
Published in the proceedings of GSI 2013.
The final publication is available at link.springer.com.

Frames for Tensor Field Morphology

Jasper J. van de Gronde and Jos B.T.M. Roerdink

Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

j.j.van.de.gronde@rug.nl ?

Abstract. We propose to apply our recently developed frame-based
framework for group-invariant morphology to the problem of tensor field
morphology. Group invariance (and particularly rotation invariance) have
been, and are, motivated to be relevant for filtering tensor fields. This
leads to the development of a rotation-invariant frame for tensors, which
can be used to easily define rotation-invariant morphological operators
on tensor fields. We also show how our method can be used to filter
structure tensor fields.

1 Introduction

An image can be described as a function from positions to values. A value at a
position can be thought of as a grey level, concentration, colour, depth, etc. In
any case, the values can be considered separate from the position space, and the
image is the only thing that links the two. However, it is becoming increasingly
popular to work with tensor fields. In this case, the values are non-scalar, and
intimately linked to the space of positions.

Typically, tensor fields describe things like flow, diffusion, and other physi-
cal processes. In other cases, like the structure tensor [7], they might describe
the gradient magnitude or edge strength in an image. Unfortunately, it is not
always straightforward to apply traditional image processing methods to tensor
fields. In particular, just applying (non-linear) operators to the image “channels”
corresponding to the tensor components often results in nonsensical results.

Burgeth et al. [2] already gave several conditions for morphological operations
on tensor fields. In particular, they motivate that morphological operations on
tensor fields should be invariant to rotations. We demonstrate how our recent
framework [4] for group-invariant morphology can be applied to tensor fields.

2 Filtering tensor fields

Tensor fields present a challenge when it comes to applying morphological filters.
But what exactly are the problems? In principle, we can easily filter the tensor
components separately, but in practice the results are “weird”, as illustrated in
Fig. 1. So what exactly goes wrong?
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Fig. 1. Glyphs of the matrix (3 0 ; 0 1) and its 30◦rotation (5/2
√

3/2 ;
√

3/2 3/2) (the
semicolons separate rows), followed by the component-wise minimum and the pseudo-
meet derived from our method. The dashed lines indicate the shapes of the original
two glyphs. The glyphs are polar plots of vMvT , with v =

(
cos(α) sin(α)

)
, and M the

matrix being plotted. While the component-wise minimum just shrinks the axis-aligned
matrix a bit (not even within the confines of the other), our method results in a close
fit to what is effectively the intersection of the two original glyphs.

A tensor field typically describes a process or effect. For example, it may
describe how a fluid flows, or how a signal changes when moving around in
space. When we rotate the tensor field, the tensors should thus be transformed
in concert to still describe the same (but rotated) situation. Also, a filter should
still act in the exact same way on the rotated signal. After all, our choice of
orientation is (typically) arbitrary, and we could just as easily have chosen a
different one. In other words, the filter should be invariant to rotations.

The importance of rotation invariance was already observed by Burgeth et al.
[2]. The root of the problem is that mathematical morphology is based on lattice
theory, and it can be shown [1, thm. XV.1] that one cannot define an appropriate
lattice on tensors. Burgeth et al. chose to essentially forego the lattice-theoretic
foundation, and define operators that have a qualitatively similar result. In con-
trast, by constructing a different representation, we can stay within the confines
of established lattice theory. Only when it is necessary to go back to the original
representation do we have to let go of the lattice-theoretic framework.

3 Definitions

3.1 Hilbert space

A Hilbert space is a vector space with a positive-definite inner product ‘·’.1 Any
Hilbert space has an indexed set of vectors {ek}k∈K that spans it, such that if
you remove any of the vectors, the set no longer spans it. Such an indexed set
is called a basis, and is associated with a dual basis {ek}k∈K such that ek · em

equals one if k = m and zero otherwise (for all k,m ∈ K). Note that we will
always work with Hilbert spaces over the reals, and that we denote vectors in a
Hilbert space using bold face.

1 Technically, a Hilbert space must also be complete with respect to the metric induced
by the inner product, but this is not an issue here.
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3.2 Transformation groups

A transformation on a (Hilbert) space V is a bijection between V and itself. A
transformation group is a set of transformations that is closed under function
composition ‘◦’, is closed under taking the inverse, and contains the identity
mapping. Typically, we will consider groups of linear transformations and will
not write ‘◦‘ explicitly. Thus, given two elements τ1 and τ2 of a group T acting
on V , and an element a of a Hilbert space V , (τ1 ◦ τ2)(a) = τ1 τ2 a. A function
f on V is considered invariant to T if for all τ ∈ T and a ∈ V , f(τ a) = τ f(a).

