequences
and directed acyclic graphs with binary values, as well as
sequences with real (greyscale) values. An algorithm is also
given for directed acyclic graphs with real weights. It is
shown that the given algorithms might be extended even
further by allowing for scores based on a totally ordered
semigroup.

Keywords Scale invariance ·Rank operator · Path opening

1 Introduction

Rank operators are often used for filtering images, and can
be considered in the framework of mathematical morphol-
ogy. They are generalizations of the minimum, maximum
and median filters: at each position selecting the r th value
in a sorted list of all values within a certain neighbourhood.
Previously, we introduced the scale-invariant rank operator
(SIR operator) on binary masks, with an application in radio
astronomy [22]. This is a highly efficient operator that identi-

B Jasper J. van de Gronde
j.j.van.de.gronde@rug.nl

Jos B. T. M. Roerdink
j.b.t.m.roerdink@rug.nl

1 Johann Bernoulli Institute for Mathematics and Computer
Science, University of Groningen, P.O. Box 407, 9700 AK
Groningen, The Netherlands

2 ASTRON, The Netherlands Institute for Radio Astronomy,
Postbus 2, 7990 AA Dwingeloo, The Netherlands

fies all intervals (of any size) that contain a sufficient fraction
of ones in the input mask. The name stems from the fact that
this operator can be interpreted as combining the results of
rank operators with linear structuring elements of all possible
lengths.

The SIR operator is an interesting option for anyone who
needs to robustly “grow” regions or close gaps, without
knowing in advance what size these regions have. Indeed, we
showed [22] that this can work quite well in practice. How-
ever, the operator was limited to 1D signals (rows/columns
of images were processed independently). In this work, we
analyse the SIR operator in more detail, exposing a link to
path openings [13,14,19]. In Sect. 3, we show how the SIR
operator can be generalized to higher-dimensional signals
by considering paths, leading to a straightforward general-
ization of path openings that allows for gaps in paths. We
also briefly discuss the generalization to greyscale. In the
current context, paths are understood to be approximately,
but not necessarily perfectly, straight curves, formalized as
paths in certain directed acyclic graphs (see Fig. 1). When
a long path is broken up into smaller segments because of
noise, the “missing” pixels can be said to constitute gaps. In
many practical applications, it is crucial to be able to deal
with gaps.

Section 4 presents algorithms for the four cases we
treat: binary sequences, greyscale sequences, binary directed
acyclic graphs, and greyscale directed acyclic graphs. With
the exception of greyscale graphs, all cases allow an algo-
rithm that is at most a logarithmic factor worse than linear in
the size of the problem. The results are roughly in line with
known results for path openings [12,14].

Section 5 compares generalized path openings with two
existing schemes for making path openings robust to noise:
incomplete path openings [14,29] and robust path openings
[8]. Incomplete path openings allow for fine-grained tun-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-016-0649-5&domain=pdf
http://orcid.org/0000-0002-6204-3001

J Math Imaging Vis

Fig. 1 Some DAGs that have been used for path openings on images

ing of how many pixels may be missing from a path, but
are inefficient when this number becomes high. Robust path
openings put a cap on the maximum size of each individual
gap, allowing (at the strictest setting) up to 50 % of a path
to be empty, while still requiring more passes over the data
than a normal path opening. The generalized path openings
we introduce are nearly as efficient as normal path openings,
while also allowing for a fine-grained tuning of the minimum
fill fraction of a path.

Section 6 shows several example applications of the gen-
eralized path openings developed in this work. Section 7
explores how much further we can generalize the SIR oper-
ator’s scoring function, without requiring any fundamental
changes to the algorithms.

2 Related Work

The scale-invariant rank (SIR) operator is meant as a
scale-invariant version of the traditional rank operator, or
rather rank-max operator1 [15,28]. The rank operator sim-
ply returns the kth largest value within a certain window at
each position. If the image domain is Z (the set of all inte-
gers), the (binary) image f is represented as a subset ofZ, and
the window is an interval of length n starting at the current
position, the rank operator can be defined as follows:

ζn,k(f) = {x | x ∈ Z and | f ∩[x, x + n − 1]| ≥ k}.

Here |X | gives the number of elements in the set X and
[a, b] is considered the set of all elements between a and
b (including a and b). Note that in the binary case, returning
the kth “largest value” is equivalent to determining whether
or not there are at least k elements in the window.

Perhaps counter-intuitively, it is possible to have a posi-
tion x be present in ζn,k(f), but not all of the other positions
in the corresponding window. To remedy this, and make the
window positioning with respect to the current position irrel-
evant, one can define the rank-max operator:

ζ̄n,k(f) =
⋃{[x, x + n − 1] | x ∈ Z

and | f ∩[x, x + n − 1]| ≥ k
}
. (1)

1 It is perhaps more common to consider the rank-max opening. This
is the meet of the identity operator and the rank-max operator.

It is this operator that the SIR operator tries to make scale
invariant.

To make a scale-invariant version of Eq. (1), the first thing
to do is to allow intervals of all sizes rather than just a single
size. Next, we replace the parameter k by a parameter s which
is effectively k/n. This yields the original SIR operator [22]2

(note that n corresponds to b − a + 1)

ρs(f) =
⋃

n∈N ζ̄n,�s n�(f) =
⋃ {[a, b] | a, b ∈ Z, a ≤ b

and |[a, b] ∩ f | ≥ s |[a, b]|}. (2)

Our work below concerns not just a more general SIR
operator, but also a unification of the SIR operator and path
openings. In this light, we will now briefly introduce path
openings on graphs. Given a directed acyclic graph G =
(V, E), a path p is a sequence of vertices such that any pair
of consecutive vertices is an edge in E . The set of vertices
in p is denoted by σ(p), its length by |p|, and the set of all
paths in G by �(G). Note that in a directed acyclic graph,
|p| = |σ(p)|. A path opening on a subset f of V , with path
length threshold l, can then be defined as3

α1,l(f) =
⋃ {

σ(p) | p ∈ �(G)

and σ(p) ⊆ f and |p| ≥ l
}
. (3)

The unification of path openingswith theSIRoperatorwill
allow for a certain level of robustness to gaps in paths. The
two main existing schemes for path openings that can deal
with gaps in paths are incomplete path openings and robust
path openings. Incomplete path openings [14,29] allowapath
of length L with at most K missing values, with the time and
space complexities linear in both the size of the graph and
K (for the binary case). Robust path openings [8] allow for a
maximum gap size, rather than a (global) maximum number
of missing values. The time complexity is not entirely clear,
but in practice a linear dependence on the maximum gap size
is observed.

3 The New SIR Operator

Belowwefirst introduce a slightlymore general SIR operator
on sequences (1D signals), and then present a further gener-
alization to graphs (or nD signals/images) that completes the
unification of the SIR operator and path openings. Note that
wewill mostly discuss binary signals, only briefly discussing

2 Note that we originally defined the SIR operator with a parameter
μ = 1 − s.
3 That we write α1,l rather than αl is to maintain consistency with the
generalized operator αs,l introduced later.

123

J Math Imaging Vis

the generalization to greyscale towards the end of the current
section. The implementations do support greyscale though.

To begin unifying path openings and the SIR operator,
let us start by rewriting path openings so that the condition
σ(p) ⊆ f becomes integrated with the condition |p| ≥ l,
and we get closer to the condition in Eq. (2) (recall that in a
directed acyclic graph |p| = |σ(p)|):

α1,l(f) =
⋃ {

σ(p) | p ∈ �(G)

and σ(p) ⊆ f and |p| ≥ l
}

=
⋃ {

σ(p) | p ∈ �(G)

and |σ(p)∩ f | ≥ ∞ × |σ(p) \ f | + l
}
, (4)

using the extended real numbersR∪{−∞,∞}. LikeAlipran-
tis and Burkinshaw [1, §1.5], we will consider±∞×0 = 0.
This choice will be further motivated shortly.

Comparing Eq. (4) to Eq. (2) (giving paths the role of
intervals) suggests using an inequality of the form

|σ(p)∩ f | ≥ c(s) |σ(p) \ f | + l, (5)

for some function c : [0, 1] → R∪{∞} that goes to infinity
as its parameter (s) goes to 1 from below (and is finite below
1). We now note that the limit behaviour of this inequality
motivates the choice we made regarding the value to assign
to ∞ × 0, given that limc↑∞ c × 0 = 0.4 As a result, Eq. (5)
recovers path openings in the limit, while providing some
robustness to gaps when c(s) is finite. For example, if c(s) =
1 and l = 0, then only those intervals that have a fill fraction
of at least 50 % will be kept. If l is non-zero, we recover
the same behaviour in the limit as the interval size goes to
infinity, while we also have the guarantee that each interval
that we keep has a length of at least l.

To determine the proper form of c(s), we rewrite the last
part of the condition in Eq. (2):

|[a, b] ∩ f | ≥ s |[a, b]|
⇐⇒ |[a, b] ∩ f | ≥ s (|[a, b] ∩ f | + |[a, b] \ f |)
⇐⇒ (1 − s)|[a, b] ∩ f | ≥ s |[a, b] \ f |
⇐⇒ ∣∣[a, b

] ∩ f
∣∣ ≥ s

1 − s

∣∣[a, b
] \ f

∣∣.

