
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Group-invariant colour morphology based on frames
Jasper J. van de Gronde and Jos B.T.M. Roerdink, Senior Member, IEEE

Abstract—Mathematical morphology is a very popular frame-
work for processing binary or greyscale images. One of the key
problems in applying this framework to colour images is the
notorious “false colour problem”. We discuss the nature of this
problem and its origins. In doing so it becomes apparent that
the lack of invariance of operators to certain transformations
(forming a group) plays an important role. The main culprits
are the basic join and meet operations and the associated
lattice structure that form the theoretical basis for mathematical
morphology. We show how a lattice that is not group invariant
can be related to another lattice that is. When all transformations
in a group are linear, these lattices can be related to one another
via the theory of frames. This provides all the machinery to
let us transform any (greyscale or colour) morphological filter
into a group-invariant filter on greyscale or colour images. We
then demonstrate the potential for both subjective and objective
improvement in selected tasks.

Index Terms—Mathematical morphology, colour morphology,
group invariance, frames, image processing, computer vision

EDICS Category: TEC-PRC, ELI-COL

I. INTRODUCTION

MATHEMATICAL morphology is a mathematical frame-
work for processing images. Serra [1] and Heijmans [2]

(among others) have produced some of the most comprehen-
sive works on this topic. Although originally used (mostly) for
binary and monochrome images, the morphological framework
allows for shape-centric processing of any data type that
admits a (useful) “lattice structure” (partial order plus some
additional structure). Typical applications include denoising
and shape analysis.

Shapes are generally taken to be the connected components
of the level sets of an image in mathematical morphology.
Morphological filters thus rely on the ability to order pixel
values. For binary and monochrome images this presents no
particular problems. For colour images, on the other hand, it is
not so clear what order is best. The only options [3, thm. XV.1]
for a so-called “vector lattice” are a lexicographical order and
a product order (or a mix of those two).

A lexicographical order considers one value less than or
equal to another if its first component is less than the first
component of the other, or if their first components are equal
and the second component of the one is less than the second
component of the other, etc.; a lexicographical order is a total
order (any two values are comparable). In contrast, a product

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The authors are with the Johann Bernoulli Institute for
Mathematics and Computer Science, University of Groningen,
P.O. Box 407, 9700 AK Groningen, The Netherlands. E-mail:
{j.j.van.de.gronde,j.b.t.m.roerdink}@rug.nl

This research is funded by the Dutch National Science Foundation (NWO),
project no. 612.001.001.

order (also known as “marginal ordering”) considers one value
less than or equal to another if all its components are less than
or equal to the corresponding components of the other, and is
thus a partial order.

Even though product orders often lead to better results than
other orders [4, 5], much of the existing work on colour mor-
phology focuses on defining suitable lexicographical orders (or
other total orders) [6–17]. This is to a large degree because of
the so-called “false colour problem” that product orders suffer
from. Section II examines why this “problem” is considered a
problem and how this relates to a lack of invariance to groups
of transformations. As a result, we propose to fix, rather than
avoid, product orders.

Sections III and IV show how to “lift” a colour space (or
any other lattice) to a higher-dimensional one that is invariant
to a chosen group of transformations, and how for linear
transformations on a vector space this gives rise to a repre-
sentation based on frames. As an example, we demonstrate
how enforcing invariance to changes in hue can make the
false colour “problem” much less objectionable. Additionally,
in Section V we show that in both noise reduction and texture
classification tasks our approach gives a (further) improvement
over product orders. Our approach thus mitigates the false
colour problem and leads to better results than a traditional
product order-based approach.

Finally, it should be noted that although this work restricts
itself to colour images, the reader can easily substitute “vector-
valued image” for colour image, if he or she so pleases. Some
of the examples will be somewhat specific to colour images,
but the techniques naturally extend to other application areas.

II. THE FALSE COLOUR PROBLEM

Let us look at the main problem that plagues product orders:
the false colour problem. This refers to the fact that the
supremum and infimum (least upper bound and greatest lower
bound, respectively) of a set of colours need not correspond to
any of the colours in the original set, as the colour channels get
treated independently. For example, the greatest lower bound
of red and blue is black (in the RGB colour space).

