
NOTICE: this is the author’s version of a work that was accepted for publication in Pattern Recognition Letters. Changes

resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control

mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for

publication. A definitive version was subsequently published in Pattern Recognition Letters, doi:10.1016/j.patrec.2014.03.013.

Frames, the Loewner order and eigendecomposition for1

morphological operators on tensor fields2

Jasper J. van de Gronde, Jos B.T.M. Roerdink3

Johann Bernoulli Institute for Mathematics and Computer Science,4

University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands5

Abstract6

Rotation invariance is an important property for operators on tensor fields, but

up to now, most methods for morphology on tensor fields had to either sacrifice

rotation invariance, or do without the foundation of mathematical morphology:

a lattice structure. Recently, we proposed a framework for rotation-invariant

mathematical morphology on tensor fields that does use a lattice structure. In

addition, this framework can be derived systematically from very basic prin-

ciples. Here we show how older methods for morphology on tensor fields can

be interpreted within our framework. On the one hand this improves the the-

oretical underpinnings of these older methods, and on the other this opens up

possibilities for improving the performance of our method. We discuss common-

alities and differences of our method and two methods developed by Burgeth

et al.
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1. Introduction9

Although the theory of mathematical morphology is well developed for scalar10

images, the generalization to tensor-valued images is not straightforward. With11

increasing interest in processing tensor fields like flow data and diffusion MRI12

scans, it is becoming increasingly important to solve this problem. Recently, we13

suggested a method for generalizing morphological operators defined on scalar14
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images to operators on vector-valued images [2, 3] and tensor fields [4], using15

group invariance to avoid some of the pitfalls one encounters with naive gener-16

alizations.17

There are currently several ways of approaching tensor morphology. First of18

all, one can consider the (scalar) differences between neighbouring tensors [5, 6].19

Another approach uses a preorder on tensors derived from the data [7]. These are20

valid and interesting approaches, but not direct generalizations of the traditional21

lattice framework on greyscale images. One can also construct total orders on22

tensors in various ways [8]. However, total orders on higher dimensional spaces23

lead to discontinuous supremum and infimum (join and meet) operators.24

Also interesting are some approaches where existing formulas for the supre-25

mum/infimum of a set of real numbers are generalized to tensors [8, 9]. So far,26

however, little is known about the properties of the resulting operators and how27

they compare to other approaches.28

Some more direct generalizations of traditional morphological theory are29

given by [1, 9–11]. Having started out with a partial order on matrices based30

on set inclusion of the image of a matrix acting on a unit ball, these authors31

have ultimately settled on using a partial order on (symmetric) matrices called32

the Loewner order. Unfortunately the Loewner order does not give rise to a33

so-called “lattice”, and is therefore not directly interpretable in the traditional34

morphological framework.35

Our frame-based method works by lifting the tensor field to a higher dimen-36

sional representation in which it is much easier to define morphological opera-37

tors that are rotation invariant. This representation is effectively equivalent to38

the representation used by Duits et al. [12]. However, both methods arrive at39

this representation through different means. Also, Duits et al. focus on what40

happens after you have this representation, developing a particular method for41

computing dilations and erosions. In our case, we have also provided a way42

of going back to the original tensor field representation with minimal loss in a43

least-squares sense.44

Here we focus on unifying our approach with Burgeth et al.’s approach.45
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We show that so far the two main approaches for a direct generalization of46

mathematical morphology to tensor-valued images are deeply connected with47

each other. In doing so, we open the door to further experimentation along the48

same lines, and gain insight into what trade-offs are involved.49

In particular, we show that the Loewner-order-based methods developed by50

Burgeth et al. [1] can be interpreted as implicitly using our frame-based method51

with a different projection back to the original space. We also prove a similar52

result for the approach used by Burgeth et al. to “lift” functions on scalars to53

functions on tensors [1, 13, 14]. This is then applied to Burgeth et al.’s approach54

for morphological filtering of tensor fields using partial differential equations.55

2. Definitions and notation56

2.1. Mathematical morphology57

Shapes are central in mathematical morphology. Originally these shapes58

were connected components in binary images, and the theory was based on59

sets. The modern approach is to view an image as an element of a so-called60

lattice. A lattice is a partially ordered set for which every pair of elements has61

a unique least upper bound (usually called supremum or join) and a unique62

greatest lower bound (infimum or meet). The join is denoted by ‘∨’ and the63

meet by ‘∧’. Many useful operators, like erosion and dilation, can be developed64

for lattices. An erosion is any operator that commutes with taking the meet,65

often constructed for images by taking the meet over a certain neighbourhood66

around each point. A dilation is like an erosion, but commuting with the join67

(for any dilation there is a corresponding erosion and vice versa).68

If the lattice is also a vector space and we want the lattice to be compat-69

ible with the vector space structure, then it has been shown [15, thm. XV.1]70

that the lattice should be built using “direct and lexicographical union”. Since71

lexicographical orders give rise to discontinuous joins and meets (such that an72

arbitrarily small change in the input can lead to an arbitrarily large change in73

the output), we will stick to “direct” union, which leads to a product order. This74
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means that vectors must essentially be ordered on the coefficients in some basis,75

and that one vector is less than or equal to another if all of its coefficients are76

less than or equal to those of the other. If ak ∈ R is the coefficient of vector a77

with index k ∈ K, then the join and meet are defined as follows: for all k ∈ K78

(a∨b)k = ak ∨ bk (a∧b)k = ak ∧ bk.79
80

Clearly, the set of vectors greater than or equal to zero forms a cone: a ≥ 0 =⇒81

λa ≥ 0 for all positive λ, and a ≥ 0 and b ≥ 0 =⇒ a + b ≥ 0. This cone (C)82

is called the ordering cone, as we have a ≤ b ⇐⇒ b− a ∈ C.83

Example 1. (Product order on vectors). Suppose that we consider a two-84

dimensional vector space with a product order based on the basis {ek}k∈{1,2}.85

Then, if we have two vectors a = e1 and b = e2, then their meet a∧b would86

equal 0, while their join would equal e1 + e2. Similarly, if a would equal e1 and87

b would equal 1
2e1 + e2, we have a∧b = 1

2e1 and a∨b = e1 + e2.88

2.2. Tensors89

We only consider real, symmetric tensors (sometimes called supersymmet-90

ric), and look at them as being generated by the symmetrized tensor product91

‘�’. The vector space on which the tensors are based is denoted by V and is92

taken to be finite-dimensional, while the space of degree-n symmetric tensors is93

denoted by V �n (which itself is also a vector space). A tensor of degree n is94

symmetric if and only if it can be written as a sum of tensor “powers” (see [16,95

Lemma 4.2])96

a�n = a� · · · � a︸ ︷︷ ︸
n times

= a⊗ · · · ⊗ a︸ ︷︷ ︸
n times

= a⊗n.97

Here ‘⊗’ is the regular tensor product, and ‘�’ is the symmetrized tensor prod-

uct as discussed by Kostrikin and Manin [17, ch. 4 Proposition 5.7]1. The sym-

1In some cases a different symmetric tensor product is used in the literature, which (for

a vector space over the reals) is essentially the same up to multiplication by n!. Kostrikin

and Manin [17, ch. 4 §5.9] and Bourbaki [18, §III.6] both discuss this approach in some detail.

