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Abstract. In theory, there is no problem generalizing morphological op-
erators to colour images. In practice, it has proved quite tricky to define
a generalization that “makes sense”. This could be because many gener-
alizations violate our implicit assumptions about what kind of transfor-
mations should not matter. Or in other words, to what transformations
operators should be invariant. As a possible solution, we propose us-
ing frames to explicitly construct operators invariant to a given group
of transformations. We show how to create saturation- and rotation-
invariant frames, and demonstrate how group-invariant frames can im-
prove results.
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1 Introduction

Mathematical morphology is based on being able to order images, and specifically
on being able to compute their supremum and infimum. For binary images the
order is straightforward, just use set inclusion. For greyscale images it is similarly
straightforward. For colour images the problem is considerably more difficult
though. Not in a theoretical sense, as various schemes can be (and have been)
used to define orders on colour values (and by extension on colour images). The
problem is in making the theory line up with our (implicit) expectations.

Talbot et al. [10] produced one of the earlier publications in mathematical
morphology that identified this problem. Since then, many authors have tried
various approaches around this problem, which has been called the “false colour
problem” (see, for example, Serra’s paper [9] by this name). The name derives
from the appearance of new (“false”) colours that were not present in the original
image, as illustrated in Fig. 1. This is because the most basic (and sensible) order-
ing compares colours per-channel, resulting in a per-channel supremum/infimum.

One obvious way out is to somehow impose a total order on the colour space.
However, in general it really does not make sense to enforce that red and green
must come in some order. The most interesting work in this direction is probably
statistics based, like the approach described by Velasco-Forero and Angulo [11]
that orders colours according to their statistical depth in a particular image.
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Fig. 1. The infimum of blue and red is black (in the RGB colour space). In contrast,
the infimum of cyan and magenta is blue, and if we desaturate red and blue, then their
infimum suddenly becomes grey. To an observer (who does not know about RGB colour
spaces), it is not immediately obvious why this should be so. Why is the infimum of
blue and red not also some in-between (purplish) colour for example?

In any case, enforcing a total order on a multi-dimensional space necessarily
introduces discontinuities in the supremum/infimum (in the sense that we could
have a < b < a′ and ‖a − b‖ � ‖a − a′‖). There is thus still a need for a
general-purpose framework for multivariate morphology.

In designing such a general-purpose framework for morphology on colour
(and other multivariate) images, is it really necessary to avoid introducing any
new colours? Linear filters do it all the time, and even a traditional structural
greyscale dilation with a non-flat structuring element can introduce new values.
Also, in tests, the per-channel approach often works quite well, as demonstrated
by Aptoula and Lefèvre [2]. Hence, we believe the problem with “false colours”
is not that they are new, but rather that they are unexpected or unintuitive.

Goutsias et al. [5] have argued that the problem with handling channels in-
dependently is that it ignores the correlation between channels. Similarly, Astola
et al. [3] show how a yellow pixel near a boundary between a green and a red
region is not removed by a median filter, but just moved. In principle, this is a
well-known problem with any kind of median filter. But now that it happens with
a colour image, it is worse. We perceive the colour yellow to be something dif-
ferent from either red or green, while a computer (using an RGB colour space)
considers it to be a combination of red and green. So although humans treat
yellow on equal footing with red and green1, the computer does not.

We believe the false colour problem might stem from violating certain im-
plicit assumptions. In particular, as humans, we typically do not think of vectors
in terms of their components in a specific basis. As Serra [8] put it: “. . . , there
exists an infinite number of other equivalent systems of coordinates for the same
vector space; they derive from the first one by rotations, similarities, passages
to spherical, cylindric or polar coordinates, etc.” In this spirit, our solution is to
formalize our assumptions as a group of transformations that lead to equivalent
systems of coordinates, and to develop a method for making arbitrary operators
invariant to those transformations. This builds upon our earlier work [6], provid-
ing a much more compact statement of the main result and enlarging its scope
to include certain non-orthogonal transforms (saturation scaling). Also, we now

1 See [7] for several interesting expositions on colour perception, especially chapter
four is highly relevant in the current context.
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provide a qualitative evaluation of the effects of our method, illustrating why
and when invariance leads to better results.