Papers like those by Talbot et al. [7] and Serra [17] describe
the appearance of “false” colours as a critical problem to
be overcome. Many other papers simply take it for granted
that false colours are to be avoided. This then forms an
argument for developing a range of methods that do not suffer
from this problem (but typically, unfortunately, do suffer from
other problems that a product order does not suffer from).
A related, but slightly different position is taken in a paper
by Goutsias et al. [18]. Their main objection to processing
channels independently is that this fails to take into account
any correlation between channels. This leads them to suggest
several remedies (some still based on product orders).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2 IEEE TRANSACTIONS ON IMAGE PROCESSING

(a) Primary colours (b) Secondary colours (c) Hue rotation

Figure 1. Infima of all combinations of primary colours (a) and secondary
colours (b). Note that the greatest lower bound of any two primary colours is
black. On the other hand, if we take cyan and magenta (for example), then
the greatest lower bound is blue. The change from red, green and blue to
magenta, cyan and yellow can be considered a “hue rotation” by 180◦. A hue
rotation is a rotation of a colour about the grey axis (c). So a hue rotation of
120◦ transforms red into green, green into blue and blue into red.

So why are false colours considered a problem? In some
cases using a product order makes perfect sense [18], and it
has been shown to be superior to many alternatives in various
contexts [4, 5, 19]. Also, if we take “false colours” to simply
be values that were not in the image before, then a greyscale
erosion or dilation with a non-flat structuring element will
typically introduce “false colours” as well. Linear filters are
even almost guaranteed to introduce “false colours”, although
they have proven very useful. In fact, given that there is usually
at least some noise in images, does it really make sense to
insist that a filter is not allowed to output colours different
from those in the original image? In summary, “false colours”
do not appear to be a problem per se, and are not limited to
multivariate morphology.

Still, false colours are clearly perceived as a problem in
mathematical morphology. So what is the problem with taking
black to be the infimum of red and blue? Black is clearly less
red than both, as well as less green and blue than both, and
arguably the “largest” such colour in the RGB colour space.
We would like to posit that this result is unintuitive because
black is also a lot less bright and a lot less purple (for example)
than either red or blue. The red and blue used in Fig. 1 are both
quite bright, does it then make sense for their greatest lower
bound to be the darkest possible colour? Similarly, both red
and blue have a reasonably large “purple” component, does it
then make sense for their infimum to have no purple at all?

Humans do not perceive colours as being composed of
differing amounts of red, green and blue. Roughly speaking,
we consider a colour to have a certain hue, saturation and
brightness. Typically, the hue of a colour is expressed as an
angle, often with red corresponding to zero degrees, and the
grey axis being the axis around which the angle is taken (so
for pure grey the hue is undefined). When changing the hue
of a colour, one usually speaks of applying a “hue rotation”.
This is illustrated in Fig. 1c.

If a colour is “redder” than another, we consider it larger, if
a colour is “greener” we consider it larger, so why not consider
a colour that is more yellow or more purple1 to be larger? This
suggests that if we were to rotate the hue of a set of colours,
compute their greatest lower bound, and then rotate back, that

1It is interesting to note that there is at least some evidence [20] that our
colour perception is in fact sensitive to “in-between” hues.

(a) Original (b) Median filter
per channel

(c) Vector me-
dian filter

(d) Our result

Figure 2. Astola et al. [21] gave this example to demonstrate one of the
problems with product orders. Each figure represents a single sequence of 2D
values, plotted as a string of points in the 2D value plane. Filtering the top-
left figure using a median filter [22] that operates per channel results in the
top-right figure. This result was deemed unsatisfactory, presumably because
of the clear flattening of the result along two specific axes. This prompted
the development of a proper “vector median filter”. In contrast, our approach
takes the usual median filter, as it applies to scalar values, and generalizes it
to vector-valued data in a way that does not result in any flattening.

this should have the same result as not rotating at all. Formally,
we can say that we would like the greatest lower bound to be
“invariant to hue rotation”. In this work we will explore where
this desire for invariance takes us.