The symmetric (or symmetrized) tensor product we use is sometimes denoted without explicit

operator (so a� b would be written as ab). We consistently use the operator ‘�’.
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metrized tensor product can be defined as giving the average of all permutations

of the regular tensor product. So for example:

a� b� c =
1

6
(a⊗ b⊗ c + b⊗ a⊗ c

+ a⊗ c⊗ b + b⊗ c⊗ a

+ c⊗ a⊗ b + c⊗ b⊗ a).

It will be assumed that V is not just a vector space, but that it is a Hilbert98

space with the inner product denoted by ‘·’. The inner product on symmet-99

ric tensors can be defined based on its linearity and the inner product on the100

underlying vector space (a,b ∈ V ):101

a�n · b�n = (a · b)n.102

Sometimes it is useful to make use of the fact that if B1 is a degree-m1 tensor103

and B2 is a degree-m2 tensor, such that m1 +m2 = n, then104

a�n · (B1 �B2) = (a�m1 ·B1)(a�m2 ·B2). (1)105

The symmetric degree-n identity tensor In is defined here2 as the unique106

symmetric tensor that satisfies a�n ·In = ‖a‖n for all non-zero a ∈ V . It should107

be noted that this definition only makes sense for tensor spaces of even degree,108

as for odd n we would have a�n ·In = −(−a)�n ·In. For even n it can be shown109

that such a tensor does exist, and is uniquely defined. First of all, if it exists110

it is obviously unique, as a symmetric tensor is characterized completely by its111

inner products with tensor powers of the form a�n. Secondly, we can see that112

it exists by using either of the following equivalent constructions:113

In = Dn,V

∫
SV

s�n ds or In = I
�n/2
2 .114

115

2This convention for defining the identity tensor is not very common, but it is interesting

to note that Qi [19] introduces it as IE to allow the computation of rotation-invariant “eigen-

values” of higher degree tensors. Also, the most common alternative (a diagonal tensor with

ones on the diagonal) seems to have little intrinsic meaning (in particular, it is not rotation

invariant).
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Here SV is the sphere of all unit length vectors in V and Dn,V is a (positive116

real) constant fully determined by a�n · In = ‖a‖n (for any non-zero a ∈ V ),117

while I2 can be seen to be
∑
k∈K e�2k for any orthonormal basis {ek}k∈K of118

V . The degree-two identity tensor is typically represented by a matrix whose119

diagonal entries are all one, and whose off-diagonal entries are all zero. However,120

it should be noted that for n larger than two, In is typically not a “diagonal”121

tensor. That is, if one were to write it as an n-dimensional array (based on an122

orthogonal basis for the underlying vector space), it would contain off-diagonal123

values (see Example 2). In addition, if one considers not just symmetric tensors124

one could define asymmetric “identity tensors” (representing the identity map125

on degree-two tensors for example). Note that the integral construction can126

be seen to work from the point of view of symmetry (assuming a rotationally127

invariant measure on the unit sphere), while the construction based on I2 can128

be seen to work using Eq. (1).129

In some cases it is useful to “lift” functions on the vector space V to the130

tensor space V �n: given a (linear) function R : V →V , the function R�n :131

V �n→V �n is defined by R�n(a�n) = (R(a))�n. For linear functions we often132

leave out the parentheses around the parameter, so we would have: R�na�n =133

(R a)�n.134

Example 2. (Representing tensors as supermatrices). In some cases (espe-135

cially in implementations) it can be useful to represent tensors using arrays of136

numbers. As this kind of representation can be considered a generalization of137

representing degree-two tensors using matrices, the resulting arrays are some-138

times called supermatrices.139

The first step is to pick a basis {ek}k∈K, often assumed to be orthonormal.

A degree-n (not necessarily symmetric) tensor A can then be represented as:

A =
∑
k∈Kn

Ak (ek1 ⊗ · · · ⊗ ekn).

For a symmetric tensor, Ak should equal Am if some permutation of m is equal140

to k. Alternatively, we can sum only over the k that are in non-descending order141

and use ek1 � · · · � ekn as the basis vectors.142
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We can use the above to show that higher degree identity tensors are not

diagonal. Assuming an orthonormal basis {ek}k∈K,

I4 = I�22 = (
∑
k∈K

e�2k )� (
∑
k∈K

e�2k )

=
∑
k∈K

∑
m∈K

e�2k � e�2m

=
∑
k∈K

∑
m∈K

1

6
(ek ⊗ ek ⊗ em ⊗ em + ek ⊗ em ⊗ ek ⊗ em

+ ek ⊗ em ⊗ em ⊗ ek + em ⊗ ek ⊗ ek ⊗ em

+ em ⊗ ek ⊗ em ⊗ ek + em ⊗ em ⊗ ek ⊗ ek)

.

Comparing this to the above, we see that the diagonal entries (corresponding143

to k = m) are equal to one, but that there are also some non-zero off-diagonal144

entries (wherever k 6= m). Note that each of these off-diagonal entries occurs145

twice in the sum (once for k = k1 ∈ K and m = k2 ∈ K and once for k = k2146

and m = k1), so that all these off-diagonal entries equal one-third.147

3. Summary of discussed methods148

Here we give an overview of the different ways of approaching tensor mor-149

phology that we will consider.150

3.1. Group-invariant frames151

Tensors of degree n can be viewed to form a vector space. Rather than152

representing tensors in this vector space as linear combinations of basis vectors153

(tensors), we can also use a frame: a set of vectors (tensors) {Fi}i∈I (not154

necessarily finite or even countable) for which there are finite, positive constants155

A and B such that156

A ‖A‖2 ≤ ‖FA‖2 ≤ B ‖A‖2,157

for any A ∈ V �n. Here the linear operator F : V �n→RI is called the analysis158

operator, and is defined by (FA)i = Fi ·A for all i ∈ I. The pseudo-inverse F+
159

of F can be used to go back from RI to V �n in a least-squares manner ([20,160
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§1.4] and [21, ch. 1 and 8]). We will use the rotation-invariant frame developed161

previously [4]. This frame corresponds to the set of tensors that can be written162

as s�n with s any unit vector in V (so s ∈ SV ). So instead of RI we will write163