It is perhaps tempting to avoid the division by 1 − s, by not
dividing both sides by 1 − s in the last step, but this would
mean that in Eq. (6) below we would also have to multiply
l by 1 − s, leading to the inequality 0 ≥ |σ(p) \ f | for
s = 1; this inequality ignores l, and thus does not recover the

4 To be precise: given the specified constraints we can conclude that
|σ(p) ∩ f | ≥ lims↑1 c(s) |σ(p)\ f |+ l ⇐⇒ σ(p) ⊆ f and |p| ≥ l,
noting that neither f , nor p, nor l depends on s. This corresponds to,
for our purposes, equating ∞ × 0 with 0.

desired behaviour. If we now combine the above ideas into
one definition, we get:

Definition 1 The scale-invariant rank operator ρs,l : P(V)

→ P(V) on a graph G = (V, E) is defined by

ρs,l(f) =
⋃{

σ(p) | p ∈ �(G)

and
∣∣σ(p)∩ f

∣∣ ≥ s

1 − s

∣∣σ(p) \ f
∣∣ + l

}
. (6)

The associated generalized path opening is defined by

αs,l(f) = f ∩ ρs,l(f). (7)

Here s is a real number greater than zero and less than or
equal to one, and l a non-negative real number. If s = 1,
we recover Eq. (4) by considering s

1−s to equal ∞—its limit
when approaching s = 1 from below—with the convention
that ±∞ × 0 = 0 (as discussed earlier).

The parameter s gives theminimum fraction of the interval
that should be set in f (at least in the limit for |p| → ∞),
while l gives theminimummeasure of intervals in the output.
Also note that instead of just counting elements, we could
also use a general measure μ on Z [4] such that μ({x}) is
positive for all x ∈ Z. Using a general measure would allow
using non-constant weights for positions, for example when
dealingwith non-uniform sampling. Theorem 1 below shows
that αs,l is indeed an opening. Also, it is possible to see that
α1,l(f) equals ρ1,l(f) (see Corollary 1) and that it recovers
a traditional path opening. Combined with the fact that αs,l

can be implemented in pretty much the same way as normal
path openings, these facts motivate the name.

For l = 0, 0 < s < 1, and the graph (Z, {(x, x + 1) | x ∈
Z}), the new formulation is equivalent to the old formulation.
The main advantage of this new formulation is that it allows
us to have a continuum of operators all the way up to s = 1,
in which case we get a path opening as the limit case. At first
glance, it might look like the new formulation is actually
less suited for use with s = 1 because of the division by
1 − s, but in practice dealing with the resulting infinities is
not a problem. In particular, we maintain the scores using
floating point numbers, and those allow for infinity in a way
that works just fine with our algorithm. If one wanted to use
integers/fixed point, it would certainly be possible to do this,
but some care would need to be taken to avoid overflow (or,
rather, underflow).

3.1 Properties

We will now state some properties of the operator ρ = ρs,l .
Note that the subscripts (s and l) are used only when needed
for clarification.

123

J Math Imaging Vis

Lemma 1 The operator ρ is increasing: f ⊆ g �⇒
ρ(f) ⊆ ρ(g).

Proof Assume that f ⊆ g, we then prove that any element
of ρ(f) must also be an element of ρ(g). Note that for every
x ∈ ρ(f) there is, by definition, a path p ∈ �(G) such that
x ∈ σ(p), σ(p) ⊆ ρ(f), and | f ∩ σ(p)| ≥ s

1−s |σ(p) \
f | + l. Since g ⊇ f , we have that

∣∣g ∩ σ(p)
∣∣ ≥ ∣∣σ(p)∩ f

∣∣ ≥ s

1 − s

∣∣σ(p) \ f
∣∣ + l

≥ s

1 − s

∣∣σ(p) \ g
∣∣ + l.

So, if x is in ρ(f), then x is also in ρ(g), which concludes
the proof. ��
Lemma 2 The operator ρs,0 is extensive: ρs,0(f) ⊇ f .

Proof Looking at Eq. (6), and noting that σ(p) = {a} for
every singleton path containing only a ∈ V , we see that

∀a ∈ f : ∣∣ f ∩{a}∣∣ = ∣∣{a}∣∣ ≥ s

1 − s

∣∣{a} \ f
∣∣ = 0.

Note that, as explained previously, we consider s
1−s × 0 to

equal zero even for s = 1. This implies that if a is in f , then
it is also in ρs,0(f), proving the lemma. ��

It can be seen that although any SIR operator is increas-
ing (Lemma 1) and any ρs,0 is extensive (Lemma 2), SIR
operators are not, in general, closings, as they are typically
not idempotent. For example, takingG to be the graphwhose
vertices are the elements ofZ andwhose edges connect every
integer to its successor,

ρ1/2,0(ρ1/2,0({0})) = [−4, 4]
rather than ρ1/2,0({0}) = [−1, 1],

as illustrated in Fig. 2. SIR operators also do not, in general,
commute with unions or intersections:

ρ1/2,0({0})∪ ρ1/2,0({1}) = [−1, 2]
�= ρ1/2,0({0, 1}) = [−2, 3], and

ρ1/2,0({0})∩ ρ1/2,0({1}) = [0, 1] �= ρ1/2,0(∅) = ∅.

Fig. 2 A graphical depiction of what happens when ρ1/2,0 is applied
twice to an input containing a single element. From left to right and top
to bottom the input, the (maximal) intervals that are found by the SIR
operator, the first output (which serves as input to the second application
of ρ1/2,0), the (maximal) intervals found in the second application, and
the final output

Interestingly, SIR operators can be made into openings, as
shown in Theorem 1 below. Corollary 1 shows that some SIR
operators are in fact openings.

The reason the SIR operator is called scale invariant is that
it considers paths of all sizes, and (for l = 0) only looks at
the fraction of the path that is present to determine whether
or not to include it in the output. It thus does not depend
on the scale of the signal. For l > 0, we lose some of this
scale invariance in a controlled manner (although it is still
approximately scale invariant for large intervals), which is
relevant for being able to construct openings [30, Prop. 2].

3.1.1 SIR-Operator-Based Openings

Theorem 1 below shows how the SIR operator can be used
to create openings, while Corollary 1 shows that some SIR
operators are in fact openings.

Lemma 3 The operator ρ is an inf-overfilter [15, ch. 12]:
ρ(f ∩ ρ(f)) = ρ(f).

Proof Wefirst show thatρ(f ∩ ρ(f)) ⊇ ρ(f), the statement
then follows from the increasing nature of ρ. To this end,
note that according to Eq. (6), ρ(f) is the union of all paths
p ∈ �(G)) satisfying |σ(p)∩ f | ≥ s

1−s |σ(p) \ f | + l. For
all such paths, we have

σ(p)∩ f ∩ ρ(f) = σ(p)∩ f , as well as

σ(p) \ (f ∩ ρ(f)) = σ(p) \ f.

This implies that

|σ(p)∩ f ∩ ρ(f)| = |σ(p)∩ f | ≥
s

1 − s
|σ(p) \ (f ∩ ρ(f))| + l = s

1 − s
|σ(p) \ f | + l,

and thus thatσ(p) ⊆ ρ(f ∩ ρ(f)). Since this holds for all the
intervals that make up ρ(f), we have ρ(f ∩ ρ(f)) ⊇ ρ(f).

Finally, as ρ is increasing (Lemma 1), we have
ρ(f ∩ ρ(f)) ⊆ ρ(f). This leads us to conclude that ρ is an
inf-overfilter. ��
Theorem 1 The operator αs,l defined by αs,l(f) = f ∩ ρs,l
(f) is an algebraic opening: it is increasing, anti-extensive—
αs,l(f) ⊆ f —and idempotent—αs,l(αs,l(f)) = αs,l(f).

Proof That αs,l is increasing follows from the fact that ρs,l
is increasing (Lemma 1). That it is anti-extensive follows
trivially from the definition. Its idempotency follows from
the fact that ρs,l is an inf-overfilter (Lemma 3), as shown in
the proof of Theorem 6.26 by Heijmans [15] (alternatively:
[25, Prop. 4.1]). ��
Corollary 1 The operator ρ1,l is equal to α1,l , and is thus
an algebraic opening.

123

J Math Imaging Vis

Fig. 3 Example of applying the greyscale SIR operator (s = 5/7,
l = 0). The original (1D) signal is shown as a bar chart with a dark
grey fill. Light grey is used to show what is added by the SIR operator.
The output can be thought of as a stack of binary results. Looking just
at the middle level, .XXX. becomes XXXXX, as it would in the binary
case

Proof Wewill show that ρ1,l is anti-extensive, at which point
it becomes clear thatρ1,l = α1,l , and the claim follows imme-
diately from Theorem 1. However, first recall that for s = 1,
we consider s

1−s |σ(p) \ f | to equal 0 if |σ(p) \ f | equals
zero, and infinity otherwise. Now, |σ(p) \ f | is zero if and
only if σ(p) ⊆ f . With these considerations, Eq. (6) takes
the following form for s = 1:

ρ1,l(f) =
⋃ {

σ(p) | p ∈ �(G) and

σ(p) ⊆ f and |σ(p)| ≥ l
}
.

In other words, it gives the union of all paths that are a subset
of f , andwhose length is greater than or equal to l. The union
of a set of subsets of f is still a subset of f , thus we can
conclude that ρ1,l is anti-extensive, and thus that ρ1,l = α1,l ,
making it an algebraic opening. ��

It is interesting to note that SIR operators and the general-
ized path openings have a relation analogous to the relation
between (rank-)max operators (dilations of rank operators)
and rank-max openings ([15, Ex.6.29], [24, p. 325], [28]).

3.2 Greyscale

We now briefly discuss how to extend the problem to the
greyscale case. In the greyscale case, the output is as if the
binary algorithm is run with different thresholds, and each
output position is set to the maximum corresponding value
of the binary application (see Fig. 3). It can be checked that
this recovers the interpretation of the SIR operator as a scale-
invariant rank(-max) operatorwhen theminimumpath length
l = 0. An example application can be the detection of radio-
frequency interference (RFI) in radio astronomy: when the
initial detection results in confidence levels, a greyscale SIR
transform can be used directly on the confidence levels.

4 Algorithms

Here we discuss algorithms for implementing binary and
greyscale versions of the SIRoperator, both on sequences and
on graphs. We have the following time complexities (with
n the length of the sequence, V the set of vertices in the

processed graph, E the set of edges, and L the set of grey
levels):

– O(n) for the binary operator on sequences,
– O(|V | + |E |) for binary on (general) graphs,
– O(n log(n)) for greyscale on sequences, and
– O(min(|V |, |L|) |V |) for greyscale on (sparse) graphs.