Interestingly, the importance of invariant properties has been
touched on before, but (until now) does not seem to have led
to a systematic construction of invariant filters. For example,
many references to problems with product orders seem to go
back to a paper by Astola et al. [21] (from 1990) on vector
median filters. One of the given examples of problems with
product orders (see Fig. 2) shows graphically why a rotation-
invariant filter might be desirable.

Similarly, a paper from 1993 by Serra [23] stresses the
existence of multiple equivalent coordinate systems when
using a product order with colour images. He first notes that
the product order is the only sensible option when it does not
make sense to mix the components of the vectors. He then goes
on to note that in many vector spaces (like most colour spaces)
there are many, many coordinate systems that could be used,
all in principle equivalent. As Serra puts it: “. . . , there exists
an infinite number of other equivalent systems of coordinates
for the same vector space; they derive from the first one by
rotations, similarities, passages to spherical, cylindric or polar
coordinates, etc.” It is interesting to note the emphasis put on
the operations required to get to such an equivalent system of
coordinates, as this is precisely the approach taken here.

At this point, the reader may wonder why this issue does
not come up with greyscale images. The answer is that it does,
but that it is typically less of an issue than with colour images.
For one thing, grey does not have a hue, so (a lack of) hue
invariance is not an issue. And since most morphological oper-
ators are already invariant to positive scalings and other order-
preserving transformations, the only (linear) transformations
that are interesting in the greyscale case are those that invert
the order. Soille [24] discusses several methods for dealing
with such (and similar) transformations; the technique used
by Peters [25] can be viewed as a specific instance of the
method developed here (when applied to the greyscale case).
But note that a lack of invariance is not necessarily a problem.
For example, astronomical images often have a very natural in-
terpretation in terms of bright regions corresponding to objects
(stars) and dark regions corresponding to the background.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



VAN DE GRONDE AND ROERDINK 3

So false colours are not necessarily a problem, and it is
likely that the real problem with product orders is a lack of
“invariance” to certain transformations. This is backed up by
tracing some of the arguments against using product orders
through the literature. So rather than abandoning product
orders, we will now take a look at “fixing” them.

III. GROUP-INVARIANT LATTICES

An operator is called invariant to some transformation if
applying the transformation first and the operator second
has the same effect as applying the operator first and the
transformation second. In other words, the operator and the
transformation commute. In this section we formalize the
transformations to be invariant to using groups, and present
a construction for invariant representations based on lattices.
Such representations can then be used to build invariant oper-
ators. We will show how to lift a lattice L that is not invariant
to certain group actions to a lattice M that is invariant to
group actions, using a simple example that leads to self-dual
operators on greyscale images.

A. Definitions

1) Lattices: A greyscale image maps positions to grey
values. Take the image domain to be some set E, and assume
the grey values lie in R. Greyscale images can then be
considered as functions from E to R. The set of all such
functions is denoted by Fun(E,R). Clearly we can define a
partial order on this set, such that for any f, g ∈ Fun(E,R)

f ≤ g ⇐⇒ ∀x ∈ E (f(x) ≤ g(x)) .

Based on this (partial) order we can define the infimum
‘∧’ and supremum ‘∨’ by simply taking the pointwise infi-
mum/supremum. The operations ‘∧’ and ‘∨’ are also called
meet and join or greatest lower bound and least upper bound,
respectively. A partially ordered set that admits such opera-
tions is called a lattice.

Note that the above order on Fun(E,R) essentially applies
the usual order on R component-wise and combines the
results. The resulting order is called a “product” order. More
generally, if the range of a function is given by a lattice R,
then the above construction can be used to turn Fun(E,R)
into a lattice as well. We will make use of this a lot, as just
talking about the range is often simpler. Also, we often use L
to denote a general lattice, regardless of what it contains.

Instead of the notation Fun(A,B) we will sometimes use
BA for the set of functions from A to B. In this case, the
arguments of a function are given as indices. For example,
applying f ∈ Fun(A,B) to a ∈ A is denoted by f(a), while
applying f ∈ BA to a is denoted by fa. This is purely a
notational distinction, meant to mimic the way elements of
Rn (with n a positive integer) are usually indexed to give
their components.