RSV , or RS for short.164

Although the above defines what vectors are in the frame we use, it does165

not discuss how the frame components can be indexed. In its raw form, our166

original construction suggested indexing by group actions [2]. However, in the167

current work we will simply index by vectors in the unit d-sphere (consistent168

with writing RSV ). This does not compromise the rotation invariance, and169

allows us to abstract from the tensor degree in some places. So throughout this170

paper, Fn will refer to the analysis operator of the frame consisting of all n-fold171

tensor powers of d-dimensional unit vectors, indexed by those unit vectors. In172

some cases the subscript will be dropped, if it is clear from the context. We173

thus have (FnA)s = s�n ·A for all s ∈ SV and A ∈ V �n.174

Note that we use the convention that a function h on the reals can be applied175

to the frame representation of a tensor by acting on all coefficients individually.176

Similarly, the meet and join (infimum and supremum) act per-channel, leading177

to a product order on the frame coefficients. The inner product on the frame178

coefficients is defined as follows (u,v ∈ RS):179

u · v =

∫
SV

usvs ds.180

Here there is no dependence on the degree of the original tensors, as all tensors,181

regardless of degree, map to the same space of frame coefficients: RSV . This is182

a consequence of our choice to index the frame representation by unit vectors.183

Note that in practice the easiest way to work with group-invariant frames is184

to take a finite, uniformly distributed, subset of the frame vectors. The analysis185

operator is then represented by a matrix F whose rows are the frame vectors.186

This is the approach used for the examples in this paper.187

Example 3. (The trace and the identity tensor). For matrices, the trace is the

sum of the diagonal entries. Assuming an orthonormal basis this can easily be

seen to be equivalent to taking the inner product with the (degree-two) identity
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tensor. In the frame representation, the identity tensor (of any degree) is lifted

to FnIn = i ∈ RS such that is = 1 for all s ∈ SV . Interestingly, A · In and

FnA · i are closely related:

A · In = A ·
(
Dn,V

∫
SV

s�n ds

)
= Dn,V

∫
SV

A · s�n ds

= Dn,V

∫
SV

(FnA)s is ds = Dn,V (FnA · i).

This can be seen as (extra) motivation for generalizing the trace to higher degree188

tensors using the inner product with the identity tensor.189

3.2. The Loewner order190

The Loewner order on matrices considers a matrix A less than or equal to191

a matrix B if and only if B−A is positive semidefinite; this relation is denoted192

by A ≤L B. A matrix A, here viewed as a degree-two tensor, is positive193

semidefinite if and only if A · v�2 ≥ 0 for all non-zero v ∈ V . By analogy,194

we will consider any degree-n tensor to be positive semidefinite if and only if195

A · v�n ≥ 0 for all non-zero v ∈ V . It should be clear from this definition that196

only tensors of even degree can be positive semidefinite.197

It is interesting to examine the ordering cone connected with the Loewner198

order. Clearly this cone consists of all positive semidefinite tensors (of degree199

n). All tensors of the form a�n (with n even and a ∈ V ) are symmetric positive200

semidefinite. This follows easily from the fact that a�n · v�n = (a · v)n, which201

is obviously non-negative for all v ∈ V if n is even. It follows that any weighted202

sum of such tensor powers, with positive weights, is symmetric positive definite.203

The cone generated by all tensor powers is thus a subset of the ordering cone of204

the Loewner order. It is not immediately clear, in the general case, whether it205

is a strict subset or whether the two cones are equal. However, for degree-two206

tensors it can be seen that the two cones are in fact the same (as in Fig. 1):207

it is well-known that any symmetric tensor of degree two can be written as a208

weighted sum of tensor squares of vectors that form an orthonormal basis (the209

eigendecomposition), and that such a tensor is positive semidefinite if and only if210
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Figure 1: The cone spanned by tensor powers of degree two, where the underlying vector space

is assumed to be a two-dimensional (Euclidean) space, visualized in a 3D representation of

the space (R2)�2 (see [1] for the mapping). The vertical axis corresponds to the axis spanned

by the degree-two identity tensor, the three arrows correspond to tensor squares of three

equispaced vectors. Any tensor inside the cone would be considered larger than (or equal to)

the tensor at the tip of the cone.

all weights are non-negative; consequently, any symmetric positive semidefinite211

tensor of degree two can be written as a non-negative combination of tensor212

squares, and is part of the cone spanned by all tensor squares.213

We further characterize the cone through Lemma 1, which states that only214

scalar multiples of the identity tensor remain fixed under rotations (on V ).215

Given that the identity tensor itself is positive semidefinite, and that the cone216

of positive semidefinite tensors is rotation invariant, we can thus consider the217

subspace spanned by the identity tensor to be the “centre” of the Loewner218

ordering cone.219

Lemma 1. The subspace of V �n spanned by the identity tensor In is precisely220

the set of tensors in V �n that are unaffected by rotations of the form R�n, with221

R a rotation on V (R ∈ SO(V ) for short).222

Proof. To see that this is true, suppose we have some tensor A that remains223

unchanged under the aforementioned rotations. Without loss of generality we224

can assume that it must be some weighted sum of tensor powers of vectors225

A =
∑
r∈R λr a�nr . Clearly, since it remains unchanged under rotations, we can226

rotate the individual tensor powers, sum them (with the appropriate weights)227

and get the original tensor back: A =
∑
r∈R λr (R�na�nr ). If we integrate over228
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all rotations — using a rotation invariant measure that integrates to one — then229

we get for some c ∈ R230

A =

∫
R∈SO(V )

∑
r∈R

λr (R�na�nr ) dR231

=
∑
r∈R

λr

∫
R∈SO(V )

R�na�nr dR = c In.232

233

The last, critical, identity follows from the fact that a rotation is an orthogonal234

transformation, and the assumed rotation invariance of the measure on SO(V ).235

236

Having defined the Loewner order for tensors, it can be used to define op-237

erations on tensor fields similar to dilation and erosion. This has been done by238

Burgeth et al. [1] for matrices and will be generalized below. However, as the239

minimum and maximum based on the Loewner order defined by Burgeth et al.240

do not give rise to a lattice these operations fail to satisfy most of the properties241

of dilations and erosions. Still, qualitatively there is a similarity to morpholog-242

ical operations, and in Section 4 we describe how these operations can formally243

be seen as a kind of approximation to proper morphological operators.244

3.3. PDEs and eigendecomposition245

In the current context the eigendecomposition of a symmetric matrix is most246

conveniently seen as a decomposition of a symmetric degree-two tensor into a247

(minimal) sum of rank-1 tensors: A =
∑
k∈K λk a�2k . For symmetric degree-248

two tensors (matrices) it is well-known that this decomposition always exists,249

is unique, and that the vectors {ak}k∈K are orthogonal. For higher degree250

tensors the situation is a bit murkier [16, 22, 23], but we can still consider251

decompositions of the form A =
∑
r∈R λr a�nr .252

Burgeth et al. [1] consider a PDE-based scheme for constructing pseudo-253

dilations and -erosions (operators that are qualitatively similar to true dila-254

tions/erosions) on matrix fields, based on the eigendecomposition of symmetric255

matrices. The PDE ∂p
∂t = ‖∇p‖ that can be used for dilating a scalar field is256

applied to matrix fields by first rewriting the gradient norm as
√
dp(e1)2 + · · ·,257
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RS × RS RS