Note that we will just consider the SIR operator. Gen-
eralized path openings can be implemented by computing
the intersection or infimum (position-wise minimum) of the
input and the output of the SIR operator. Implementations for
the greyscale SIR operator (and the generalized path open-
ing) on sequences and images are available at http://bit.ly/
1OcSZUP.

One important implementation note that concerns all algo-
rithms is what to make of the fraction s/(1− s) when s = 1.
As mentioned earlier, our algorithms simply use floating
point values, which support an actual infinity. Although this
type of infinity does not support the convention±∞×0 = 0,
this turns out not be an issue, since the algorithms build up
the scores incrementally using addition (which is supported
in an appropriate manner).

4.1 Binary Sequences

The SIR operator can be implemented very efficiently for
binary sequences. We already used this in earlier work [22],
but will now provide a bit more detail. We will also present
a second method that requires less temporary storage. It is
also easy to implement and slightly more amenable to gener-
alization/adaptation. Additionally, it shows how the problem
is closely related to the maximum contiguous subsequence
sum problem, as essentially the same algorithm can be used
to solve both.

To derive our original method (adapted to the new defin-
ition of the SIR operator), we first move all terms related to
counting elements to the left side of the inequality in Eq. (6)
(and rephrase it in terms of intervals rather than paths):

∣∣[a, b] ∩ f
∣∣ ≥ s

1 − s

∣∣[a, b] \ f
∣∣ + l

⇐⇒ ∣∣[a, b] ∩ f
∣∣ + s

s − 1

∣∣[a, b] \ f
∣∣ ≥ l.

Now suppose f : {1, 2, . . . , n} → {0, 1} is a sampled, finite
length, binary signal. With the convention that x ∈ f ⇐⇒
f (x) = 1, and defining w : {0, 1} → R by w(0) = s

s−1 and
w(1) = 1, we then get

ρs,l(f) =
⋃ {[a, b] | a, b ∈ Z, a ≤ b and W (a, b) ≥ l

}
,

with W (a, b) =
∑

y∈[a,b]
w(f (y)).

123

http://bit.ly/1OcSZUP
http://bit.ly/1OcSZUP

J Math Imaging Vis

So a point is output if it is part of an interval for which the
score W exceeds l:

x ∈ ρs,l(f) ⇐⇒
[

max
a,b|a≤x≤b

W (a, b)

]
≥ l. (8)

Note that w(0) is negative for the range of s we consider:
0 < s ≤ 1. Prefix sums can now be used to compute Eq. (8)
efficiently:

x ∈ ρ(f) ⇐⇒
[

max
a,b|a≤x≤b

M(b + 1) − M(a)

]
≥ l,

with M(x) =
∑

y<x

w(f (y)).

Independently optimizing a and b gives

x ∈ ρ(f) ⇐⇒
[
max
b|b≥x

M(b + 1)

]
−

[
min
a|a≤x

M(a)

]
≥ l.

(9)

Clearly the prefix sums, as well as themaxima andminima in
this last equation, can be easily computed for all elements in
linear time using simple recurrence relations. Thismeans that
we can compute ρ(f) in linear time. This is the algorithm
we presented previously [22], extended to support l.

We will now present a new algorithm that is often more
convenient. To this end, observe that instead of Eq. (9) we
can also use

x ∈ ρs,l(f) ⇐⇒
[
max
a|a≤x

x∑

y=a

w(f (y))

]

+
[
max
b|b≥x

b∑

y=x

w(f (y))

]
− w(f (x))

= λ+(x) + λ−(x) − w(f (x)) ≥ l. (10)

Figure 4 compares the functions used in Eqs. (8)–(10).

Fig. 4 Illustration of intervals involved in the different schemes for
computing the maximum of the interval weight W (a, b) (for a ≤ x ≤
b). Our previous method first computed the prefix sums for all pixels
(M), and then found the optimal a and b, computingW (a, b) as M(b+
1) − M(a) (the correct a and b are found by computing prefix minima
and postfix maxima of M). Our new method first computes λ+ and
λ−—the maximum sums to the left and right of each position—and
then computes themaximum of interval weight containing x as λ+(x)+
λ−(x) − w(x)

Algorithm 1: Compute λ+.
Input : The data f : {1, 2, . . . , n} → {0, 1}.
Output: λ+ : {1, 2, . . . , n} → R giving the maximum lengths of

intervals ending at each position.

Allocate λ+.
for x = 1, 2, . . . , n do

λ+(x) ← max(0, λ+(x − 1)) + w(f (x))

Algorithm 2: Binary SIR operator.
Input : The data f : {1, 2, . . . , n} → {0, 1}.
Output: A map ρ : {1, 2, . . . , n} → {0, 1} giving the result of

the SIR operator on f .

Compute λ+ and λ− according to Algorithm 1 and allocate ρ.
for x = 1, 2, . . . , n do

ρ(x) ← (λ+(x) + λ−(x) − w(f (x)) ≥ l)

Clearly, λ+(x)—the maximum score attainable by any inter-
val ending at x—can be considered to be zero for x < 1
(before the domain of f). Also, if we know λ+(x − 1),
then λ+(x) can be either λ+(x − 1) + w(f (x)) or w(f (x)),
whichever is higher (recall that w(0) is negative). In partic-
ular,

if arg max
a|a≤x

x∑

y=a

w(f (y)) < x , then

max
a|a≤x

x∑

y=a

w(f (y)) = w(f (x)) + max
a|a≤x−1

x−1∑

y=a

w(f (y)).

This leads to Algorithm 1 (also see Sect. 7) and an analo-
gous algorithm for computing λ−, which is almost exactly
the same as an algorithm presented by Bentley [5, Alg. 4] for
solving themaximumcontiguous subsequence sumproblem.
The main differences are a local, rather than a global, point
of view, and a disregard for empty intervals, leading to some
minor differences in the code. Note that we could, but gen-
erally do not need to, keep track of the starting and ending
points of the intervals (a and b in Eq. (10)).

We can now also compute λ−(x) on f as λ+(n + 1 − x)
on f ′, with f ′(x ′) = f (n + 1 − x ′), and then ρ(f) using
λ+(x) + λ−(x) − w(f (x)) as prescribed by Eq. (10). This
leads to Algorithm 2, which produces the same result as the
earlier algorithm based on Eq. (9). As it sums everything
twice, it might be a bit more expensive. However, if it is
advantageous to trade memory for a bit of arithmetic, we can
merge the computation of λ+ or λ− with the computation of
ρ(f), giving an algorithm that only needs the λ+ array for
temporary storage.

4.2 Binary Graphs

The new path-based SIR operator can be computed using an
algorithm that is virtually identical to Algorithm 2, except

123

J Math Imaging Vis

Algorithm 3: Compute λ+ on a graph G = (V, E).
Input : A directed acyclic graph (V, E) and image f : V → R.
Output: A map λ+ : V → R giving the maximum lengths of

paths ending in each vertex.

Allocate λ+.
for x ∈ V in topological order do

λ+(x) ← max ({0} ∪{λ+(y) | (y, x) ∈ E}) + w(f (x))

that λ+ and λ− would be computed using Algorithm 3. This
can be compared directly to the algorithm for computing
a path opening transform introduced by Heijmans et al. [14,
Alg. 2]. It follows that α1,l(f) and ρ1,l(f) are just as efficient
as traditional (binary) path openings, with a time complexity
in O(|V | + |E |), and amenable to many of the same tweaks
and adaptations [6,16,20].

4.3 Greyscale Sequences

Wewill now present the greyscale version of Algorithm 1 for
sequences, which has a lower time complexity than apply-
ing the general algorithm presented below to sequences. For
1D greyscale path openings (equivalent to attribute openings
on length in 1D), a very efficient algorithm running in O(1)
(amortized) cost per pixel was presented by Morard et al.
[19]. This was recently adapted to compute path openings on
graphs as well [12] (albeit with a worse time complexity). In
a nutshell, this algorithm uses a stack of path lengths, which
get updated using an algorithm quite similar to Algorithm 1,
except that elements are pushed onto and popped off the stack
to keep track of the currently relevant grey levels. Unfortu-
nately, this algorithm depends on only having to access the
top of the stack; for the SIR operator this is not enough, as
we may need to keep track of the scores of grey levels above
the current grey level of the input.

In the binary case, the SIR transform5 can be defined using
λ(x) = λ+(x) + λ−(x) − w(f (x)), by saying that x ∈
ρs,l(f) ⇐⇒ λ(x) ≥ l (see Eq. (10)). In the greyscale
case, the range of f is no longer {0, 1}, but (some subset of)
the reals, so we use λ : V ×R → R to give the score at each
position and grey level, with V the domain of f (in general,
the vertices of a graph (V, E)). We now have

ρs,l(f)(x) = sup{v | λ(x, v) ≥ l}.

Note thatλ(x, v) is weakly decreasing in v. Also,we again
compute λ based on λ+ and λ−, such that

λ(x, v) = λ+(x, v) + λ−(x, v) − w(f (x) ≥ v); (11)

for the purposes of the last term f (x) ≥ v is considered to
equal one if it is true, and zero otherwise.

5 By analogy with opening transforms.

If we were to apply Algorithm 3 on all grey levels at the
same time, then we would have (with 0 < s ≤ 1)

λ+(x, v) = max ({0} ∪{λ+(y, v) | (y, x) ∈ E})
+w(f (x) ≥ v), (12)

and similarly for λ−. The functions λ+ and λ− can also
be described using per-position sets of (value, score)-tuples,
given by �+,�− : V → P(R × R), such that

λ±(x, v) = sup ({w(0)} ∪
{c | (v′, c) ∈ �±(x) and v′ ≥ v}) . (13)

Now we note that in the 1D case, Eq. (12) takes the fol-
lowing (simple) form:

λ+(x, v) = max(0, λ+(x − 1, v)) + w(f (x) ≥ v).