2) Morphological operators: Several kinds of morphologi-
cal operators are commonly defined, based on how they behave
from the lattice point of view:
• Erosions are operators that commute with taking the meet

(so if ε is an erosion, then ε(a∧ b) = ε(a)∧ ε(b)).

• Dilations are operators that commute with taking the join.
• Openings are operators that are order-preserving (also

called increasing), anti-extensive (the output is always
less than or equal to the input) and idempotent (repeated
application has no effect).

• Closings are operators that are order-preserving, extensive
(the output is greater than or equal to the input) and
idempotent.

In the case of erosions and dilations, the output lattice need
not be the same as the input lattice. Furthermore, erosions and
dilations are dual, in the sense that for every erosion ε : L→L′
there is a corresponding dilation δ : L′→L (and vice versa),
such that for all a ∈ L′ and b ∈ L

δ(a) ≤ b ⇐⇒ a ≤ ε(b).

Such a pair of an erosion and a dilation is called an adjunction.
A structural erosion is defined as the meet over some

neighbourhood for each point in an image. This is similar
to a convolution, except that we take the meet instead of the
sum. The corresponding dilation is then formed by taking the
join over the reflected neighbourhood. A structural erosion
followed by the corresponding dilation forms a structural
opening. Similarly, a structural dilation followed by the cor-
responding erosion forms a structural closing.

3) Transformation groups: We characterize the transfor-
mations to be invariant to as forming a group. Here, a
transformation is taken to be an invertible mapping from a
lattice L to itself. A transformation group T on a lattice
L is then a set of transformations, with composition ‘◦’ as
associative binary operation. To be a group it must be closed
for composition as well as taking the inverse, and contain an
identity element. Usually the operator is not written explicitly,
so τ1 τ2 = τ1 ◦ τ2 (with τ1, τ2 ∈ T). The identity element is
simply given by the identity mapping id: 1T(a) = id(a) = a
for all a ∈ L. As the elements of a transformation group are
mappings from L to L, we say that T acts on L.

Often it is convenient to specify a transformation as an
anonymous function. For this, the notation a 7→ b is used,
where b is expressed in terms of a. For example: a 7→ −a is
an (anonymous) function that negates its input. The domain
and range should be clear from the context.

From now on, T and S are used to denote transformation
groups acting on the lattices L and M, respectively (unless
specifically stated otherwise).

A group homomorphism ρ is a function from a group T
to another group such that ρ(τ1 τ2) = ρ(τ1) ρ(τ2) for all
τ1, τ2 ∈ T. We call a group homomorphism between T and S
a representation of T (onM). Similarly, ρ(τ) ∈ S can be said
to represent τ ∈ T.

Example 1. (Negation). Take T to be the set {id, a 7→ −a} ⊂
Fun(R,R). Both elements qualify as transformations. Also,
the set is closed for composition, contains all inverses of its
members, and contains the identity transformation. Thus T is
a transformation group acting on the reals.

Example 2. (Negation and addition). Take T to be the set
{a 7→ a + c | c ∈ R}∪{a 7→ −a + c | c ∈ R} (with a ∈
R). This set is closed for composition, as, with a, c, d ∈ R,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4 IEEE TRANSACTIONS ON IMAGE PROCESSING

(a 7→ a+ c) ◦ (a 7→ a+ d) is equivalent to a 7→ a+ (c+ d),
and (a 7→ −a + c) ◦ (a 7→ a + d) is equivalent to a 7→
−a+(c−d) (other combinations follow similarly). Also, each
transformation is clearly invertible (with the inverse in the set),
and the set contains an identity element (a 7→ a+0). This leads
us to conclude that T is a transformation group.

Example 3. (Hue rotations). Consider the set of all rotations
around the grey axis, as illustrated in Fig. 1c. We will call
the elements of this set hue rotations. Clearly, a hue rotation
followed by another is again a hue rotation. Also, for every hue
rotation there is an inverse hue rotation, and the hue rotation
by 0◦ obviously functions as identity element. We can thus
conclude that the set of all hue rotations is a (transformation)
group, acting on the RGB colour space.