V �n × V �n V �ngL

F

∨

P+

RS × RS RS

V �n × V �n V �ngF

F

∨

F+

Figure 2: Burgeth et al. [1] define a pseudo-join gL directly on tensors, based on the Loewner

order. We show that this pseudo-join can be interpreted as first lifting the tensors to their

frame representation, then applying the regular join in that representation, and finally pro-

jecting back using P+. That is, the diagram on the left commutes. Similarly, one could define

a pseudo-join gF based on least-squares backprojection (making the diagram on the right

commute).

and then using a convention to extend the square and square root to symmet-258

ric matrices: a function h on the reals is extended to symmetric matrices by259

applying it to the eigenvalues of the eigendecomposition (part of an operator-260

algebraic view of symmetric matrices [13, 14]). For degree-two tensors we have261

h(A) =
∑
k∈K h(λk) a⊗2k , where {ak}k∈K is the set of eigenvectors of A. We262

show below how this relates to performing the same kind of operations on a263

frame-based representation and demonstrate how this scheme can (to some de-264

gree) be generalized to higher degree tensors.265

4. Frames and the Loewner order266

Our frame-based method has very close ties with the Loewner order, but267

rather than leading to pseudo-dilations and -erosions, all the usual properties of268

morphological operators are preserved while working on the frame-based repre-269

sentation. Recall that a degree-n tensor A is considered positive semidefinite if270

(and only if) A · v⊗n ≥ 0 for all non-zero v ∈ V . As we can obviously restrict271

ourselves to unit vectors in testing for positive semidefiniteness, a tensor is thus272

positive semidefinite if and only if all its coefficients in the frame are positive:273

A ≤L B ⇐⇒ 0 ≤ Fn(B−A) ⇐⇒ FnA ≤ FnB.274
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Figure 3: The (2D) tensor field used for filtering examples. Each glyph is effectively a polar

plot of the frame coefficients of the tensors. When comparing the results in this paper to

those obtained by Burgeth et al. [1], it is important to note that our experiment was carried

out on a 2D dataset, not a 3D one (although the results are still quite similar).

The pseudo-join developed by Burgeth et al. [1], denoted by gL, finds the275

matrix with smallest trace that is an upper bound to both matrices (according276

to the Loewner order). To generalize this to tensors of arbitrary degree, we277

replace the trace by the inner product with the identity tensor. This is clearly278

equivalent for degree-2 matrices, and in general it gives the component parallel279

to the centre axis of the ordering cone (Lemma 1). We thus get:280

AgL B = arg min
C∈V �n

C · In subject to FnA ≤ FnC and FnB ≤ FnC281

= arg min
C∈V �n

C · In subject to FnA∨FnB ≤ FnC.282

283

To be able to view this result as a projection of some vector of frame coefficients284

u ∈ RS to the original tensor space V �n we take285

P+(u) = arg min
A∈V �n

A · In subject to u ≤ FnA.286

Burgeth et al. implicitly show, through a reduction to the smallest enclosing287

circle problem [24], that this minimization is well-defined if u is representable by288

a join of lifted tensors. We will at least assume that u is bounded, as otherwise289

there is no feasible point. However, even then the minimization may not have a290

unique solution. Since the feasible set is clearly closed and convex, and the cost291
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Figure 4: A dilation (with a ball of radius 2) is applied to the (2D) tensor field shown in

Fig. 3, using (from left to right) the Loewner order, the frame representation (projecting back

using F+) and the frame representation without projecting back. Clearly, the left and middle

columns are quite similar, with the differing projections only giving rise to small changes. The

right-most column is again similar to the other two, but it has a higher angular resolution and

can thus show crossings. Differences are most visible near the corners of the middle square.
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function linear, we can conclude that there is always a (non-empty) convex set292

of optimal solutions. To remedy the situation one can thus use the following,293

slightly altered, definition:294

T+(u) = min
A∈V �n

A · In subject to u ≤ FnA,295

P+(u) = arg min
A∈V �n

‖FA− u‖ subject to A · In ≤ T+(u) and u ≤ FnA.296

297

As the feasible set is now the set of optimal solutions for the earlier formulation,298

it is still closed and convex. Also, the cost function is now strictly convex, so the299

modified P+ has a unique solution, and it will be one of the optimal solutions for300

the original formulation. We are now in a position to redefine and generalize301

the pseudo-join introduced by Burgeth et al. using frames:302

AgL B = arg min
C∈V �n

C · In subject to FA∨FB ≤ FC303

= P+(FA∨FB).304
305

Obviously, we can define an analogous projection P− that gives the tensor306

with the largest “trace” that is a lower bound. We then observe that AfL B =307

P−(FA∧FB), with ‘fL’ being the pseudo-meet based on the Loewner order, as308

introduced by Burgeth et al. We can also define a rotation-invariant pseudo-join309

‘gF ’ using the pseudo-inverse F+ of F :310

AgF B = F+(FA∨FB).311
312

These results are summarized in Fig. 2. Figure 4 shows the effect of using313

different (pseudo-)joins on a dilation3.314

One of the advantages of our new take on filtering tensor data is that it315

shows that it can be advantageous to do as much as possible on the frame316

representation before projecting back. For example, if we were to construct317

a pseudo-opening using Burgeth et al.’s original pseudo-dilation and -erosion,318

then we effectively shuttle back and forth between the basis and frame repre-319

sentations twice. Computing the opening on the frame representation without320

3Code for Figs. 3 to 6 and 9 is available at http://bit.ly/15VBe8w.
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Figure 5: From left to right: input, Burgeth et al.’s pseudo-closing, a closing in the frame

representation, the Loewner-order-based projection (P+) of the closing in the frame represen-

tation. In all cases, the structuring element is a 3-by-3 cross. Notice that the pseudo-closing

results in an isotropic tensor in the center of the image, and that it does not preserve the

positive semidefiniteness of the matrices (indicated by the black parts on the glyphs to the

north west (NW), NE, SE and SW of the center glyph).