We can also construct a corresponding update for �+:

�+(x) = {(v,max(0, c) + w(f (x) ≥ v))

| (v, c) ∈ �+(x − 1)}
∪{(f (x),max{0, λ+(x − 1, f (x))} + w(1))}.

It can be checked that the following is equally valid:

�+(x) = {(v, c + w(f (x) ≥ v))

| (v, c) ∈ �+(x − 1) and c > 0}
∪{(f (x),max{0, λ+(x − 1, f (x))} + w(1))}.

(14)

This leads to the correct λ+ according to Eq. (13) because
those tuples where c was less than or equal to zero would
simply have their score set to w(0) or w(1) depending on
whether their associated values are above or below f (x),
and this is already taken care of by the inclusion of w(0) in
the supremum in Eq. (13) and the final part of Eq. (14).

To make the above efficient, binary search trees can be
used to represent �+ and �− (instead of the stacks used by
Morard et al. [19]). This allows O(log(n)) insertion, lookup,
and deletion, with n the length of the sequence. So if we
ignore having to update any scores, this would allow for an
algorithm whose time complexity is in O(n log(n)), only a
logarithmic factor worse than for path openings. The rest of
this section shows how to keep track of the correct scores,
without sacrificing this time complexity. The overall algo-
rithm is detailed in Algorithm 4.

4.3.1 Building �+ and �−

We will build a balanced binary search tree, representing
�+(x − 1) (or �−(x − 1)), on all values encountered so far

123

J Math Imaging Vis

Algorithm 4: The algorithm for greyscale sequences.
Keep inmind that the trees are implemented as functional
data structures.
Input : The sequence f : {1, 2, . . . , n} → R, and the

parameters s and l.
Output: The filtered sequence ρ(f).

// Compute �+(x) for all x.
Initialize �cur to an empty tree.
for x from 1 to n do

�cur ← prune(�cur)
�cur ← update(�cur , f (x)) // Algorithm 6
�+(x) ← �cur

// Compute �−(x) for all x.
Initialize �cur to an empty tree.
for x from n to 1 do

�cur ← prune(�cur)
�cur ← update(�cur , f (x)) // Algorithm 6
�−(x) ← �cur

// Compute final output
for x from 1 to n do

ρ(x) ← maxValid(�+(x), �−(x)) // Algorithm 7

Algorithm 5: “Accessing” a node.
Input : A node η.

if l(η) is not null then
m(l(η)) ← m(l(η)) + m(η)

if r(η) is not null then
m(r(η)) ← m(r(η)) + m(η)

c(η) ← c(η) + m(η)

m(η) ← 0

for every position x . Given these trees, we can effectively
reconstruct λ(x, v) using Eqs. (13) and (11). Section 4.3.2
discusses how to do this reconstruction efficiently, while this
section describes how to efficiently build all those trees. In
particular, we will build these trees by scanning through the
positions, and building�±(x) from�+(x−1) or�−(x+1).
By deferring updates of scores until we access nodes anyway,
and by using functional data structures, we keep the overall
number of operations (as well as the space requirements)
limited to O(n log(n)).

Imagine that for position x we have already built a bal-
anced binary search tree on all values encountered so far
(before x), along with their associated scores, representing
�+(x − 1) (or �−(x − 1)). To build �+(x), we would
(conceptually) need to copy �+(x − 1), insert f (x) with
associated score max{0, λ+(x − 1, f (x))}, and update all
scores. In particular, each tuple (v, c) stored in the tree would
have to have w(f (x) ≥ v) added to c, see Eq. (14). Clearly,
this is all way too expensive, so instead of copying the tree,
we use functional data structures to ensure that after inserting
f (x) we get a “new” tree that only differs from the original
in those nodes that were affected by the insertion of f (x).
To see how we can also avoid updating all scores, notice that

Algorithm 6: Inserting/updating f (x) into a binary
search tree, ignoring balancing. Note that this relies on
first having pruned the tree, so that c(η) > 0.
Input : The node η (initially the root of the tree), the value

f (x), and the original credit csuc associated with the
immediate successor (in the original tree) of the subtree
rooted at η (initially 0).

Output: A new node η′ reflecting the updated (sub)tree.

if η is null then
return new node with value f (x) and credit csuc + w(1)

Access η using Algorithm 5.

// Update missed fields of children.
if f (x) ≤ v(η) and r(η) is not null then

Add w(0) to m(r(η)).
if f (x) ≥ v(η) and l(η) is not null then

Add w(1) to m(l(η)).

// Recurse on the correct child (if
necessary).

if f (x) < v(η) then
l(η) ← update(l(η), f (x), c(η)) // Original c(η)

else if f (x) > v(η) then
r(η) ← update(r(η), f (x), csuc)

// Only now update c(η).
Add w(f (x) ≥ v(η)) to c(η).

return η

the set of nodes we do not visit is a union of subtrees rooted
at children of nodes we do visit. As a result, we can keep
track of what updates they missed in their roots. Each time
we access a node, we use this information to update its score
and to propagate the missed scores to its children. The rest
of this section shows how this is done.

In the remainder, a binary search tree is a rooted binary tree
in which the left subtree of each node only contains values
less than the value associated with the node, and the right
subtree only contains larger values. If η is a node in the tree,
then v(η) equals the value associated with that node, c(η)

equals the score associated with that node, l(η) gives the left
child, and r(η) gives the right child. Note that after updating
the tree for position x , c(η) should equal λ±(x, v(η)).

Inmoredetail, to be able to efficiently keep trackof the cor-
rect scores, in addition to storing a score, let every node keep
track of how much score it (and its descendants) “missed”
(in a separate missed field that is stored for each node),
in the sense that those nodes should have had (an accumu-
lated total of) so much added to their scores in previous steps
(which we defer until we actually access those nodes). As
soon as a node is accessed, we propagate the missed score to
its direct children, we update its own score to the sum of its
score and what it missed, and we set its missed score to zero
(see Algorithm 5). Note that when propagating the missed
score to its direct children, we do not recursively update any
further descendants. When inserting/updating a value f (x),
we follow Algorithm 6. The process is illustrated in Fig. 5.

123

J Math Imaging Vis

7 / 4.5 (+0)

5 / 8 (+0) 10 / 3 (+0)

8 / 4 (+0) 13 / 1 (+0)

7 / 2.5 (+0)

5 / 9 (+0)

6 / 5.5 (+0)

10 / 3 (-2.5)

8 / 4 (+0) 13 / 1 (+0)

7 / 2.5

5 / 9

6 / 6

10 / 0.5

8 / 1.5 13 / -1.5

Fig. 5 The nodes in the tree on the left have labels of the form value
/ score (+missed). If we insert 6 into the tree on the left, we get
the middle tree (with s = 5/7, so w(0) = −2.5). Note that the score
associated with 6 is the original value associated with 7 (its immedi-
ate successor in the tree) plus w(1) = 1. The entire right subtree is

taken care of by putting−2.5 in the missed field of the subtree’s root.
Since this field describes a term that should be added to the entire sub-
tree, conceptually we now have the tree on the right (note that the node
corresponding to 13 will thus be removed if we now pruned the tree)

To now correctly implement Eq. (14), we carry out the
following two steps for each position:

1. Prune the tree by removing any nodes with non-positive
scores and

2. Insert the current value into the tree with a score of w(1)
plus the score of its immediate successor (if any), or add
w(1) to the old score of the current value if it was already
in the tree (see Algorithm 6).

The exact details of pruningwill vary dependingon the search
structure, but it should be possible to do this in O(m log(n))

time per position (where m is the number of elements to
delete). Since every element that is deleted was also inserted
at some point, and we have at most n insertions, we see that
we maintain the O(n log(n)) overall time complexity.

It is important to notice that the extra bookkeeping only
requires a constant number of operations extra per node
accessed in the traditional insert/update algorithm, even if we
include rotations or other manipulations that might be nec-
essary to keep the search tree balanced. This is because it is
sufficient to “access” (using Algorithm 5) the nodes involved
in the rotation before performing the rotation. As a result, one
can see that all operations on the tree keep their original time
complexities. Our implementation uses a scapegoat tree [9].
Being a tree with amortized rather than worst-case logarith-
mic bounds for insertion/deletion, it is good enough for our
purposes, while being simpler to implement than most other
self-balancing search trees. Also, in contrast to splay trees
[27], scapegoat trees still feature a worst-case logarithmic
bound for lookups. This is useful for the final step: using�+
and �− to get the output. Note that the scapegoat tree was
modified to allow storing every intermediate version, without
affecting the time complexity (it was turned into a functional
data structure). We expect that virtually any self-balancing
search tree or skip list [21,23] can be adapted to work with
our algorithm.

4.3.2 The Final Output

We still need to combine �+ and �− to compute the output,
and preferably without affecting the time complexity. One

way to do this is to simply keep track of the trees encoding
�+ and �− at each position, and then to search these trees
simultaneously for the right output value. Assuming that the
trees are balanced (their height is in O(log(n))), this can be
done in O(log(n)) time per pixel.

Once we have �+(x) and �−(x) (represented by binary
search trees of finite, non-zero, size), notice that

λ(x, v) = λ+(x, v) + λ−(x, v) − w(f (x) ≥ v)

= max
({w(0)} ∪{c | (v′, c) ∈ �+(x) and v′ ≥ v})

+ max
({w(0)} ∪{c | (v′, c) ∈ �−(x) and v′ ≥ v})

−w(f (x) ≥ v). (15)

As a result, ρs,l(f)(x) can be found as the highest grey level
for which λ(x, v) ≥ l. Searching for this value in a single tree
would be almost trivial, because λ(x, v) is non-increasing in
v (so the tree can be used to look up nodes both on v and on
the associated score). Alternatively, if the trees had the same
shape, we could clearly search the trees in parallel. Unfor-
tunately, the authors are unaware of an algorithm that would
allowmerging the two binary search trees in O(log(n)) time,
but below we show we can still efficiently search the trees in
parallel, even if their shapes do not match.