4) Invariance: An operator φ : L→L is called invariant
to a transformation τ : L→L if φ(τ(f)) = τ(φ(f)). We call
a lattice L invariant to τ if τ(a)∧ τ(b) = τ(a∧ b) for all
a, b ∈ L, and similarly for the join. If L is invariant to τ , then
τ is a lattice-homomorphism of L. And since τ is assumed to
be a bijection, it is even an automorphism. These terms are
discussed in more detail by Birkhoff [3, §II.5].

An operator on a lattice L, or the lattice itself, is said to
be invariant to a transformation group T if it is invariant to
all group actions in T. Equivalently, we can speak about a
T-invariant operator or lattice. Alternatively, as Heijmans [2,
ch. 5] does, we can say that T is an automorphism group. The
group of all automorphisms of L is denoted by Aut(L)2.

Given lattices L and M, an injective mapping Λ : L→M
and a transformation group T on L, we say that M is
invariant to T on L (under Λ), if there is a representation
ρ : T→Aut(M) of T, such that Λ ◦ τ = ρ(τ) ◦ Λ for all
τ ∈ T. Similarly, we say that an operator ψ : M→M is
invariant to T on L if it commutes with all ρ(τ).

Example 4. (Addition invariance). The reals R form a lattice
under their usual order. Take T to be the set {a 7→ a+ c | c ∈
R} (with a ∈ R) of all additions by some real. We can then see
that for all τ ∈ T we have τ(a)∧ τ(b) = (a + c)∧(b + c) =
(a∧ b) + c = τ(a∧ b), and similarly for the join operation.
Therefore, R is invariant to “addition”.

Example 5. (Negation invariance). An operator φ :
Fun(E,R)→Fun(E,R) on greyscale images is called self-
dual if φ(−f) = −φ(f). So a self-dual operator can also
be said to be an operator invariant to negation, or more
formally, to the transformation group introduced in Example 1.
Before looking at negation-invariant operators, we will focus
on getting a negation-invariant lattice. To see if Fun(E,R)
is negation-invariant, it is sufficient (because of the product
order structure of the lattice) to check whether R is negation-
invariant. Unfortunately, it is not. This can be seen quite easily:
−1∧−2 = −2 6= −(1∧ 2) = −1.

We can, in fact, see that no lattice on R can be invariant to
negation. For this purpose, assume that we do have a lattice on

2That Aut(L) indeed forms a transformation group can be seen be realizing
that the composition of two automorphisms must again be an automorphism,
that the identity mapping is an automorphism, and that the inverse of an
automorphism is an automorphism.

Figure 3. Imagine that a totally ordered set is represented by a line (here
with tick marks). A bijection on such a set can be represented by drawing
the line twice and drawing line segments (links) between positions on the
two copies of the line, such that no two links share an endpoint and all
positions on both lines are covered by endpoints. An automorphism is then
characterized by not having any crossing links. So the subset of links shown
in the left-most illustration is consistent with an automorphism, while the
other two illustrations clearly cannot represent an automorphism (the last one
is not even a bijection).

R that is invariant to negation. Then, for all a ∈ R, by the com-
mutativity of the meet and the assumed negation invariance of
the lattice, we have: a∧−a = −a∧ a = −(a∧−a). Thus,
a∧−a must be zero, as that is the only real equal to its own
negation. Similarly, we can show, that a∨−a must also be
zero. Let ‘�’ denote the partial order used in the hypothetical
lattice. The previous considerations then imply both 0 � a
and a � 0, and thus that a = 0. Obviously not all a ∈ R
are equal to zero. We can thus conclude that no lattice on R
can be invariant to negation. Below we will show how we can
construct a new lattice to get around this problem.

B. The nature of automorphisms

Existing work on group-invariant morphology, done by
Heijmans [2] and Roerdink [26], deals with groups of auto-
morphisms. Or, put differently, they consider lattices that are
already invariant to a certain group. This allows for very neat
constructions, but what kind of transformations are realizable
as automorphisms?

An automorphism on the lattice of reals R (and other totally
ordered lattices) can be pictured as in Fig. 3: a map from R to
itself such that we never invert the order of any two elements.
In most other cases we are interested in (like images), the
lattice can be considered to be of the form Fun(E,R). For
example, a greyscale image can be regarded as a function that
associates a real with every point in some set (usually a regular
grid). Interestingly, it can be shown that automorphisms on
such a lattice must be built up by permutation and the per-
position application of automorphisms of R.