Figure 6: From left to right: the original image with magnified inset of the part used, the

input structure tensor field (see [4, 25]), the structure tensor field dilated using the Loewner

order, and the structure tensor field dilated using frames. The structuring element was a ball

of radius 3.
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going back to the basis representation and then lifting ensures that what we321

compute is in fact an opening until we project back to the basis representation.322

Figure 5 and Fig. 6 compare both approaches. In a sense we acknowledge that323

certain operations simply do not make sense on the original representation, so324

we construct a new representation on which they do make sense, and only when325

absolutely necessary do we go back (minimizing the error we make in doing so).326

On the other hand, using P+ to project back to the original tensor space,327

as implicitly done in the work of Burgeth et al. [1], may also have its merits,328

especially if used only as the last step in processing a tensor field. In particular,329

it guarantees that the result is in fact an upper bound of the frame-based result.330

This might be important for fibre tracking for example, as that typically relies331

mostly on the direction and magnitude of the highest response of a tensor.332

5. PDE-based morphology333

Apart from the Loewner-order-based approach, Burgeth et al. also give an334

approach based on PDEs. It was made apparent that there is a link between335

these two approaches, but this link was not explored much. Here we show that336

the two approaches are indeed very deeply related to each other, as well as to337

our frame-based method.338

The traditional PDE for a dilation with a disk is based on the gradient339

magnitude: ∂p
∂t = ‖∇p‖, with p a continuously differentiable scalar field on340

some domain Ω (p : Ω→R). It is well-known that the gradient magnitude341

corresponds to the value of the largest directional derivative. We denote the342

directional derivative (field) in direction s using the differential as dp(s), and343

we thus get344

∂p

∂t
= ‖∇p‖ =

∨
s∈SV

dp(s).345

By analogy, supposing we have lifted a tensor field f : Ω→V �n to the frame346

representation g = Fnf (where Fn is applied to all positions separately), for347
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Figure 7: Overview of Burgeth et al.’s method for computing a tensorial equivalent of ∂p
∂t

=

‖∇p‖. This diagram commutes only in the sense that all paths starting at f and ending at

∂f
∂t

give the same result (more specifically, F ◦ P± is not equivalent to the identity operator,

and the square (root) does not commute with the projection operator). Here L is the set of

functions from Ω to V �n and M is the set of functions from Ω to RS (operations are taken

point-wise).

g : Ω→RS we would have348

∂g

∂t
=
∨

s∈SV

dg(s),349

∂ga
∂t

=

[ ∨
s∈SV

dg(s)

]
a

=
∨

s∈SV

dg(s)a =
∨

s∈SV

dga(s).350

351

Since ga itself is a scalar field, we have ∂ga
∂t = ‖∇ga‖ =

√
dga(e1)2 + dga(e2)2 + · · ·,352

and by extension353

∂g

∂t
=
√

dg(e1)2 + dg(e2)2 + · · ·.354

Interestingly, Burgeth et al. [1] directly lift ‖∇p‖ to matrix fields by writing355

the norm of the gradient as the square root of the squared partial derivatives356

and applying this formula to matrices using their convention for lifting functions357

on scalars to functions on matrices (by applying the function to the eigenvalues358

of the matrix). Using this convention we thus get:359

∂f

∂t
=
√

df(e1)2 + df(e2)2 + · · ·.360

So how does this compare to the result we got for g? Using Theorem 1 below we361

can see that, similar to how the Loewner-order-based join AgL B is equal to362
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Figure 8: Using a tensor square instead of squaring the eigenvalues makes for a much closer

correspondence between the frame-based computation and the computation performed directly

on the tensors. In fact, only the square root clearly cannot be represented exactly using finite-

degree tensors. Note that the same kind of commutation rule applies as in Fig. 7. Here F̂

stands for an arbitrary left-inverse of F , so F̂ ◦ F = id.

P+(FA∨FB), the square of a matrix A2 equals P+([FA]2), while the square363

root of a (positive-semidefinite) matrix
√

A equals P−(
√
FA). Figure 7 shows364

the correspondence between the tensor- and frame-based computations in detail365

(also using F+ instead of P±). It shows that Burgeth et al.’s computation366

essentially goes back and forth between the frame representation twice, which is367

obviously not ideal in terms of approximating the frame-based result. Figure 9368

shows examples of filtering Fig. 3 using PDEs based on both Burgeth et al.’s369

PDEs on matrices, as well as our frame-based methods.370

To get a more direct correspondence with what was derived for the frame371

representation, one can replace the square in the original definition of Burgeth372

et al. by a tensor square (see Fig. 8). However, it is then not immediately373

obvious how to compute the square root on the tensor-based representation. To374

have a close analogy with the Loewner-order-based pseudo-dilation, one might375

desire a square-root-like operation on a degree-2n tensor A that gives a degree-376

n tensor B with the smallest inner product with the identity tensor, such that377

FnB ≤
√
F2nA. Alternatively, a least-squares solution based on F+

n

√
F2nA378

might be attractive.379

To work up to showing that h(A) equals P+(h(FA)) for any symmetric380

degree-two tensor A and convex h, we first establish in Lemma 2 and Corollary 1381

that the frame coefficients of a degree-two tensor are always expressible as convex382
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Figure 9: The same as Fig. 4, except now based on a (very simple) PDE solver, causing some

blurring.

combinations of its eigenvalues. Then, in Lemma 3 and Theorem 1, we show383

that this indeed allows us to conclude that h(A) equals P+(h(FA)) for A ∈ V �2384

and convex h.385

Lemma 2. Suppose A is a symmetric tensor of even degree n, with a decom-386

position A =
∑
r∈R λr a�nr such that4

∑
r∈R a�nr = In. We then have for any387

unit vector s ∈ SV that s�n ·A is a convex combination of the values {λr}r∈R.388

4The ar need not be mutually orthogonal, nor of unit length.
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Proof. Clearly, we have389

390

s�n ·A = s�n ·

(∑
r∈R

λr a�nr

)
391

=
∑
r∈R

λr(s
�n · a�nr ) =

∑
r∈R

λr(s · ar)n.392

393

The question now is: are the coefficients {(s ·ar)n}r∈R all non-negative, and do394

they add up to one? That the coefficients are non-negative is easily seen: as n395

is assumed to be even, (s · ar)n clearly must be non-negative. Since s is a unit396

vector and we assumed that
∑
r∈R a�nr = In, we also have397

398 ∑
r∈R

(s · ar)n =
∑
r∈R

s�n · a�nr399

= s�n ·

(∑
r∈R

a�nr

)
= s⊗n · In = ‖s‖n = 1.400

401

This concludes the proof that s�n · A is a convex combination of the values402

{λr}r∈R referred to in the lemma for any s ∈ SV .403

Corollary 1. Given a symmetric degree-two tensor A, s�2 · A is a convex404

combination of the eigenvalues of A for any unit vector s.405

Proof. The eigendecomposition of a symmetric degree-two tensor (matrix) can406

always be considered to give an orthonormal set of eigenvectors, and such a set407

clearly sums to the degree-two identity tensor. The corollary now follows from408