2 Definitions

A Hilbert space H is a vector space with an inner product (which is also complete
w.r.t. the metric induced by the inner product, but this is of little interest here).
The inner product is denoted by ‘·’ and should be positive definite. The norm of
a vector a ∈ H is defined as ‖a‖ = a · a. If {ek}k∈K (with K a finite index set)
is a basis for H, then there also exists a dual basis {ek}k∈K, such that for any
a ∈ H: a =

∑
k∈K(ek · a) ek. Since we will only be working with Hilbert spaces

on the reals, a Hilbert space with a basis {ek}k∈K will be denoted by RK. Note
the use of bold face letters for vectors.

Instead of using a basis to span a Hilbert space RK, we can also use a frame
[4]. A frame is a set of vectors {fi}i∈I (not necessarily finite or even countable)
such that there are finite positive constants A and B for which (for all a ∈ RK)

A ‖a‖2 ≤ ‖Fa‖2 ≤ B ‖a‖2. (1)

Here F is the analysis operator of the frame, defined by (Fa)i = fi · a. For
simplicity, assume that the range of the analysis operator is again a Hilbert
space RI . This is generally true for the cases we are interested in.

Like a basis, a frame has a dual frame. One of the interesting properties of
a frame, however, is that there need not be just one dual frame; typically there
are infinitely many dual frames. All dual frames of a frame have an associated
synthesis operator which acts as a (left-)inverse of the analysis operator for the
frame. Here we will mainly concern ourselves with the canonical dual frame.
This particular choice gives the least-squares solution a of Fa = u. For this
reason we will denote the synthesis operator associated with the canonical dual
frame by F+ (to evoke associations with the Moore-Penrose pseudoinverse).

It is important to note that if A equalsB in Eq. (1), a frame is called tight, and
that its canonical dual is the frame itself, multiplied by 1

A . The corresponding
synthesis operator is then the adjoint F ∗ of the analysis operator F , multiplied
by 1

A . The adjoint is defined by u · (Fa) = (F ∗u) · a for all a ∈ RK and u ∈ RI .
For (real) matrices, the adjoint is simply the transpose. In summary, if a frame
is tight, then F+ = 1

AF
∗.

A transformation group T on a Hilbert space RK is a set of invertible map-
pings of RK onto itself, with an associative binary operation ‘◦’ (function com-
position). As a group it must be closed for composition, it must contain the
identity mapping, and it must contain the inverse of every transformation in
the group. An operator φ : RK→RK is invariant to T if it commutes with all
transformations in T, so ∀τ ∈ T(φ ◦ τ = τ ◦ φ).

3 Construction

Let us assume that T is a group of linear transformations on the Hilbert space
RK, and that φ0 is an operator on RK that is not invariant to T. If {ek}k∈K is
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the original basis used for RK, then we consider the set {fi}i∈I , with I = T×K
and fτ,k = τ∗ ek (where τ∗ is the adjoint of τ). Under suitable conditions this
set forms a frame that can be used to construct a T-invariant version of φ0.

Note that the above choice of frame has the interesting property that the
analysis operator essentially corresponds to taking the components of all trans-
formed versions of a vector:

(Fa)τ,k = (τ∗ ek) · a = ek · (τ a) = (τ a)k.

As a consequence, (Fa)τ is considered equal to τ a. Similarly, if u ∈ RI , then uτ
(with τ ∈ T) denotes the vector in RK described by the coefficients {uτ,k}k∈K.

To construct an operator φ : RK→RK that is invariant to T, based on an
operator φ0, we first define an operator ψ : RI→RI such that ψ(u)τ = φ0(uτ )
for all τ ∈ T and u ∈ RI . So ψ(Fa) computes φ0(τ a) for all transformations
τ ∈ T. We then simply define φ as F+ ◦ ψ ◦ F , which Theorem 1 shows to be
invariant to T under a mild condition on the norm on RI .