So, in essence, an automorphism on a greyscale image is
anything that permutes the pixels and fiddles with each pixel
value in an order-preserving manner. Thus, only hue rotations
by multiples of 120 degrees are automorphisms on the RGB
colour space, as those are the only hue rotations mapping each
basis vector into another basis vector (see Fig. 1c); other hue
rotations would always produce mixes of the red, green and
blue components. In general, for a lattice Fun(E,R), any
permutation operator based on a permutation of the domain

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



VAN DE GRONDE AND ROERDINK 5

5

0

10

(−5, 5)

(0, 0)

(−10, 10)
sup=9

sup=(−3, 9)

Figure 4. Illustration of a very simple lattice meant to create self-dual
operators. On the left we see that in the original lattice, the supremum of
the numbers 3, 6 and 9 is 9. On the right we see that if we take the lattice
described in Example 6, that then the supremum of the lifted versions of the
same set of numbers is (−3, 9).

E is clearly an automorphism. This suggests looking for a
way to create a lattice in which all group actions in T are
representable by permutations.

C. Construction

Assume a lattice L and a transformation group T on L are
given, such that L is not invariant to T. What latticeM based
on L can we then construct, such that the transformations in
T become automorphisms on M? We already concluded that
permutation operators lead to automorphisms. So we would
like to create a lattice M and mapping Λ : L→M such that
Λ(τ(a)) is a permuted version of Λ(a) for all τ ∈ T and
a ∈ L. The basic idea of our construction for such a lattice
and mapping is shown in Example 6.

Example 6. (Negation invariant lattice). To construct a new
lattice, based on the reals, that is invariant to negation, we
take the new lattice to consist of all pairs of reals (ordered
by a product order), and map any real to a pair of reals: the
number itself and its negation. So we map a to (−a, a), and
say that (a1, a2) ≤ (b1, b2) ⇐⇒ a1 ≤ b1 and a2 ≤ b2,
this is illustrated in Fig. 4. Since a maps to (−a, a), we
have that −a 7→ (a,−a). The group {id, a 7→ −a} (on the
reals) introduced in Example 1 can thus be represented by the
group {id, (a1, a2) 7→ (a2, a1)} on pairs of reals. It should be
obvious that the given product order is invariant to swapping
of the components, and thus to negation on the reals.

It is important to note that the new lattice is not invariant
to the group {id, (a1, a2) 7→ (−a1,−a2)} (which is another
obvious way to represent negation on the reals). Groups on the
original lattice can often be represented by multiple groups on
the new lattice. What matters is that there is at least one such
group to which the new lattice is invariant.

Interestingly, the above construction also preserves invari-
ance to addition on the reals. The mapping a 7→ a + c can
be represented by (a1, a2) 7→ (a1 − c, a2 + c). Note that c is
subtracted from a1 to ensure that first adding c and then lifting
results in the same pair of numbers as first lifting and then per-
forming the corresponding transformation. As we clearly have
that (a1, a2) ≤ (b1, b2) ⇐⇒ (a1−c, a2+c) ≤ (b1−c, b2+c),
the product order is still invariant to addition on the reals. This
will be made more precise by Lemma 2.

To formalize the above construction, take M to be LT

(using a product order over T), and Λ to be a mapping that
lifts elements of L to elements ofM, given by Λ(a)τ = τ(a).
The idea is that this mapping allows us to represent T by
permutations on M, to which M is definitely invariant.

Lemma 1. Pτ : M→M, defined by Pτ (u)σ = uστ (τ, σ ∈
T), is a permutation operator. That is, for every τ ∈ T there
is a bijection π : T→T (depending on τ ) such that Pτ (u)σ =
uπ(σ).

Proof. Given a τ ∈ T, simply take π(σ) = σ τ . Due to the
properties of a group this is clearly a bijection. This proves
the lemma.