Lemma 2.409

Lemma 3. Given a convex function h : R→R, the lifted versions h : V �2→V �2410

and h : RS→RS, and a symmetric degree-two tensor A, Fh(A) bounds h(FA)411

from above and there is no tensor B with strictly smaller trace than h(A) for412

which FB bounds h(FA) from above. The same holds for a concave function413

(with the inequalities reversed).414

Proof. First we prove that Fh(A) bounds h(FA) from above, and then that415

there is no other tensor with strictly smaller trace than h(A) that does the same.416
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To this end, we first note that (Fh(A))s matches h(FA)s for any eigenvector s417

of A. Also, for all other vectors, Fh(A) is larger than or equal to h(FA), due418

to the convexity of h and Corollary 1.419

It now remains for us to see whether there can be another tensor B with420

strictly smaller trace such that FB is an upper bound of h(FA). It can be421

shown that this is not the case, by considering the (degree-two) identity tensor422

to be the sum of the tensor squares of the eigenvectors of A, and recalling423

that the trace of a degree-two tensor can be defined as its inner product with424

the identity tensor. FB must be greater than or equal to h(FA), and h(FA)425

matches Fh(A) for the eigenvectors of A. So clearly the trace of B must be at426

least the trace of h(A). This concludes the proof.427

428

Theorem 1. Given a convex continuously-differentiable function h : R→R, the429

lifted versions h : V �2→V �2 and h : RS→RS, and a symmetric degree-two430

tensor A, P+(h(FA)) is equal to h(A).431

Proof. P+(h(FA)) will have the same trace as h(A). This follows from Lemma 3432

and the observation that the trace of a degree-two tensor can be defined as its433

inner product with the identity tensor. So what remains is to show that there is434

only one tensor with that trace whose frame representation is an upper bound435

for h(FA).436

Suppose that there is some other tensor B = P+(h(FA)) with the same437

trace as h(A), such that FB ≥ h(FA). As discussed above, (FB)s must equal438

h(FA)s for any eigenvector s of A. Clearly, (FB)s = B · s�2 must then also be439

tangent to h(FA)s = h(A · s�2) for any eigenvector s to have FB ≥ h(FA).440

Since h is continuously-differentiable, we have ∇vh(A ·v�2) = 2h′(A ·v�2) Av441

(with v ∈ V ). So we have ∇vh(A · v�2) = cv (c ∈ R) if and only if v is442

an eigenvector of A. Something similar holds for B, and we thus see that B,443

A and h(A) all have the same eigenvectors. B must then also have the same444

eigenvalues as h(A), and is thus identical to h(A). This concludes the proof.445
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It is currently unclear whether or not (or at least how) the above generalizes446

to higher degree tensors. This mostly has to do with the fact that eigenvalue447

theory for higher degree tensors is not yet as well-developed as eigenvalue theory448

for degree-two tensors. The recent survey done by Chang et al. [26] is a nice449

starting point for the reader interested in this subject.450

6. Approximation quality451

The reader might wonder how good the approximations made by Burgeth452

et al.’s and our methods are. What kind of error guarantees can be given?453

Below we examine the “error” made by functions lifted to degree-two tensors.454

Lemma 4. Given a convex function h : R→R, the lifted versions h : V �2→V �2455

and h : RS→RS, and a degree-two tensor A with an eigendecomposition A =456 ∑
k∈K λk a�2k such that

∑
k∈K a�2k = I2, the error |Fh(A)− h(FA)| is bounded457

from above by458

max
0≤t≤1

(1− t)h(λ−) + t h(λ+)− h((1− t)λ− + t λ+),459

with λ− the smallest λk and λ+ the largest λk. For concave functions we only460

need to change the sign of the function being maximized.461

Proof. Note that Fh(A) − h(FA) ≥ 0 because of the convexity of h and462

Lemma 3. For any s ∈ SV , h(FA)s equals h applied to a convex combina-463

tion of the eigenvalues of A, while [Fh(A)]s equals a convex combination (with464

the same weights) of the eigenvalues transformed by h (see Lemma 2). The465

question thus is: what is the largest possible difference between
∑
k∈K wk h(λk)466

and h(
∑
k∈K wk λk), where the wk are non-negative and sum up to one?467

Without loss of generality, take
∑
k∈K wk λk to equal (1− t)λ−+ t λ+, then468

469 ∑
k∈K

wk h(λk)− h(
∑
k∈K

wk λk) ≤470

(1− t)h(λ−) + t h(λ+)− h((1− t)λ− + t λ+),471
472
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because h(
∑
k∈K wk λk) = h((1− t)λ− + t λ+) and473 ∑

k∈K

wk h(λk) ≤ (1− t)h(λ−) + t h(λ+).474

The latter can be seen to be true by replacing h(λk) by a convex combina-475

tion (1 − tk)h(λ−) + tk h(λ+) of h(λ−) and h(λ+) such that the same convex476

combination of λ− and λ+ equals λk. Because h is convex this can only cre-477

ate something greater than or equal to
∑
k∈K wk h(λk). And we see that this478

sum (
∑
k∈K wk [(1 − tk)h(λ−) + tk h(λ+)]) must indeed equal (1 − t)h(λ−) +479

t h(λ+), because
∑
k∈K wk λk =

∑
k∈K wk [(1−tk)λ−+tk λ+] equals (1−t)λ−+480

t λ+. This means that we can limit ourselves to examining (1 − t)h(λ−) +481

t h(λ+) − h((1 − t)λ− + t λ+) with 0 ≤ t ≤ 1, rather than the more general482 ∑
k∈K wk h(λk)− h(

∑
k∈K wk λk).483

It now naturally follows that the error Fh(A)−h(FA) is bounded from above484

by max0≤t≤1(1− t)h(λ−) + t h(λ+)− h((1− t)λ− + t λ+), which concludes the485

proof.486

Corollary 2. The error |FA2−(FA)2| is bounded from above by 1/4 (λ+−λ−)2.487

Proof. We simply take the expression for the error bound found in Lemma 4,488

fill in squaring for h and simplify:489

(1− t)λ2− + t λ2+ − ((1− t)λ− + t λ+)2490

= (1− t)λ2− + t λ2+ − (1− t)2 λ2−491

− 2 (1− t) t λ− λ+ − t2 λ2+492

= (1− t− (1− t)2)λ2− + (t− t2)λ2+ − 2 (t− t2)λ− λ+493

= (t− t2)λ2− + (t− t2)λ2+ − 2 (t− t2)λ− λ+494

= (t− t2) (λ2− − 2λ− λ+ + λ2+)495

= (t− t2) (λ+ − λ−)2.496
497

Differentiating this with respect to t gives a zero at t = 1/2, with a value of498