Based on the definition of λ given in Eq. (15), we can
define a function that determines thehighest valuev forwhich
λ(x, v) ≥ l, given two trees A and B (corresponding to �+
and �−):

maxValid(A, B)

= max
{
v

∣∣ (v, ·) ∈ A∪ B and λ(x, v) ≥ l
}
.

Here the trees are treated as sets of pairs. If no valid result
exists, maxValid should return some “bottom” value for
which the condition always holds (like 0 or −∞).

We will now demonstrate how to efficiently compute the
result of maxValid. To this end, identify a tree A with its
root element, such that v(A) equals the value associated with
the root element for example. We now introduce

c(A, B) = c(A) + c(B) − w(f (x) ≥ max{v(A), v(B)}).

123

J Math Imaging Vis

Consider c(A) equal toλ+(x, v(A)) and c(B) = λ−(x, v(B)).
Although c(A, B) in general does not equal eitherλ(x, v(A))

or λ(x, v(B)), recalling that λ(x, v) is weakly decreasing in
v, we do have Lemma 4.

Lemma 4 Given two subtrees A and B of trees encoding
�+ and �− (not necessarily in that order), we have

λ(x,max(v(A), v(B))) ≤ c(A, B) ≤ λ(x,min(v(A), v(B))).

Proof The first inequality follows from

λ+(x,max(v(A), v(B))) + λ−(x,max(v(A), v(B)))

≤ c(A) + c(B).

The second inequality is more challenging to prove, but we
do see that

λ+(x,min(v(A), v(B))) + λ−(x,min(v(A), v(B)))

≥ c(A) + c(B).

Now, if both f (x) ≥ v(A) and f (x) ≥ v(B)), the contribu-
tions from w are equal in both c(A, B) and λ(x,min(v(A),

v(B))), and the inequality holds. If f (x) < v(A) and f (x) <

v(B), the contributions of w are also equal, and the inequal-
ity also holds. If one value is at or below f (x) and the other
is above f (x), then λ(x,min(v(A), v(B))) subtracts w(1),
while c(A, B) subtracts w(0). At first glance, this appears
problematic (since this works against the inequality), but
given that in this case we have min(v(A), v(B)) ≤ f (x) <

max(v(A), v(B)), we see that λ±(x,min(v(A), v(B))) +
w(0) − w(1) is bounded from below by λ±(x,max(v(A),

v(B))). As a result, assuming without loss of generality that
v(A) < v(B), when v(A) ≤ f (x) < v(B)

c(A, B) = c(A) + c(B) − w(f (x) ≥ max(v(A), v(B)))

= λ+(x, v(A)) + λ−(x, v(B)) − w(0)

≤λ+(x, v(A))

+ [
λ−(x, v(A)) + w(0) − w(1)

] − w(0)

= λ+(x, v(A)) + λ−(x, v(A)) − w(1)

= λ(x,min(v(A), v(B))).

��
Having established that Lemma 4 holds, it is now possi-

ble to give a recursive procedure for computing maxValid.
If l ≤ c(A, B), then maxValid(A, B) ≥ min(v(A), v(B)).
As a consequence, assumingv(A) ≤ v(B),maxValid(A, B)

= max(v(A),maxValid(r(A), B)). Note that this works
because we are absolutely sure that maxValid(A, B) will
not need to consider values less than or equal to v(A) to deter-
mine the validity of values higher than v(A). On the other

Algorithm 7: Computing maxValid. Note that in prac-
tice we can keep track of the minimum of vB and vA

rather than both values separately.

Input : Two trees A and B, the values v+
A and v+

B associated
with the immediate successors (in the original trees) of
the current subtrees (initially ∞), and the associated
scores c+

A and c+
B (initially w(0)).

Output: The maximum value v in A and B for which λ(x, v) ≥ l.

// Base case.
if A is null and B is null then

return ⊥
// Normalize input.
Access A and B using Algorithm 5.
if A is null or v(A) > v(B) then

Swap A and B, as well as c+
A and c+

B , and v+
A and v+

B .

// Compute c(A, B).
if B is null then

cAB ← c(A) + c+
B − w(f (x) ≥ max{v(A), v+

B })
else

cAB ← c(A) + c(B) − w(f (x) ≥ max{v(A), v(B)})
// Recurse.
if l ≤ cAB then

return max{v(A),maxValid(r(A), B, v+
A , v+

B , c+
A , c+

B)}
else

return max{v(A),maxValid(A, l(B), v+
A , v(B), c+

A , c(B)}

hand, if c(A, B) < l, then we do know that v(B) is too high,
but its score may still be required in determining the valid-
ity of lower values. Sowe can only say thatmaxValid(A, B)

equals maxValid(A, l(B)∪{(v(B), c(B))}). Note that
instead of actually inserting the root of B into its left sub-
tree, we can just keep track (per side) of the last node that
should have been inserted. Each such node is guaranteed to
have a higher value than the node ultimately returned, and
a lower value than the previous one we remembered for the
same side, so just remembering the last one is sufficient.With
this modification in place, this procedure recurses until one
of the (sub)trees becomes empty. When this happens, the
empty tree can be considered to have an entry with the value
of the root of the other tree, with the score set to the last
remembered score for that side. When both trees are empty,
maxValid should return the lowest possible value (like 0 or
−∞, and represented by⊥ in the algorithm). This is captured
in Algorithm 7.

The procedure described in the previous paragraph allows
us to search both �−(x) and �+(x) in parallel, in time
linearly dependent on the sum of the heights of the trees
representing �−(x) and �+(x). If we assume that the trees
are balanced (as in our implementation), the final computa-
tion of ρs,l(f) from �− and �+ takes O(n log(n)) time,
resulting in the same overall time complexity for the entire
filter. Turning the SIR operator ρs,l into the generalized path
opening αs,l takes linear time, as it only requires computing
the meet of the input and the result of the SIR operator.

123

J Math Imaging Vis

Algorithm 8: Update of λ+.
Input : A directed acyclic graph (V, E), an image f : V → R,

the current grey level v, and λ+ : V → R for the
previous (next higher) grey level.

Output: λ+ for the current grey level v.

// Pixels are visited in topological order.
Initialize the priority queue Q with all pixels at level v.
while Q not empty do

Remove first pixel x from Q.
λ ← max ({0} ∪{λ+(y) | (y, x) ∈ E}) + w(f (x) ≥ v)

if λ > λ+(x) then
λ+(x) ← λ

Push successors of y onto Q.

Note that in addition to using the algorithm above on
sequences, one should also be able to use the above algo-
rithm with the technique introduced by Morard et al. [20]
to compute the so-called “parsimonious path openings” on
2D images (and directed acyclic graphs in general). The idea
here is to apply a 1D filter to a cleverly selected [3] subset of
paths, giving an approximation to the full path-based filter.

4.4 Greyscale Graphs

Our implementation of the greyscale SIR operator on 2D
images (and the associated generalized path opening) is
basedon the algorithm for traditional greyscale path openings
developed by [2,29]. This algorithm starts by computing λ+
and λ− for the lowest grey level, and then proceeds to update
it for the next higher grey level, and so on and so forth, keep-
ing track for each pixel of the highest level at which λ is large
enough. The main differences compared to our implementa-
tion are thatwe chose to iterate over the grey values fromhigh
to low, and that we cannot assume that pixels outside the cur-
rent upper level set do not participate. Algorithm 8 gives an
overview of the most critical section of the algorithm, based
on the version of Appleton and Talbot’s algorithm presented
by [12,26].

It should be noted that the time complexity of the greyscale
algorithm on graphs is typically superlinear, and potentially
quadratic (depending on the image content). This can be
derived inmore or less the sameway as for normal path open-
ings [12,26], except that now path weights do not need to be
integers, resulting in an upper bound ofO(min(|V |, |L|) |V |)
(assuming that the grey levels can be sorted in time linear in
|L| and that the graph is sparse). Here L is the set of grey
levels in the image. Note that it remains to be seen whether
this bound is tight. In this light, it is interesting to see, as
is shown in the previous section, that the one-dimensional
case can be solved in a slightly different way, resulting in a
lower (for high bit-depth images at least) time complexity
of O(|V | log(|V |)). It remains to be seen whether a similar
approach can also be applied to general graphs, but it looks
like this would at the very least severely complicate matters,
as we would somehow need to (lazily) merge binary search
trees very efficiently.