Theorem 1. Given a lattice L, and a transformation group T
on L, the lattice M = LT is invariant to T on L (under Λ).
Elements of L are lifted to M using Λ, defined by Λ(a)τ =
τ(a), while T is represented on M by ρ : T→Aut(M),
defined by ρ(τ) = Pτ .

Proof. To show the statement to be true, we give a represen-
tation ρ of T, and show that we have Λ(τ(a)) = ρ(τ)(Λ(a)).

Take ρ(τ) = Pτ , with Pτ as defined above. This is a (group)
homomorphism from T to Aut(M), and thus a representation
of T, if (and only if) Pτ ∈ Aut(M) and Pτ ◦ Pσ = Pτσ for
all τ, σ ∈ T. Recalling the definition from Lemma 1 in the
third step, we see that (for all u, v ∈M, τ ∈ T)

u ≤ v ⇐⇒ ∀σ ∈ T (uσ ≤ vσ)

⇐⇒ ∀σ ∈ T (uστ ≤ vστ )

⇐⇒ ∀σ ∈ T (Pτ (u)σ ≤ Pτ (v)σ)

⇐⇒ Pτ (u) ≤ Pτ (v).

This establishes that Pτ ∈ Aut(M) for all τ ∈ T. We also
have

(Pτ1 ◦ Pτ2)(u)σ = Pτ1(Pτ2(u))σ = Pτ2(u)στ1

= uστ1τ2 = Pτ1τ2(u)σ.

This shows that the function ρ that maps a τ ∈ T to Pτ , is in
fact a group homomorphism from T to Aut(M).

To make the final piece of the puzzle fit, consider that for
all a ∈ L and τ, σ ∈ T,

Λ(τ(a))σ = σ(τ(a)) = (σ τ)(a) = Λ(a)στ

= Pτ (Λ(a))σ = ρ(τ)(Λ(a))σ.

Thus Λ ◦ τ = ρ(τ) ◦ Λ. We have now shown that both
requirements for M to be invariant to T on L (under Λ) are
met, using the representation ρ : T→Aut(M), defined by
ρ(τ) = Pτ .

The above constructions lead to a lattice M = LT that
is invariant to some S on M that represents T on L. The
group S equals {Pτ | τ ∈ T}, as each τ ∈ T was mapped to
Pτ using a homomorphism. Using the methods introduced by
Heijmans [2] and Roerdink [26], it is now possible to construct
morphological operators on M that are invariant to S, and
thus to T on L. Alternatively, we can easily lift an operator
φ0 : L→L to an S-invariant operator ψ :M→M by taking

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6 IEEE TRANSACTIONS ON IMAGE PROCESSING

L

L

M

M

φ?

Λ

ψ

?

Figure 5. We have shown how to construct a mapping Λ that can lift L to
a T-invariant lattice M. On this lattice we can easily define a T-invariant
operator ψ. But to use this to construct a T-invariant operator φ on L, we
still need some way of getting back to L.

ψ(u)τ = φ0(uτ ). It is easily verified that this operator is S-
invariant: ψ(Pτ (u))σ = φ0(Pτ (u)σ) = φ0(uστ ) = ψ(u)στ =
Pτ (ψ(u))σ . The general situation is illustrated in Fig. 5.

Now, how to get back to L? Although in some cases it might
be sufficient to simply use the new lattice, in most cases (like
colour images), we will ultimately want an answer in the form
of some element of the original lattice L. Section IV is devoted
to exploring the case that L is a vector space, and T consists
entirely of linear transformations. It will then turn out to be
easy to project back to L in a sensible way.

D. Inheriting invariance

In Example 6 we saw that the newly constructed lattice
was not just invariant to the transformation group we used
in the construction, it also “inherited” invariance to addition
from the original lattice. In this section we will analyse this
phenomenon in more detail.

Suppose we have an automorphism α on the original lattice
L (or really any arbitrary transformation on L), how could we
lift it to M? It would have to map to some αM such that
Λ(α(a)) = αM(Λ(a)) for all a ∈ L. For all σ ∈ T

Λ(α(a))σ = (σ α)(a) = (σ ασ−1 σ)(a)

= (σ ασ−1)(σ(a)) = (σ ασ−1)(Λ(a)σ).