1/4 (λ+ − λ−)2.499
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Corollary 3. The error |
√
FA−F

√
A| is bounded from above by5

(
√
λ+−
√
λ−)2

4 (
√
λ−+
√
λ+)

500

and

√
λ+

4 .501

Proof. We take the expression for the error bound found in Lemma 4, negate it502

because the square root function is concave, fill in the square root for h, and take503

λ− = a2 and λ+ = b2 with 0 ≤ a < b (we can assume without loss of generality504

that a and b are non-negative, and if they are both zero the statement would505

be trivially true):506

507 √
(1− t)λ− + t λ+ − ((1− t)

√
λ− + t

√
λ+)508

=
√

(1− t) a2 + t b2 − ((1− t) a+ t b).509
510

Differentiating this with respect to t, equating to zero and solving for t gives:511

∂

∂t

[√
(1− t) a2 + t b2512

− ((1− t) a+ t b)
]

= 0513

(b− a)(b+ a)

2
√

(1− t) a2 + t b2
= (b− a)514

1

2
(b+ a) =

√
(1− t) a2 + t b2515

1

4
(b+ a)2 = (1− t) a2 + t b2516

1

4
(b2 + 2 a b+ a2) = a2 − t (a2 − b2)517

t (a− b) (a+ b) =
1

4
(3 a+ b) (a− b)518

t =
3 a+ b

4 (a+ b)
.519

520

5For the square root to make sense (in the current context), A should be positive semidef-

inite.
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Filling back in gives:521 √
(1− 3 a+ b

4 (a+ b)
) a2 +

3 a+ b

4 (a+ b)
b2522

−
[
(1− 3 a+ b

4 (a+ b)
) a+

3 a+ b

4 (a+ b)
b

]
523

=

√
a2 +

(3 a+ b) (b− a) (b+ a)

4 (a+ b)
524

−
[
a+

(3 a+ b)(b− a)

4 (a+ b)

]
525

=

√
1

4
(b+ a)2 −

[
a+

(3 a+ b)(b− a)

4 (a+ b)

]
526

=
1

2
(b+ a)−

[
a+

(3 a+ b)(b− a)

4 (a+ b)

]
527

=
1

2
(b− a)− (3 a+ b)(b− a)

4 (a+ b)
528

=
(b− a)2

4 (a+ b)
.529

530

It is not too difficult to see that (b−a)2
4 (a+b) is bounded from above by b2

4 b = b
4 (given531

that 0 ≤ a < b). Finally, filling in
√
λ− for a and

√
λ+ for b, we get the first532

error bound (
(
√
λ+−
√
λ−)2

4 (
√
λ−+
√
λ+)

), as well as the looser but simpler bound

√
λ+

4 .533

Note that Lemma 4 and its corollaries would essentially apply to higher534

degree tensors as well, if we were to generalize the construction for lifting h535

using Lemma 2. However, since for higher degree tensors the λ’s might not536

correspond directly to any frame coefficients, and we currently do not know537

how large the gap would be, it seems to make little sense to generalize Lemma 4538

at this time.539

For the moment, we have not derived bounds similar to those above for least-540

squares projection back to the original space. However, it is to be expected that541

the bounds would be the same or better.542

In addition to the error bounds given above, it is also interesting to note543

that the Loewner-order-based projections may give qualitatively different an-544

swers. For example, in Fig. 10 we see that P+ and F+ give orthogonal primary545
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Figure 10: Projections using P+ and F+ of the meet (in the frame representation) of two

tensors. The meet is shown as a solid grey glyph, the projections are shown using dashed lines.

The horizontally oriented projection was done using P+, the vertically oriented projection

using F+. Note that normally P− would be used for projecting a meet back to the original

tensor space, but this kind of situation can occur when doing an opening or closing on the

frame representation and projecting back afterwards.

directions (the eigenvectors associated with the largest eigenvalues in either case546

are orthogonal).547

7. Discussion548

To our knowledge, the methods developed by Burgeth et al. [1] are the only549

approaches to tensor morphology (apart from ours) that attempt to directly550

generalize lattice-based mathematical morphology to tensors and tensor fields.551

Reinterpreting both these approaches as specific applications of our frame-based552

method allows us to view all existing approaches to tensor morphology — at553

least those based on directly building a lattice(-like) structure on tensor spaces554

— within a single framework.555

So when is what approach called for? Conceptually, we typically prefer our556

frame-based approach, as the coefficients operated upon are often meaningful,557

and it allows for the most direct generalization of traditional morphological558

operators. It can also be viewed as a generalization of the work done by Burgeth559

et al. [1], and it even fits in very well with the work done by Duits et al. [12]560

(effectively the same representation is used). In practice, it is also often a lot561

easier to work with a frame-based approach: some matrix multiplications are562
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enough to go to and from the frame representation (assuming you work with a563

finite subset of the frame vectors), and the frame representation itself can often564

be processed using existing greyscale operators.565

When it is important that the result of a dilation (for example) is actually an566

upper bound of the original signal, then using P+ either explicitly or implicitly is567

of course preferable over using least-squares projection. It might be interesting568

to develop other projections with similar guarantees though.569

PDE-based morphology in general has as an advantage that it allows for570

subpixel accuracy [27], while typically introducing at least some blur. Also,571

PDE-based methods allow for arbitrary radii when using a disk-shaped struc-572

turing element, while other methods always have to approximate a disk by some573

discrete set of pixels. The current work clears up how the PDEs developed by574

Burgeth et al. can be interpreted to compute an approximation to a lattice-575

theoretic dilation/erosion, and how this approximation might be improved.576

The current work also exposes an interesting connection between recent work577

done by Burgeth and Kleefeld [28] on colour morphology and our (concurrent)578

work done on colour morphology [3]. Apart from some differences in the colour579

spaces used and similar technicalities, the Loewner-order-based approach for580

colour morphology developed by Burgeth and Kleefeld is very similar to the581

hue invariant frame approach we developed. In fact, if one would identify the582

“grey axis” with the centre of the Loewner order, the main difference would583

be that the Loewner ordering cone has a slightly different angle with respect584

to its centre. In future work it might make sense to take a closer look at this585

connection, and perhaps evaluate using F+ rather than P± to go back to the586

original colour space.587

8. Conclusion588

We have shown that two earlier methods for tensor morphology developed by589

Burgeth et al. [1] can be interpreted within our frame-based approach [2–4]. In590

particular, both methods are equivalent to using our method with a particular591
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projection back to the original space. Also, the PDE-based methods implicitly592

go back and forth between the frame-based representation several times.593

We have also given a quantitative analysis of the “error” made in Burgeth594

et al. [1]’s approaches, compared to sticking to a frame-based representation. It595

remains to be seen how a least-squares projection compares exactly, but by con-596

struction its (least-squares) error should obviously be smaller. It is interesting597

to note that the relative error remains bounded, albeit not particularly small598