5 Comparison to Robust and Incomplete Path
Openings

Given that generalized path openings are robust to gaps in
paths, it is interesting to compare them to some other alterna-
tives that have the same aim. Table 1 shows how generalized
path openings compare qualitatively to incomplete and robust
path openingswhen applied to small examples.We are partic-
ularly interested in how different generalized path openings
are from incomplete path openings. If the two give very sim-
ilar results in practice, then generalized path openings would
be preferable in the vast majority of cases, as they are more
efficient. Robust path openings would then only really be
interesting if one is interested in finding very sparse paths,
while having a useful upper bound on the maximum gap
size. Towards this goal, we can see that if we have an incom-
plete path opening γL ,K , then we can find a generalized path
opening αs,l that will be less active than the incomplete path

Table 1 A demonstration of the differences between the various types of path openings

Path pattern Fill fraction Generalized Incomplete Robust
l = 3, s = 5/7 L = 7, K = 2 L = 7, G = 1

X...XXX 4/7 No No No

X.X.X.X 4/7 No No Yes

X..XXXX 5/7 No Yes No

X.X.XXX 5/7 No (5 �≥ 5
2 × 2 + 3 = 8) Yes Yes

XXXXX...XXXXXX 11/14 Yes (11 ≥ 5
2 × 3 + 3 = 10.5) No No

X.X.X.XXXXXXXX 11/14 Yes No Yes

XXX..XXX 6/8 Yes Yes No

X.XXXXX 6/7 Yes Yes Yes

Each row shows a pattern and whether this pattern is preserved as a single “path”. Every possible combination is shown, with a couple of numerical
examples for the generalized path opening

123

J Math Imaging Vis

opening, in the sense that γL ,K (f) ≤ αs,l(f) ≤ f . This can
be seen by checking that a generalized path opening is the
union of an infinite series of incomplete path openings. To
this end, observe that

αs,l(f) = f ∩
⋃ {

σ(p) | p ∈ �(G)

and
∣∣σ(p)∩ f

∣∣ ≥ s

1 − s

∣∣σ(p) \ f
∣∣ + l

}

=
⋃

M∈Z,M≥l

⋃ {
σ(p)∩ f | p ∈ �M (G)

and
∣∣σ(p)∩ f

∣∣ ≥ s

1 − s

∣∣σ(p) \ f
∣∣ + l

}
. (16)

Here �M (G) = {p | p ∈ �(G) and |p| = M} is the set
of paths in G of length M . Some manipulation shows that in
Eq. (16) (note that M = |p| = |σ(p)| by construction)
∣∣σ(p)∩ f

∣∣ ≥ s

1 − s

∣∣σ(p) \ f
∣∣ + l

⇐⇒ ∣∣σ(p)
∣∣ − ∣∣σ(p) \ f

∣∣ ≥ s

1 − s

∣∣σ(p) \ f
∣∣ + l

⇐⇒ M − l ≥ s + (1 − s)

1 − s

∣∣σ(p) \ f
∣∣

⇐⇒ M − l ≥ 1

1 − s

∣∣σ(p) \ f
∣∣

⇐⇒ (1 − s) (M − l) ≥ ∣∣σ(p) \ f
∣∣.

We can now conclude that

αs,l(f) =
⋃

M∈Z,M≥l
γM,�(1−s) (M−l)�(f). (17)

If we solve (1 − s) (L − l) = K for s, we recover s =
(L − K − l)/(L − l). As a result, a generalized path opening
αs,l with s = (L−K − l)/(L− l), assuming 0 ≤ l ≤ L−K ,
will be less active than the incomplete path opening γL ,K .

The question is what do those other incomplete path open-
ings in Eq. (17) add (so those with M �= L)? In practice,
they add a lot less than might be expected, since we usu-
ally just look at the final output, not the intervals/paths that
were found. This means that it usually does not really matter
whether something is preserved as a single path or as mul-
tiple paths. So although the generalized path opening will
preserve more paths as single paths, a lot of those would
actually also be preserved by the incomplete path opening as
a string of (possibly overlapping) paths. Also, as Cokelaer et
al. [8] observed, it is often natural to let K scale with L .

Anadditional advantageof generalizedpath openings over
incomplete path openings is that if we wish to allow for
arbitrary non-integer vertex/edge weights, incomplete path
openings probably become intractable. This is because they
rely on a dynamic programming solution that relies on the
path lengths and gap sizes being integers.

Compared to robust path openings, SIR path openings
allow one to be much more strict in terms of the fraction of

the path that can be missing, at the expense of having no
explicit upper bound on the size of a single gap. Incomplete
path openings to some extent allow both (in that a certain
number of pixels can be missing for a fixed path length),
but SIR path openings have the potential to be much faster.
In principle, SIR path openings should hardly be slower to
compute than normal path openings, while the running times
of incomplete path openings scale linearly with the number
of allowed missing pixels [29].

6 Examples

In this section, we show some examples of what can be
done with the algorithms developed in the preceding sec-
tions. In our original work [22] on the SIR operator, we
already showed what could be done with the binary oper-
ator on sequences, so we skip this and start out with the
binary operator on graphs. Code to generate all the examples
is available at http://bit.ly/1OcSZUP.

6.1 Binary Graphs/2D Images

Figure 6 shows the results of applying the binary generalized
path opening to a test image. The parameters were selected
by trial and error to give reasonable results, see our previous
work [22] for an example of how suitable parameters can be
found in an actual application (for the 1D SIR operator).

6.2 Greyscale Sequences

Figure 7 shows some examples of the SIR operator on
sequences. The operator was applied to interferometric astro-
nomical radio observations recorded with the Westerbork
Synthesis Radio Telescope at low frequency (150MHz). The
image is a dynamic spectrum,where brightness represents the
amplitude of the complex correlation between two antennas,
with time on the x-axis and frequency on the y-axis. Before
skymaps can bemade from these data, automated RFI detec-
tors have to remove the RFI, which are line-like features with
increased brightness. As was shown earlier [22], it is advan-
tageous to scale-invariantly extend and fill the holes in these
features. Ideally, the greyscale operator should be applied on
detection confidence levels, but available RFI detectors do
not output these. Therefore, we use the raw data before RFI
detection.

Note that even though the data are 2D in nature, it is ben-
eficial to apply the 1D operator on each row rather than the
2D operator, as the 2D operator (in this case) suffers from
what can only be described as “leakage” even for fairly high
values of s (see Fig. 8), while the 1D operator can be useful
even for much lower values of s, which our previous work
on the SIR operator [22] showed to be useful in this setting.

123

http://bit.ly/1OcSZUP

J Math Imaging Vis

Fig. 6 a The original (binary) image (387 × 517 pixels), followed by
the results of b a normal path opening l = 100, c a generalized path
opening (l = 100, s = 0.97), d an incomplete path opening (L = 102,
K = 2), and e a robust path opening (L = 100, G = 1). The results of
the generalized path opening and the incomplete path opening are very

similar, except that the generalized path opening is slightly stricter in
regions where it can only find short paths (in some of the vertically ori-
ented segments) and more lax in regions where it finds long paths (near
the top and bottom of the sidewards bends). The robust path opening is
much less selective

Fig. 7 Dynamic spectra (horizontal time, vertical frequency) of two
astronomical interferometric radio observations. Line-like features
are caused by interference, and for detection it is advantageous to
scale-invariantly extend these. Left two radio astronomy datasets with
resolutions of 379 × 256 (top) and 314 × 512 (bottom, a small section
of the 4314× 512 original). Note that for the second example, the filter
was in fact applied to the full resolution version. Middle the result of

applying the greyscale 1D SIR operator on them (per row, s = 0.7,
l = 0). Right magenta shows where the SIR operator added something.
The last image is made by assigning the SIR result to the red and blue
channels, and the original data to the green channel. The grey levels are
rescaled so that in the top row full scale corresponds to 0.045 Jy and in
the bottom row full scale corresponds to 0.019 Jy (Color figure online)

Fig. 8 The second example
shown in Fig. 7, but now shown
at the full 4314 × 512 resolution
and filtered using the 2D SIR
operator (s = 0.98, l = 0). Note
how the vertical stripes suffer
from “tail-like” artefacts, caused
by connections to the large
horizontal stripes in the
diagonal graphs (see Fig. 1).
Further constraints on the ability
of paths to “zig–zag” might be
beneficial [11,16]

123

J Math Imaging Vis

Fig. 9 From left to right the original image (2000 × 2000) showing
a slice from a transmission electron microscopy dataset with fibrob-
lasts and/or microtubules (provided by Robert van Liere), the fractional
anisotropymapof the orientation score, a path opening (s = 1, l = 200),

and a generalized path opening (s = 0.95, l = 200), both with the
RORPO modification [17,18]. The contrast has been inverted (and in
the original the values are scaled so that maximum fractional anisotropy
corresponds to full scale)

Most likely the 2D results could probably be improved using
the constraints introduced by Luengo Hendriks [16] or by
integrating orientation scores [10,11], but we have not (yet)
integrated these options into our implementation.

6.3 Greyscale Graphs/2D images

Figure 9 shows an application to 2D slices from a transmis-
sion electronmicroscopy dataset. From the original greyscale
data, another greyscale image is created by first comput-
ing a second-order tensorial orientation score [10], and
then encoding the fractional anisotropies of the tensors as
grey levels. The fractional anisotropy of a 2-by-2 symmet-

ric matrix equals
√

(λ1 − λ2)2/

√
λ21 + λ22, where λ1 and λ2

are eigenvalues. Typically, this measure is only computed
for (symmetric) positive semidefinite matrices, but it is still
meaningful for matrices with negative eigenvalues, and the
overwhelming majority of the matrices (over 98 %) in this
example are in fact positive semidefinite. This preprocessing
makes the linear features stand out more from the back-
ground, as in the original dataset the range of grey levels
is roughly similar both in the background and along the fea-
tures,making it very difficult for a (generalized) path opening
to preserve the linear features while suppressing the back-
ground.

The “Ranking Orientation Responses of Path Opera-
tors” (RORPO) modification [17,18] was incorporated into
our implementation of generalized path openings to fur-
ther reduce the background response, since this modification
responds only to long and thin structures. This is accom-
plished by applying the path opening separately to the
different graphs corresponding to different directions (see
Fig. 1), and then computing the final result as the difference
between the highest and the fourth-highest (in this case the
lowest) response for each pixel.

It is clear that both results suppress a lot of background
noise, while retaining much of the original line-like features.

Algorithm 9: Binary SIR operator (generalized).
Input : A directed acyclic graph (V, E) and data-dependent

weights w f : V → S.
Output: A map ρ : V → {0, 1} giving the result of the SIR

operator on f .

Allocate λ+ : V → S.
for x ∈ V in topological order do

λ+(x) ← max
({w f (x)} ∪{λ+(y) • w f (x) | (y, x) ∈ E})

Allocate λ− : V → S.
for x ∈ V in reverse topological order do

λ−(x) ← max
({w f (x)} ∪{w f (x) • λ−(y) | (x, y) ∈ E})

Allocate ρ : V → S.
for x ∈ V do

ρ(x) ← max ({λ−(x)} ∪{λ+(y) • λ−(x) | (y, x) ∈ E})

The generalized path opening can be seen to preserve a bit
more of someof the features (especially in the right half of the
image, below the circle), but interestingly it also suppresses
more of the background (above the circle for example). This
is because by itself it will tend to preserve more of the back-
ground in each direction, making the RORPO modification
more effective.