3.3 Tensors

Tensors can be viewed as a generalization of vectors and matrices. In general,
tensors can be built from a vector space V using the associative tensor prod-
uct ‘⊗’ (which is linear in both arguments). In terms of (column) vectors and
matrices, one could say that A = a ⊗ b (a,b ∈ V ) is equivalent to the matrix
a bT . We will use a⊗n ∈ V ⊗n to denote the result of n-times repeated tensor
multiplication of a by itself. Note that lower-case letters are used for vectors,
while upper-case letters are used for (higher degree) tensors.

Tensors can be classified by their degree (or rank). A degree-zero tensor is a
scalar (here a real), a degree-one tensor is a vector, and a degree-two tensor is a
sum of elements of the form a⊗b (with a,b ∈ V ). In general, a degree-n tensor
(with n ∈ N) is a sum of tensor products of n vectors. A degree-n symmetric
tensor is a sum of tensors of the form a⊗n. The space of all degree-n tensors is
denoted by V ⊗n, the space of all degree-n symmetric tensors by Symn(V ).

If V is a Hilbert space, then every V ⊗n can be considered a Hilbert space as
well. The degree-zero and degree-one tensors trivially constitute a Hilbert space
of course. However, higher degree tensors also form a Hilbert space, by making
use of the inner product on V . Note that any degree-n tensor A in V ⊗n can be
written as a sum of tensors of the form a1 ⊗ a2 ⊗ · · · ⊗ an. The inner product of
two such tensors can be computed as follows (with parentheses for clarity):

(a1 ⊗ a2 ⊗ · · · ⊗ an) · (b1 ⊗ b2 ⊗ · · · ⊗ bn) =

n∏
i=1

ai · bi.

This is roughly equivalent to the Frobenius inner product on matrices.
We will also consider the tensor product of linear transformations. If τ1 and

τ2 are linear transformations on a vector space V , then τ1 ⊗ τ2 is a linear trans-
formation on V ⊗V , such that (τ1⊗τ2)(a⊗b) = τ1(a)⊗τ2(b). It can be seen that
the adjoint and inverse operations distribute over taking the tensor product, so
(τ1 ⊗ τ2)∗ = τ∗1 ⊗ τ∗2 and (τ1 ⊗ τ2)−1 = τ−11 ⊗ τ−12 .

3.4 Tensor fields

In our context, a tensor field is a map f : V →V ⊗n. The idea is that the
tensor field describes something that is happening in the underlying space. For
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example, the tensors in diffusion tensor imaging describe how water diffuses
in different directions, and the structure tensor describes how much the image
changes (locally) when we move in a particular direction.

If the underlying space is transformed by some linear transformation τ :
V →V , so that f(x) corresponds to f ′(τ x), then the tensors should be trans-
formed as well, in such a way that they still describe the same situation. So-called
contravariant tensors simply transform like positions, thus f ′(τ x) = τ⊗n f(x).
For covariant tensors we want to ensure that (for all x,ai ∈ V ):

f ′(τ x) ·
(
τ⊗n(a1 ⊗ a2 ⊗ · · · ⊗ an)

)
= f(x) · (a1 ⊗ a2 ⊗ · · · ⊗ an).

Thus, we should have f ′(τ x) = (τ⊗n)−∗ f(x), which uses the transpose of the
inverse of τ⊗n. Note that if τ is orthogonal (like a rotation), the same transform
is applied to both contra- and covariant tensors. Some examples: a velocity
vector and a diffusion tensor are contravariant, the gradient of a function and
the structure tensor [7] are covariant.

3.5 Frames

Generalizing the concept of a basis, a frame [3] is a set of vectors {fi}i∈I (not
necessarily finite or even countable) spanning a Hilbert space V , for which there
are finite, positive constants A and B such that for any a ∈ V

A ‖a‖2 ≤ ‖Fa‖2 ≤ B ‖a‖2.