Theorem 1. Assume φ0 is an operator on RK, and that ψ : RI→RI is defined
by ψ(u)τ = φ0(uτ ) (for all τ ∈ T and u ∈ RI). The operator φ : RK→RK,
defined as φ = F+ ◦ ψ ◦ F , is then invariant to the transformation group T on
the Hilbert space RK, provided the norm on RI is invariant to a permutation of
T (in the sense that if P is a permutation operator mapping each index (τ, k) ∈ I
to some index (p(τ), k) ∈ I, then ‖u‖ = ‖Pu‖ for any choice of u ∈ RI)2.

Proof. It should be clear that (Fτ a)σ = σ τ a = (Fa)στ for all τ, σ ∈ T and
a ∈ RK. Thus, ψ(Fτ a)σ = ψ(Fa)στ . In other words, ψ(Fτ a) is a permuted
version of ψ(Fa). Denote the effect of this permutation by the operator P , so
that F ◦τ = P ◦F and ψ(Fτ a) = P ψ(Fa). Similarly, P−1 is used to denote the
inverse permutation, and we naturally have F ◦ τ−1 = P−1 ◦ F . What remains,
is to show that F+ ◦ P = τ ◦ F+.

By definition, F+u (with u ∈ RI) is the least-squares solution a to Fa = u,
while F+Pu is the least-squares solution b to Fb = Pu. As these linear systems
are over-determined, these least-squares solutions are unique. It is thus sufficient
to show that b must equal τ a. This follows directly from the invariance of
the norm to any permutation. Due to this, the least-squares solution to Fb =
Pu must equal the least-squares solution to (P−1 ◦ F )b = u, or equivalently,
Fτ−1 b = u. We can now see that b must indeed equal τ a, and thus F+◦P must
equal τ◦F+. We thus have φ(τ a) = F+ ψ(Fτ a) = F+P ψ(Fa) = τ F+ ψ(Fa) =
τ φ(a). This concludes the proof.

3.1 Rotation Invariance

Now we will show how to construct operators on RGB colour images that are
invariant to all rotations of the colour space. For simplicity, the RGB colour
space is considered to be R3 (RK with K = {1, 2, 3}), with an orthonormal basis

2 This condition is connected to the concept of a “Haar measure”.
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corresponding to the red, green and blue components. The group T of all 3D
rotations is SO(3). The image/range of the frame analysis operator can thus be
considered to be RSO(3)×3. Elements of RSO(3)×3 should be interpreted as vectors
whose components can be indexed by elements from I = SO(3)× {1, 2, 3}.

The next task is to define a suitable inner product on RSO(3)×3. We will
build our inner product on top of the one for R3. As we saw in Theorem 1,
the inner product should be invariant with respect to permutations of SO(3).
Take

∫
SO(3)

f(r) dr to be the integral of f(r) over the entire group of rotations

(the rotations represented by r), weighing all rotations “equally”3. We assume
that

∫
SO(3)

1 dr is some finite non-zero constant A. The inner product can then

simply be defined as follows for u and v in RSO(3)×3:

u · v =

∫
SO(3)

ur · vr dr.

It can be verified that this inner product is invariant to the permutations alluded
to in Theorem 1 (which makes sense, given that we weigh all rotations equally).

Now we need to find F+. This proves particularly easy, since the frame is
tight (A equals B in Eq. (1), see the second to last paragraph in Section 2):

‖Fa‖2 = (Fa) · (Fa) =

∫
SO(3)

‖(Fa)r‖2 dr =

∫
SO(3)

‖r a‖2 dr = A ‖a‖2.

The last step is valid because rotations are orthogonal. In conclusion: F+ = 1
AF
∗.