7 Generalized Scoring Functions

The SIR operator is quite attractive in its simplicity and effi-
ciency (especially in the binary case), and in this work we
have already generalized it slightly compared to our origi-
nal formulation, without requiring any significant changes to
the algorithm. In this section, we will explore the limits of
whatmore can be donewithout requiring a radically different
algorithm.

We first present Algorithm 9: a generalized equivalent
of combining Algorithm 3 and Algorithm 2. Here S is a
totally ordered set, and ‘•’ is an associative binary operator
on this totally ordered set. The overall time complexity is
still O(|V | + |E |), with |V | being the number of vertices

123

J Math Imaging Vis

and |E | the number of edges in the input graph. Requiring
‘•’ to be associative guarantees that we can assign an unam-
biguous score to any path, regardless of the traversal order.
Therefore, we will assume that ‘•’ is associative, and the
score S(abc . . .) of the sequence of weights abc . . . will be
equated to a • b • c • · · · . Note that the computation of λ−
has been modified (compared to that for λ+) to give the same
score as λ+ for the same path, using the associativity of ‘•’.

We now need a criterion for when the algorithm is correct.
This is conceptually simple: ρ(x) should contain the highest
possible score associated with any path through x . Formally,

ρ(x) = max{S(w f (p)) | p ∈ �(V, E) and x ∈ σ(p)}.

Here w f (p) denotes the sequence of (data-dependent)
weights corresponding to the vertices in the path p, and
�(V, E) denotes the set of all paths in the directed acyclic
graph (V, E).

Lemma 5 A sufficient condition for Algorithm 9 to be cor-
rect is

a ≤ b �⇒ a • c ≤ b • c and c • a ≤ c • b (18)

for all a, b, c ∈ S.
Proof To see that this condition is indeed sufficient, we first
show that right before computing ρ, λ+(x) contains the high-
est possible score of anypath ending at x . To this end, imagine
that there would be some y for which λ+(y) is too low (it can
never be too high, as the algorithm effectively computes the
overall score for a particular path ending at y). There must
then be some x �= y from which y can be reached, such that
at x , choosing a lower than maximal score would have been
better for the score at y. However, this cannot be, since if we
equate c with the score of the path from x to y (not including
x), Eq. (18) guarantees that taking the maximum score at x
results in the highest score at y as well. In the same way, λ−
can be shown to contain the highest possible scores for all
paths beginning in each vertex. We are now in a position to
show that ρ is computed correctly.

Again, ρ cannot be too high, so imagine it is too low. This
means that we either should have taken a different value for
λ−(x), and/or for one of the λ+(y) ((y, x) ∈ E). Since λ+
and λ− contain the highest possible scores for paths end-
ing/beginning in each vertex, it is immediately clear from
the condition above that using different values (correspond-
ing to different paths) can only decrease the final result, so ρ

cannot possibly be too low. This concludes the proof. ��
Although Lemma 5 gives a sufficient condition, it may not

be necessary. Still, there is not a lot of room for weakening
the condition. For example,

[a • b ≤ b and c ≤ b • c] �⇒ a • b • c ≤ b • c

can already be seen to be a necessary condition. Here a • b
plays the role of a in Eq. (18), and we have an extra condition
on c. That the above condition is necessary can be shown by
simply constructing a sequence of three vertices (numbered
one to three) with the weights w f (1) = a, w f (2) = b, and
w f (3) = c, such that a • b ≤ b and c ≤ b • c. We can
then verify that if the implication does not hold, we have
λ+(3) = b • c < a • b • c. So far, we have not been able to
find a satisfactory set of necessary and sufficient conditions.
However, even if they can be found, one may wonder how
useful they would be in inspiring new scoring schemes, as
they would likely be fairly specific.

Summarizing, our algorithm works for any scheme based
on an associative operator ‘•’ operating on a totally ordered
set S, such that Eq. (18) holds; in other words, if S is a
totally ordered semigroup with operator ‘•’ [7]. Note that
there might be other schemes that also work, but they would
still need to satisfy something similar to Eq. (18). Also, it
might be possible to make further changes to the algorithm
to allow for awider range of scoring schemes, or even to allow
for a slightly milder condition on ‘•’ than associativity, but
this is beyond the current scope.

This just leaves the question of whether anything interest-
ing is possible, beyond what we have shown here. Defining
a • b = max(a, b) would definitely work, and so would a
scheme using a lexicographical order on tuples of numbers
with per-position addition (vectors). Whether these options
will find an application, andwhat other options exist, remains
to be seen.

8 Conclusion

We have presented a generalized version of the SIR operator
we previously introduced, and determined that although the
SIR operator itself is not an opening or closing, it is a so-
called inf-overfilter. This allowed us to construct openings
(and closings) based on the SIR operator that are approxi-
mately scale invariant and generalize path openings.

Interestingly, our generalized path openings give an effi-
cient and scale-invariant method for finding long paths with
gaps. This method has a lower time complexity than at least
incomplete path openings [14,29], and likely robust path
openings [8] as well, while having the same kind of flexibil-
ity as incomplete path openings. The main thing that sets our
method apart from both earlier methods is that it is approx-
imately scale invariant, and thus does not put any cap on
the maximum gap size, as long as the gap is a small enough
fraction of the complete path. Whether and when this is an
advantage or a disadvantage remains to be seen.

We also looked at generalizing the SIR operator to
greyscale. Compared to the binary algorithm, the greyscale
algorithm on sequences is fairly complex, but its time com-

123

J Math Imaging Vis

plexity of O(n log(n)) is still quite reasonable, and we have
provided a prototype implementation. This algorithm is heav-
ily inspired by the algorithm given by [19] for 1D (path)
openings. Like for path openings, the greyscale-graph-case
appears to be much more difficult to implement efficiently
than both the greyscale-sequence-case and the binary-graph-
case. We provide an implementation for greyscale images
(/graphs) that is roughly of equal cost as the existing algo-
rithms for traditional path openings [16,29].

In our examples, we have shown a very simple way to
combine greyscale generalized path openings with orienta-
tion scores [10,11]. This approach is not ideal, but provides a
simpleway of incorporating at least some information on (the
local “strength” of the) orientation. In future work, it would
be interesting to incorporate orientation scores more fully
into the algorithm, for example by computing the path open-
ings in different directions on different orientations in the
orientation score. What makes this particularly interesting
is that both orientation scores and generalized path open-
ings are (approximately) scale invariant, and that the two
algorithms complement each other: orientation scores pro-
vide local information on orientation, while generalized path
openings find global structures.

Since especially the binary algorithms presented here are
very attractive in terms of simplicity and speed, we have
examined how much further we can generalize the scor-
ing functions. It appears that there is still some room for
other types of scoring functions, as long as they are based on
associative operators satisfying an order-preservation condi-
tion. It will be interesting to see if any applications can be
foundwhere these other types of scoring functions will prove
useful. Finally, wewonder whether it is possible to give a sta-
tistical argument for using the scoring function given here,
or find other path scoring functions which are somehow opti-
mal from a statistical point of view, while still allowing for
efficient computation.

Acknowledgments The authors would like to thank Robert van Liere
for making available some interesting and high-quality datasets. This
research is (partially) funded by The Netherlands Organisation for Sci-
entific Research (NWO), Project No. 612.001.001.

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Aliprantis, C.D., Burkinshaw,O.: Principles of RealAnalysis. Aca-
demic Press, San Diego (1998)

2. Appleton, B., Talbot, H.: Efficient Path Openings and Closings. In:
Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Mor-

phology: 40 Years On Computational Imaging and Vision, vol.
30, pp. 33–42. Springer, The Netherlands (2005). doi:10.1007/
1-4020-3443-1_4

3. Asplund, T.: ImprovedPathOpening byPreselection of Paths.Mas-
ter’s thesis, Uppsala Universitet (2015)

4. Bartle, R.G.: The Elements of Integration.Wiley, NewYork (1966)
5. Bentley, J.: Programming pearls: algorithm design techniques.

Commun. ACM 27, 865–873 (1984). doi:10.1145/358234.381162
6. Bismuth, V., Vaillant, R., Talbot, H., Najman, L.: Curvilinear Struc-

ture Enhancement with the Polygonal Path Image: Application to
Guide-Wire Segmentation in X-Ray Fluoroscopy. In: Ayache, N.,
Delingette, H., Golland, P., Mori, K. (eds.) Medical Image Com-
puting and Computer Assisted Intervention. LNCS, vol. 7511, pp.
9–16. Springer, Berlin (2012). doi:10.1007/978-3-642-33418-4_2

7. Clifford, A.H.: Totally ordered commutative semigroups.
Bull. Am. Math. Soc. 64(6), 305–316 (1958). doi:10.1090/
S0002-9904-1958-10221-9

8. Cokelaer, F., Talbot, H., Chanussot, J.: Efficient robust d-
dimensional path operators. IEEE J. Sel. Top. Signal Process. 6(7),
830–839 (2012). doi:10.1109/jstsp.2012.2213578

9. Galperin, I., Rivest, R.L.: Scapegoat trees. In: Proceedings of the
fourth annual ACM-SIAM Symposium on Discrete algorithms.
SODA ’93, pp. 165–174. Society for Industrial and Applied Math-
ematics, Philadelphia (1993)

10. van de Gronde, J.J.: Tensorial Orientation Scores. In: Azzopardi,
G., Petkov, N. (eds.) Computer Analysis of Images and Patterns.
LNCS, vol. 9257, pp. 783–794. Springer International Publishing,
Switzerland (2015). doi:10.1007/978-3-319-23117-4_67