Here the linear operator F : V →RI is called the analysis operator, and is
defined by (Fa)i = fi · a for all i ∈ I. The squared norm of a ∈ V is given by
‖a‖2 = a · a. Similarly, we take ‖Fa‖2 = Fa · Fa. Obviously this requires the
definition of an inner product on RI . For simplicity, just assume that such an
inner product exists, we will explicitly give the inner product where necessary.

The condition above is sufficient to ensure that there is at least one linear
operator that acts as a left-inverse for F . In particular, there is a linear operator
F+ that minimizes u− FF̂ ∗u in a least-squares sense (with u ∈ RI).

4 A rotation-invariant frame

Since Euclidean space is invariant to rotation, we will first look at rotating the
tensors in isolation, without rotating the underlying space. Afterwards, we will
consider what can be done about rotating the underlying space.

Our applications only deal with symmetric2 tensors. Traditionally, a d × d
matrix is used for a degree-two symmetric tensor associated with Rd, with the
coefficients in the matrix being symmetric about the diagonal. In our approach,
a basis is built using “tensor squares” of vectors. Different options are possible,
for example (in 2D) {e⊗21 , e⊗22 , (e1 + e2)⊗2}.
2 Our method does not rely on positive definiteness, but typically does preserve it.
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To create rotation-invariant operators for tensor fields we select a suitable
basis and create a rotation-invariant frame using rotated copies of that basis.
We then construct a rotation-invariant morphological operator on the frame
representation (which is fairly easy). If desired we can also examine the, often
optional, least-squares projection back to the original tensor space. Based on
our previous work [4], we know that the overall result will be rotation invariant
as long as the inner product on the frame representation is invariant to the
transformations induced by rotations of the original vector space.

What kind of basis makes sense for symmetric tensors? In many cases (diffu-
sion tensors, stress tensors, structure tensors, etc.), it is meaningful to compute
the (tensor) dot product between a symmetric tensor and the tensor square of a
direction vector. For example, this gives the apparent diffusion coefficient in the
case of diffusion tensors, and the squared norm of the directional derivative in
the case of structure tensors. A natural dual basis3 for such symmetric tensors
could thus be a set of tensor squares of (uniformly distributed) direction vectors.

If we start with a (dual) basis {Ek}k∈Kn
for Symn(V ) that contains only

tensor powers of unit vectors (a⊗n with a ∈ V ), then making it invariant to
rotations of the form r⊗n (with r a rotation on V ) results in a frame consisting of
tensor powers of all vectors on the unit (hyper)sphere. The frame representation
can thus be interpreted as giving a distribution over orientation (picture the
glyphs in Figs. 1 and 3). More explicitly, there is a unit vector v ∈ V such that
(with A ∈ Symn(V ) and r a rotation on V ):

(FA)r,k = (r⊗n A)k = (r∗⊗n Ek) ·A = v⊗n ·A.

Group-invariant operators on the frame representation can be defined by
lifting an operator on the original space or by using group morphology [6, 8].
When lifting an operator we view the frame representation as consisting of many
transformed copies of the original, and we apply the operator to each copy.

For projecting back in a least-squares manner, there are two choices for defin-
ing “least-squares” (and hence the projection): lift the original inner product on
Symn(V ), or define an inner product directly on the frame coefficients. The
former results in a particularly easy back projection; if the analysis operator
corresponds to taking all rotated versions of a tensor, then the backprojection
operator consists of rotating all those tensors back to their original orientation
and taking the average. The other option is slightly more involved, but one
can always compute the Moore-Penrose pseudo-inverse of the analysis operator
(using a finite number of rotations/vectors). Not projecting back is typically
preferable, as it better preserves structure (and aids further processing).

We now have all the tools to construct a rotation-invariant frame and an ap-
propriate backprojection technique, allowing easy definition of rotation-invariant
operators on tensors. However, we are interested in tensor fields, so we should
not just rotate the tensors, the grid has to be rotated in concert. Alternatively,
the operator acting on it must be changed so that it acts like it was applied to the

3 We are talking about a dual basis because it is the inner product with these vectors
that is meaningful, not necessarily a weighted sum of these vectors.
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Fig. 2. The original structuring element has length five, and fits horizontally like in the
left-most figure. At a thirty degree angle it is no longer aligned with the grid (middle
figure) and interpolation is needed. Rather than rotating the image, we skew it (right).
The image is skewed until the structuring element becomes horizontal again, and the
structuring element length is rounded to an integer (the grey elements show the original
grid and structuring element length).

rotated grid. Which of these options is easier depends on the application. In our
case, we use structural openings and closings with line segments and adjust the
structuring element to the current rotation angle, interpolating while filtering.
This is illustrated in Fig. 2.