In practice, we can use a finite set of vectors to approximate the frame of
all rotations of the original basis vectors. One method is to sample the group of
all rotations, and construct a frame (and canonical dual) based on this. Alter-
natively, we can also take a sample of uniformly distributed unit vectors, and
construct a discrete frame based on these, with analysis operator F̂ . We can then
take the Moore-Penrose pseudoinverse of F̂ to find the canonical dual frame.

Note that the above is geared towards single colour values, rather than colour
images. For treating colour images we simply apply the same technique per-pixel.
So to filter a colour image using the rotation-invariant frame discussed here, we
would first compute a “greyscale” image for every vector in the frame, then apply
some greyscale morphological operator on each of these images, and then finally
combine all the greyscale images (according to the canonical dual frame).

3.2 Saturation Invariance

As shown in our earlier work [6], the construction used above breaks down when
the transformations have eigenvalues with non-unit magnitude. However, in some
cases, we can still construct frames invariant to such transformations. We will
illustrate this by constructing a frame invariant to scaling the saturation of a
colour in the RGB colour space. The saturation, or colourfulness, is taken to be
the distance to the grey axis, the line through both white and black.

3 Formally, we take the Haar integral.
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Fig. 2. Illustration of the process for constructing a saturation-invariant frame. If the
original basis vector is scaled perpendicularly to the grey axis, it traces the horizontal
line. If the operator φ0 is invariant to scalar multiplication, then we can avoid vectors
of arbitrarily large magnitude by normalizing them. This maps the horizontal line (of
infinite extent) onto the quarter circle. For the frame we only take the limit vectors on
either end; these are eigenvectors of all scalings.

As group T we take the set of linear transformations {Ss | s ∈ R and 0 < s},
with Ss defined by Ss a = sa + (1− s) a·g

g·gg for a ∈ R3 and g representing grey

(it is not particularly important which shade of grey). These transformations
only scale the component of a that is perpendicular to the grey axis, and can
thus be interpreted as scaling the saturation.

The next step is to assume that the operator φ0 is already invariant to a
uniform scaling of the colour space (so scaling all components equally). This is
typically the case for morphological operators, and allows us to normalize all
vectors. Now, instead of creating a frame indexed by T × {1, 2, 3}, we create a
frame indexed by I = {0,∞} × {1, 2, 3} (as illustrated in Fig. 2). Noting that
S∗s = Ss for all s ∈ R, the six frame vectors {fi}i∈I are then defined as

f0,k = lim
s↓0

Ss e
k

‖Ss ek‖
and f∞,k = lim

s↑∞

Ss e
k

‖Ss ek‖
.

In practice, this means we get a frame consisting of a grey vector and
three vectors that are perpendicular to that grey vector. These vectors are
all eigenvectors of all Ss ∈ T. In particular, for some Ss ∈ T, the grey vec-
tor (f0,1 = f0,2 = f0,3) has eigenvalue 1, while the other three vectors (f∞,1,
f∞,2 and f∞,3) have eigenvalue s. Recalling that Ss = S∗s , this means that
(FSsa)0 = (Fa)0 and (FSsa)∞ = s (Fa)∞ for any Ss ∈ T. Since we as-
sumed that φ0 is invariant to multiplication by a scalar, we can easily show
that F+ ◦ ψ ◦ F is invariant to T, with ψ as in Theorem 1.

It should be noted that the above approach is not terribly useful for much
more general scalings. For example, illumination changes are often modelled
by multiplying the red, green and blue channels with independent weights. The
eigenvectors of such a transformation are in general obviously only the red, green
and blue vectors, thus the only possible “frame” would be the original basis. So
a different method would be needed to combine illumination changes and other
(non-linear) transformations, discussed by Angulo [1, §3.4], with rotations.
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Fig. 3. The original (a) is filtered using a median filter applied independently to the
channels using the original basis (b), a vector median filter (c), and a median filtered
applied independently to the “channels” in a rotation-invariant frame (d). In each case,
both a plot of the red (R) and green (G) channels, as well as the actual (colour) image
are shown. The spike in the red channel in (a) is assumed to be noise. It gives rise to
a yellow band between the red and green regions in (b). In contrast, using the vector
median filter or the rotation-invariant frame, it is much clearer that there is a transition
between red and green (note, though, that the frame approach is much more general).