11. van de Gronde, J.J., Lysenko, M., Roerdink, J.B.T.M.: Path-Based
Mathematical Morphology on Tensor Fields. In: Hotz, I., Schultz,
T. (eds.) Visualization and Processing of Higher Order Descrip-
tors for Multi-Valued Data, Mathematics and Visualization, pp.
109–127. Springer International Publishing, Switzerland (2015a).
doi:10.1007/978-3-319-15090-1_6

12. van de Gronde, J.J., Schubert, H.R., Roerdink, J.B.T.M.: Fast
Computation of Greyscale Path Openings. In: Benediktsson, J.A.,
Chanussot, J.,Najman,L., Talbot,H. (eds.)MathematicalMorphol-
ogy and Its Applications to Signal and Image Processing. LNCS,
vol. 9082, pp. 621–632. Springer International Publishing, Switzer-
land (2015). doi:10.1007/978-3-319-18720-4_52

13. Heijmans, H., Buckley, M., Talbot, H.: Path-based morphological
openings. In: IEEE International Conference on Image Processing,
vol. 5, pp. 3085–3088. (2004). doi:10.1109/icip.2004.1421765

14. Heijmans, H., Buckley, M., Talbot, H.: Path openings and clos-
ings. J. Math. Imaging Vis. 22(2), 107–119 (2005). doi:10.1007/
s10851-005-4885-3

15. Heijmans, H.J.A.M.: Morphological Image Operators. Academic
Press, San Diego (1994)

16. LuengoHendriks, C.L.: Constrained and dimensionality-
independent path openings. IEEE Trans. Image Process. 19(6),
1587–1595 (2010). doi:10.1109/tip.2010.2044959

17. Merveille, O., Talbot, H., Najman, L., Passat, N.: Tubular
Structure Filtering by Ranking Orientation Responses of Path
Operators. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars,
T. (eds.) Computer Vision—ECCV 2014. LNCS, pp. 203–218.
Springer International Publishing, Switzerland (2014). doi:10.
1007/978-3-319-10605-2_14

18. Merveille, O., Talbot, H., Najman, L., Passat, N.: Ranking Ori-
entation Responses of Path Operators: Motivations, Choices and
Algorithmics. In: Benediktsson, J.A., Chanussot, J., Najman, L.,
Talbot, H. (eds.) Mathematical Morphology and Its Applications
to Signal and Image Processing. LNCS, vol. 9082, pp. 633–
644. Springer International Publishing, Switzerland (2015). doi:10.
1007/978-3-319-18720-4_53

19. Morard, V., Dokládal, P., Decencière, E.: One-dimensional open-
ings, granulometries and component trees in O(1) per pixel. IEEE

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/1-4020-3443-1_4
http://dx.doi.org/10.1007/1-4020-3443-1_4
http://dx.doi.org/10.1145/358234.381162
http://dx.doi.org/10.1007/978-3-642-33418-4_2
http://dx.doi.org/10.1090/S0002-9904-1958-10221-9
http://dx.doi.org/10.1090/S0002-9904-1958-10221-9
http://dx.doi.org/10.1109/jstsp.2012.2213578
http://dx.doi.org/10.1007/978-3-319-23117-4_67
http://dx.doi.org/10.1007/978-3-319-15090-1_6
http://dx.doi.org/10.1007/978-3-319-18720-4_52
http://dx.doi.org/10.1109/icip.2004.1421765
http://dx.doi.org/10.1007/s10851-005-4885-3
http://dx.doi.org/10.1007/s10851-005-4885-3
http://dx.doi.org/10.1109/tip.2010.2044959
http://dx.doi.org/10.1007/978-3-319-10605-2_14
http://dx.doi.org/10.1007/978-3-319-10605-2_14
http://dx.doi.org/10.1007/978-3-319-18720-4_53
http://dx.doi.org/10.1007/978-3-319-18720-4_53

J Math Imaging Vis

J. Sel. Top. Signal. Process. 6(7), 840–848 (2012). doi:10.1109/
jstsp.2012.2201694

20. Morard, V., Dokládal, P., Decencière, E.: Parsimonious path open-
ings and closings. IEEE Trans. Image Process. 23(4), 1543–1555
(2014). doi:10.1109/tip.2014.2303647

21. Munro, J.I., Papadakis, T., Sedgewick, R.:Deterministic SkipLists.
In: Proceedings of the Third Annual ACM-SIAM Symposium on
Discrete Algorithms. SODA ’92, pp. 367–375. Society for Indus-
trial and Applied Mathematics, Philadelphia (1992)

22. Offringa, A.R., van de Gronde, J.J., Roerdink, J.B.T.M.: A mor-
phological algorithm for improving radio-frequency interference
detection. Astron. Astrophys. 539, A95+ (2012). doi:10.1051/
0004-6361/201118497

23. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM 33(6), 668–676 (1990). doi:10.1145/78973.78977

24. Ronse, C.: Order-configuration functions: mathematical character-
izations and applications to digital signal and image processing. Inf.
Sci. 50(3), 275–327 (1990). doi:10.1016/0020-0255(90)90014-2

25. Ronse, C., Heijmans, H.J.A.M.: The algebraic basis of mathemat-
ical morphology. CVGIP: Image Underst. 54(1), 74–97 (1991).
doi:10.1016/1049-9660(91)90076-2

26. Schubert, H., van de Gronde, J.J., Roerdink, J.B.T.M.: Efficient
computation of greyscale path openings. Math. Morphol. Theory
Appl. (2015). Accepted

27. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J.
ACM 32(3), 652–686 (1985). doi:10.1145/3828.3835

28. Soille, P.: On morphological operators based on rank fil-
ters. Pattern Recognit. 35(2), 527–535 (2002). doi:10.1016/
s0031-3203(01)00047-4

29. Talbot, H., Appleton, B.: Efficient complete and incomplete path
openings and closings. ImageVis. Comput. 25(4), 416–425 (2007).
doi:10.1016/j.imavis.2006.07.021

30. Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected
shape-size pattern spectra for rotation and scale-invariant classi-
fication of gray-scale images. IEEE Trans. Pattern Anal. Mach.
Intell. 29(2), 272–285 (2007). doi:10.1109/tpami.2007.28

Jasper J. vandeGronde studied
computing science at the Univer-
sity of Groningen, the Nether-
lands, where he obtained his
M.Sc. in 2011. He recently (June
2015) defended his Ph.D. the-
sis on the topic of non-scalar
mathematical morphology at the
University of Groningen, and is
currently a post-doc at the Scien-
tific Visualization and Computer
Graphics group of the Johann
Bernoulli Institute for Mathe-
matics and Computer Science in
Groningen. His research inter-

ests include mathematical morphology, compressed sensing, and sig-
nal/image processing in general.

André R. Offringa obtained his
Ph.D. in 2012 from the Univer-
sity of Groningen, on the topic
of “Algorithms for Radio Inter-
ferenceDetection andRemoval”.
After his Ph.D., he worked on
the Murchison Widefield Array
interferometric telescope at the
Mount Stromlo Observatory, a
research school of the Australian
National University in Canberra,
to make a statistical detection of
theEpochofReionization (EoR).
Currently, he is working as a
post-doc at theNetherlands Insti-

tute for Radio Astronomy (ASTRON). He is involved in a project using
the LOFAR telescope to analyse the EoR. His contributions include
various tools for radio astronomy, including AOFlagger, a platform to
mitigate radio-frequency interference from interferometric or single-
dish observations, and a fast interferometric imager called wsclean.

Jos B. T. M. Roerdink studied
biology and physics at the Uni-
versity of Nijmegen, the Nether-
lands, where he obtained his
M.Sc. in theoretical physics in
1979. Followinghis Ph.D. (1983)
from the University of Utrecht
and a two-year position (1983–
1985) as a Postdoctoral Fellow
at the University of California,
San Diego, both in the area of
stochastic processes, he joined
the Centre for Mathematics and
Computer Science in Amster-
dam,where heworked from1986

to 1992 on image processing and tomographic reconstruction. He
worked as an associate professor (1992) and a full professor (2003),
respectively, at the Johann Bernoulli Institute for Mathematics and
Computer Science of the University of Groningen, where he currently
holds a chair in Scientific Visualization and Computer Graphics. His
research interests include mathematical morphology, biomedical visu-
alization, neuroimaging, and bioinformatics.

123

http://dx.doi.org/10.1109/jstsp.2012.2201694
http://dx.doi.org/10.1109/jstsp.2012.2201694
http://dx.doi.org/10.1109/tip.2014.2303647
http://dx.doi.org/10.1051/0004-6361/201118497
http://dx.doi.org/10.1051/0004-6361/201118497
http://dx.doi.org/10.1145/78973.78977
http://dx.doi.org/10.1016/0020-0255(90)90014-2
http://dx.doi.org/10.1016/1049-9660(91)90076-2
http://dx.doi.org/10.1145/3828.3835
http://dx.doi.org/10.1016/s0031-3203(01)00047-4
http://dx.doi.org/10.1016/s0031-3203(01)00047-4
http://dx.doi.org/10.1016/j.imavis.2006.07.021
http://dx.doi.org/10.1109/tpami.2007.28

	Efficient and Robust Path Openings Using the Scale-Invariant Rank Operator
	Abstract
	1 Introduction
	2 Related Work
	3 The New SIR Operator
	3.1 Properties
	3.1.1 SIR-Operator-Based Openings

	3.2 Greyscale

	4 Algorithms
	4.1 Binary Sequences
	4.2 Binary Graphs
	4.3 Greyscale Sequences
	4.3.1 Building Λ+ and Λ-
	4.3.2 The Final Output

	4.4 Greyscale Graphs

	5 Comparison to Robust and Incomplete Path Openings
	6 Examples
	6.1 Binary Graphs/2D Images
	6.2 Greyscale Sequences
	6.3 Greyscale Graphs/2D images

	7 Generalized Scoring Functions
	8 Conclusion
	Acknowledgments
	References

