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Mathematical morphology

O riginally developed for binary images (like masks), morphological fil-
ters work on shapes. For example, they can remove small features,

bridge gaps, or even remove all elongated shapes. Typically the ‘‘shapes’’
are taken to be connected components of level sets, but other schemes
are definitely possible.

Figure 2: The shapes on the left are filtered using two morphological
filters. Top: a morphological ‘‘opening’’ by a disc only keeps those parts
of the shapes where the disc fits. Bottom: a ‘‘connected’’ filter does not
alter the shapes, it either keeps them or removes them in their entirety.

Figure 3: From left to right: the original image, a median filtered version,
and the result of a morphological opening. Both filters are considered
morphological operators.

Tensors

V ectors and matrices are the most common examples of tensors. Impor-
tant examples where these show up are colour images and so-called

‘‘Diffusion Tensor Imaging’’. The latter technique uses MRI scans to de-
termine how water diffuses at each position in the brain (or other tissue).
This information is encoded in a matrix (a tensor) that essentially gives
an estimate of the ease with which water diffuses in each direction. Since
water cannot (easily) diffuse perpendicular to nerve fibres, this data can
be used to explore the structure of the brain in-vivo.

Diffusion tensor tensor images are often noisy and/or unclear. Post-
processing is therefore a must, and morphological filters seem an appeal-
ing option. Also, this would enable many of the image analysis tools that
rely on morphological filters to carry over to the tensorial case.

Scanning Filtering

Figure 4: Raw scans of nerve fibre bundles are often noisy, and contain
areas where the fibre orientations are not directly apparent. Morphological
filters should be able to help clean up these images, so further processing
becomes much easier.

Invariance

N obody wants a filter to work on a particular image, only to fail on a
shifted copy. Similarly, a change in hue in the input should often just

result in a change in hue in the output. And when scanning fibre bundles,
filters should work regardless of the orientation of the fibres.
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Figure 5: First rotating and then filtering a diffusion tensor scan should
have the same result as first filtering and then rotating.
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Figure 6: Straightforward component-wise and rotation invariant ‘‘min-
ima’’ over different, equally wide, ranges of tensors. Hue: direction of
principal eigenvector. Saturation: ratio between eigenvalues.

Future work

T he goal is to develop efficient and useful tools based on morpholog-ical filters for tensor images. This will involve local filters (for noise
reduction, detection of crossings, and so on), as well as filters that handle
entire shapes at a time. Also, morphological techniques could be used to
analyse tensor images.

Figure 7: (Left) So-called ‘‘connected’’ filters could be used to essentially
select only those fiber bundles that satisfy criteria like thickness, length,
etc. (Right) Morphological analysis of tensor images could provide a
way to quantitatively compare different images, enabling classification for
example.

Figure 8: Flow fields are another potential application domain. It might
be interesting to provide (hierarchical) segmentations of flow fields, for
example. Those could then also be combined with pattern matching to
find certain features in a flow.
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