4 Results

We briefly show some of the results that can be attained using group-invariant
morphology. To show how it compares to more traditional solutions, we start by
examining two examples given by Astola et al. [3]. In the first example (Fig. 3),
the per-channel median filter does not pick up on the fact that yellow is a different
colour from both red and green, and thus finds that just before the switch to red,
there are three out of five pixels that have a non-zero red component, instead of
“seeing” one yellow pixel, two green pixels and two red pixels. In contrast, the
other two filters indeed give much less importance to the yellow pixel, resulting
in a more natural transition from red to green.

The second example by Astola et al. (see Fig. 4) shows how processing chan-
nels independently can result in an unnatural bias towards filtering only along
the axes. If we have a vector with completely unrelated components, like average
temperature and population density, then this might be fine. But here it is just
as meaningful to choose a different basis, so we would not expect a filter to show
a bias towards filtering in specific directions.

Astola et al. [3] suggested solving both these issues by creating what they
called a “vector median filter”. This was based on minimizing the sum of the
distances to all vectors. As can be seen in Figs. 3 and 4, our method gives very
similar results4. However, in contrast to the vector median filter, our approach
generalizes easily to any operator (not just the median filter), and simply follows
logically from enforcing certain constraints.

Another example of why it can be useful to have rotation invariance, is given
in Fig. 5. Looking at the channels independently, both signals have an oscillation
in both channels, all at the same frequency. However, there is a really clear

4 It should be noted that the original vector median filter always picked the result from
one of the input values. We have chosen not to do this, as this forces an arbitrary
decision to be made in ambiguous cases (like the one shown in Fig. 3).
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(a) Original (b) Median on basis (c) Vector median (d) Rot.-inv. frame

Fig. 4. The original (a) is filtered using a median filter applied independently to the
channels in the original basis (b), a vector median filter (c), and a median filter applied
to the “channels” in a rotation-invariant frame (d). The 1D signals are plotted as
strings of points in the 2D value(/colour) space. In (b) there is a clear flattening of
the result in the direction of the axes, and a simple 45◦ rotation of the input results
in a completely different output. In contrast, neither the vector median filter, nor the
median filter using the rotation-invariant frame, shows such a directional bias.

difference, if one considers oscillations in other directions as well. Previously, a
rotation-invariant frame was indeed shown [6] to lead to better performance in
a texture classification task based on an autocorrelation-like operator.

Figures 6 and 7 show some results on more natural images. Figure 6 shows
the result of applying a dilation using the original basis, as well as using a hue-
invariant frame and a rotation-invariant frame. Here a hue-invariant frame is
taken to be a frame that is generated using rotations around the grey axis (the
axis running through all grey-ish colours, including black and white), rather than
all rotations. This is explained in more detail in van de Gronde and Roerdink
[6]. Figure 7 does the same for the OCCO operator. The OCCO operator is a
self-dual operator5 consisting of the average of an opening of a closing and a
closing of an opening. Operators like this are excellent candidates for use with a
rotation-invariant frame. In fact, the OCCO operator can be derived from taking
the opening of a closing as φ0 in Theorem 1, with T the group consisting of the
identity mapping and the inversion mapping.

The effect of saturation invariance is illustrated in Fig. 8. Without saturation
invariance, the infimum of pure red and blue is black, while the infimum of de-
saturated red and blue is grey. With a saturation-invariant frame, the infimum
of pure red and blue is grey as well. Conceptually, this makes a lot more sense;
both colours are pretty light. Using a hue and saturation-invariant frame pro-
vides an interesting alternative to filtering in the HSL colour space. Instead of
representing saturation and hue using a magnitude and an angle (which is hard
to order sensibly) we effectively represent them as a function of angle.