The basis of our method is that if linear interpolation is used, then extrema
are always on grid positions. Thus, to compute the structural dilation/erosion
on a rotated grid, it is sufficient to skew the grid and take samples on (skewed)
grid positions. Only the end points of the structuring element need special care.
We chose to simply round the length to an integer for each angle, which gives a
fairly decent approximation (except for the smallest of kernel sizes).

5 Proof of principle

One possible use of morphological filters on tensor fields is in processing structure
tensor fields. The structure tensor is derived from the gradient of an image and
locally describes (the square of) the magnitude of the directional derivative for
all directions. More formally, in the greyscale case, we have:

(∇f(x) · a)2 = (∇f(x))⊗2 · a⊗2 = T(x) · a⊗2.

The tensor T(x) is called the structure tensor at x.
Köthe [7] suggested several improvements to computing the structure tensor,

including using a non-linear filter for smoothing along edges but not perpendicu-
lar to them. This filter essentially has a non-isotropic kernel that is aligned with
the gradient at every position. We can do something similar, using a standard
1D morphological filter for every orientation4, see Figs. 3 and 4.

A closing on the structure tensor field, as in Fig. 4c, helps to avoid a zero
response at junctions, which could lead to trouble during further processing (seg-
mentation, corner detection, etc.). A short line segment is used as the structuring

4 Implementation available at http://bit.ly/15MoLEI.

http://bit.ly/15MoLEI
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Fig. 3. A dilation of a structure tensor field (right) with a (centered) 1D structuring
element. The original image is on the left. The glyphs show the frame representation
as polar plots centered on the tensor’s position. The thin glyphs show the input (which
is zero at the center), the thick glyph shows the output at the center. For two angles,
the contributing positions are indicated (corresponding to the two solid line segments
in the left image).

element. When applying this filter to the frame coefficient corresponding to a
certain orientation, the structuring element is oriented perpendicularly (Fig. 3).
This is because the gradient magnitude is highest perpendicular to the edge.

There are several things in favour of our technique. For one thing, the tech-
nique used by Köthe [7] adapts to the local orientation using the gradient, and is
thus problematic in regions where the gradient has a very small magnitude. Our
technique on the other hand does not pick a certain orientation at each point,
but simply processes all orientations. Also, our method opens up the possibility
of using all sorts of other morphological filters. For example, rather than using
openings and closings by line segments, it might make sense to use path openings
and closings or attribute filters [5, 10].

6 Conclusion

Our method for constructing group-invariant lattices based on frames allows for
the straightforward application of standard tools from mathematical morphology
to tensor fields (in a meaningful manner). The practical feasibility and potential
for application of the method is illustrated by an example.

Earlier methods by Burgeth et al. [2] already recognized the importance of
rotation invariance, but tried to implement this directly on the original tensor
space. Since it is not possible to define a rotation-invariant vector lattice on the
original tensor space, this resulted in a loss of most properties that are taken for
granted in traditional morphology. In contrast, our method relies on constructing
a new representation that does admit a rotation-invariant vector lattice.
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(a) Original (b) Before filtering (c) After filtering
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the gradient magnitude). Each image has two insets (on the bottom-left and -right)
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[7] Köthe, U.: Edge and Junction Detection with an Improved Structure Ten-
sor. In: Michaelis, B., Krell, G. (eds.) Pattern Recognition, Lecture Notes in
Computer Science, vol. 2781, pp. 25–32. Springer Berlin Heidelberg (2003)

[8] Roerdink, J.B.T.M.: Group morphology. Pattern Recognition 33(6), 877–
895 (Jun 2000)

[9] Serra, J.: Anamorphoses and function lattices. Image Algebra and Morpho-
logical Image Processing IV 2030(1), 2–11 (Jun 1993)

[10] Wilkinson, M.H.F.: Hyperconnectivity, Attribute-Space Connectivity and
Path Openings: Theoretical Relationships. In: Wilkinson, M.H.F.,
Roerdink, J.B.T.M. (eds.) Mathematical Morphology and Its Application
to Signal and Image Processing, Lecture Notes in Computer Science, vol.
5720, chap. 5, pp. 47–58. Springer, Berlin, Heidelberg (2009)


	Frames for Tensor Field Morphology