(up to about a quarter).599

Conceptually, the frame-based approach has the advantage of fitting better600

within the traditional morphological theory. On the other hand, the approaches601

based on the Loewner order can work directly on the original tensors and provide602

lower/upper bounds in the original tensor space. In a sense the current paper603

shows how we might have the best of both worlds by showing how the Loewner-604

order-based approaches can be seen as instances of the frame-based approach.605

This has already led to the identification of some potential improvements on606

both sides.607
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bier, Processing Multidimensional SAR and Hyperspectral Images With Bi-627

nary Partition Tree, Proc. IEEE 101 (3) (2013) 723–747, ISSN 0018-9219,628

doi:10.1109/jproc.2012.2205209.629

[7] S. Velasco-Forero, J. Angulo, Supervised Morphology for Structure Tensor-630

Valued Images Based on Symmetric Divergence Kernels, in: F. Nielsen,631

F. Barbaresco (Eds.), Geometric Science of Information, vol. 8085 of LNCS,632

Springer Berlin Heidelberg, 543–550, doi:10.1007/978-3-642-40020-9 60,633

2013.634

[8] J. Angulo, Supremum/Infimum and Nonlinear Averaging of Positive Def-635

inite Symmetric Matrices, in: F. Nielsen, R. Bhatia (Eds.), Matrix636

Information Geometry, Springer Berlin Heidelberg, 3–33, doi:10.1007/637

978-3-642-30232-9 1, 2013.638

[9] B. Burgeth, M. Welk, C. Feddern, J. Weickert, Morphological Operations639

on Matrix-Valued Images, in: T. Pajdla, J. Matas (Eds.), Computer Vision640

- ECCV 2004, vol. 3024 of LNCS, Springer Berlin Heidelberg, 155–167, doi:641

10.1007/978-3-540-24673-2 13, 2004.642

[10] B. Burgeth, M. Welk, C. Feddern, J. Weickert, Mathematical Morphology643

on Tensor Data Using the Loewner Ordering, in: J. Weickert, H. Hagen644

(Eds.), Visualization and Processing of Tensor Fields, Math. Vis., Springer645

Berlin Heidelberg, 357–368, doi:10.1007/3-540-31272-2 22, 2006.646

30

http://dx.doi.org/10.1007/978-3-642-40020-9_58
http://dx.doi.org/10.1007/978-3-642-40020-9_58
http://dx.doi.org/10.1007/978-3-642-40020-9_58
http://dx.doi.org/10.1109/sibgrapi.2008.17
http://dx.doi.org/10.1109/jproc.2012.2205209
http://dx.doi.org/10.1007/978-3-642-40020-9_60
http://dx.doi.org/10.1007/978-3-642-30232-9_1
http://dx.doi.org/10.1007/978-3-642-30232-9_1
http://dx.doi.org/10.1007/978-3-642-30232-9_1
http://dx.doi.org/10.1007/978-3-540-24673-2_13
http://dx.doi.org/10.1007/978-3-540-24673-2_13
http://dx.doi.org/10.1007/978-3-540-24673-2_13
http://dx.doi.org/10.1007/3-540-31272-2_22


[11] B. Burgeth, A. Bruhn, N. Papenberg, M. Welk, J. Weickert, Mathematical647

morphology for matrix fields induced by the Loewner ordering in higher648

dimensions, Signal Process. 87 (2) (2007) 277–290, ISSN 01651684, doi:649

10.1016/j.sigpro.2005.12.012.650

[12] R. Duits, T. C. J. Dela Haije, E. Creusen, A. Ghosh, Morphological and Lin-651

ear Scale Spaces for Fiber Enhancement in DW-MRI, J. Math. Imaging Vis.652

46 (3) (2013) 326–368, ISSN 0924-9907, doi:10.1007/s10851-012-0387-2.653

[13] B. Burgeth, S. Didas, L. Florack, J. Weickert, A Generic Approach to the654

Filtering of Matrix Fields with Singular PDEs, in: F. Sgallari, A. Murli,655

N. Paragios (Eds.), Scale Space and Variational Methods in Computer656

Vision, vol. 4485 of LNCS, Springer Berlin Heidelberg, 556–567, doi:657

10.1007/978-3-540-72823-8 48, 2007.658

[14] B. Burgeth, S. Didas, J. Weickert, A General Structure Tensor Concept and659

Coherence-Enhancing Diffusion Filtering for Matrix Fields, in: D. Laidlaw,660

J. Weickert (Eds.), Visualization and Processing of Tensor Fields, Math.661

Vis., Springer Berlin Heidelberg, 305–323, doi:10.1007/978-3-540-88378-4662

15, 2009.663

[15] G. Birkhoff, Lattice theory, vol. 25 of American Mathematical Society Col-664

loquium Publications, American Mathematical Society, 1961.665

[16] P. Comon, G. Golub, L.-H. Lim, B. Mourrain, Symmetric Tensors and666

Symmetric Tensor Rank, SIAM J. Matrix Anal. Appl. 30 (3) (2008) 1254–667

1279, ISSN 0895-4798, doi:10.1137/060661569.668

[17] A. I. Kostrikin, I. I. Manin, Linear algebra and geometry, vol. 1 of Algebra,669

Logic and Applications, Gordon and Breach, ISBN 9056990497, 1997.670

[18] N. Bourbaki, Algebra I, Elements of Mathematics, Springer, ISBN671

3540642439, 1989.672

[19] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput.673

40 (6) (2005) 1302–1324, ISSN 07477171, doi:10.1016/j.jsc.2005.05.007.674

31

http://dx.doi.org/10.1016/j.sigpro.2005.12.012
http://dx.doi.org/10.1016/j.sigpro.2005.12.012
http://dx.doi.org/10.1016/j.sigpro.2005.12.012
http://dx.doi.org/10.1007/s10851-012-0387-2
http://dx.doi.org/10.1007/978-3-540-72823-8_48
http://dx.doi.org/10.1007/978-3-540-72823-8_48
http://dx.doi.org/10.1007/978-3-540-72823-8_48
http://dx.doi.org/10.1007/978-3-540-88378-4_15
http://dx.doi.org/10.1007/978-3-540-88378-4_15
http://dx.doi.org/10.1007/978-3-540-88378-4_15
http://dx.doi.org/10.1137/060661569
http://dx.doi.org/10.1016/j.jsc.2005.05.007


[20] O. Christensen, Frames and Bases: An Introductory Course, Birkhäuser675
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