5 A self-dual operator is taken to be invariant to inverting the image.
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(a) (b)

(c) (d) (e) (f)

Fig. 5. The two signals in (a) and (b) are plotted using the original basis in (c) and
(d), respectively. In (c) to (f), the signals are plotted against “time” (top) and in
the 2D value space (bottom), like in Fig. 4. The basis vectors used for the middle
row are shown as arrows in the bottom row. In the original basis the two signals are
indistinguishable if one just looks at the frequency and amplitude of the oscillations in
the channels independently. Using a different basis, like in (e) and (f), the signals are
clearly different though. In a rotation-invariant frame we simply use all possible bases,
so we always pick up on such differences.

5 Conclusion

The false colour problem is the appearance of new colours that bear no obvious
resemblance to the original colours, as a result of processing the colour chan-
nels independently. We suggest that the actual problem lies in violating certain
invariances that we implicitly assume should hold. As a potential solution, we
provide a method for modifying any given operator so that it becomes invariant
to a given group of transformations. This essentially constitutes a much more
compact statement of our previous result [6]. Furthermore, it is shown that this
result can be extended to certain non-orthogonal transformations.

Using several basic examples we illustrate how our approach can lead to
more intuitive and better quality results. A practical implementation is fairly
straightforward: the original operator simply has to be called multiple times,
on different, transformed, versions of the original. The main problem lies in the
increased processing required. In the (2D) examples shown here the frames were
already about ten times as large as the original basis (which directly translates
to ten times the processing time6). It would thus be worthwhile to look into
methods for decreasing the amount of processing needed.

In future work, it would be interesting to examine alternatives for using the
canonical dual frame to get back to the original colour space. The canonical dual
frame leads to a least-squares solution and simple, linear, methods. However,
other methods, based on different dual frames or Lp-minimization with p 6= 2
for example, might also have interesting characteristics.

Finally, we only looked at colour images, but there is absolutely no reason
the same theory could not be applied to other kinds of vector-valued images. In

6 Implementation available at http://bit.ly/YarcHY.

http://bit.ly/YarcHY
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Fig. 6. Dilations (by a 21×21 square) of the originals (top row, both 768×512 pixels)
using different frames, from left to right: the RGB basis, a hue-invariant frame and a
rotation-invariant frame. Rows three and five are zoomed versions of rows two and four.
A pink haze appears between orange and blue patches on the colour chart when using
the RGB basis. The same kind of effect is quite visible all over the parrot. Using a hue-
invariant frame solves these problems (middle column). Using the rotation-invariant
frame (right column) is similar to averaging a dilation and an erosion, but otherwise
shows no significant colour artefacts. (The parrot image is based on a photograph by
Luc Viatour / www.Lucnix.be, used under the CC BY 2.0 license.)

www.Lucnix.be
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Fig. 7. Similar to Fig. 6, except that now the self-dual OCCO operator is used, with a
15×15 square structuring element. Again colour artefacts are visible in the left column,
especially between the orange and blue patches on the colour chart (the transition
region becomes green). Using a hue-invariant frame (middle column), and especially
using a rotation-invariant frame (right column), eliminates these artefacts. Similarly, in
the left column the back of the neck of the parrot is suddenly bright green, even though
it is originally blueish, and there is only yellow and dark green in the neighbourhood.
Again this artefact is largely gone in the middle and right columns.
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Fig. 8. Three different pairs of colours and their infima using different frames. From
left to right: the original basis (same as in Fig. 1), a saturation-invariant frame and a
saturation and hue-invariant frame. Gamma correction (sRGB) was used; this avoids
big differences in lightness between the saturated and desaturated colours.

particular, we will attempt to apply the same idea to diffusion tensor images.
Other examples that could be interesting to look at of course include hyperspec-
tral images, but also light fields for example. Essentially our approach might be
interesting for any multivariate data where it makes sense to mix components.
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