This suggests the definition (with u ∈M):

αM(u)σ = (σ ασ−1)(uσ).

The mapping α 7→ σ ασ−1 is a conjugation, and σ ασ−1

a conjugate, with σ and α both transformations on the same
lattice. A transformation group T1 is closed for conjugation by
τ ∈ T2 if and only if T1 = τ T1 τ

−1 = {τ σ τ−1 | σ ∈ T1}.
Similarly, T1 is closed for conjugation by T2 if and only if
∀τ ∈ T2(T1 = τ T1 τ

−1). If T1 is closed for conjugation by
T2, then T1 T2 = {τ1 τ2 | τ1 ∈ T1 and τ2 ∈ T2} equals
T2 T1 and forms a group.

Now define AutT(L) as the largest group of automorphisms
on L that is closed for conjugation by T (so AutT(L) =
τ AutT(L) τ−1 for all τ ∈ T). This is closely related to the
concept of a core or normal interior, as defined by Robinson
[27, p. 16] and Suzuki [28, p. 65] for example. If AutT(L)
is a subgroup of T, then it is called a normal subgroup. Very
slightly generalizing the notation used by Suzuki, we consider
CoreT(G) to be the largest subgroup of G that is closed for
conjugation by T. We then take

AutT(L) = CoreT(Aut(L)) =
⋂

τ∈T
τ Aut(L) τ−1.

As each of the conjugates τ Aut(L) τ−1 is a group, the
intersection is a group as well. With some more effort, it can
be seen that AutT(L) as defined above, is indeed the largest
subgroup of Aut(L) that is closed for conjugation by T.

Getting back to inheriting automorphisms, we can now see
that for αM to be an automorphism on M, all the conjugates
of α must be automorphisms on L. This leads us to Lemma 2.

Lemma 2. The lattice M = LT is invariant to the group
{αM | α ∈ AutT(L)}, and thus to AutT(L) on L.

Proof. First recall that M is invariant to αM if
αM(u)∧αM(v) = αM(u∧ v) (and similarly for the
join). From the definitions, we have (with τ ∈ T and
α ∈ AutT(L)

(αM(u)∧αM(v))τ = αM(u)τ ∧αM(v)τ

= (τ α τ−1)(uτ )∧(τ α τ−1)(vτ ).

Now, since τ α τ−1 is (by definition) also in AutT(L) for all
τ ∈ T:

(αM(u)∧αM(v))τ = (τ α τ−1)(uτ ∧ vτ )

= (τ α τ−1)((u∧ v)τ ) = αM(u∧ v)τ .

Thus αM(u)∧αM(v) = αM(u∧ v) for all α ∈ AutT(L),
andM is invariant to the group of all αM. Since the mapping
α 7→ αM can easily be seen to be a group homomorphism,
and by construction Λ ◦ α = αM ◦ Λ, this means that M is
invariant to AutT(L) on L, concluding the proof.

Making use of the fact that TAutT(L) is a group and equal
to AutT(L)T, we can combine the previous results.

Corollary 1. If T∩AutT(L) = {id}, then there is an
extension of the representation ρ from Theorem 1 to the
transformation group TAutT(L) on L. Thus, the lattice M
is invariant to TAutT(L).

Proof. We give a construction for ρ : TAutT(L)→Aut(M),
proving the statement. Like both previous constructions ρ
maps the identity transformation on L to the identity trans-
formation on M. For all (other) group actions in T we use
the previous definition. For all group actions α in AutT(L)
we use ρ(α) = αM. Now, without loss of generality (as
TAutT(L) = AutT(L)T), all other group actions can be con-
sidered as having the form τ α (with τ ∈ T and α ∈ AutT(L)).
These “mixed” group actions are mapped to ρ(τ) ρ(α).

To verify that the extended ρ is still a group homomorphism
we can check that ρ(α) ρ(τ) = ρ(τ) ρ(β) for α ∈ AutT(L),
τ ∈ T and β = τ−1 α τ . This is easily verified (with σ ∈ T):

(ρ(α) ρ(τ)u)σ = αM(Pτ (u))σ = (σ ασ−1)(Pτ (u)σ)

= (σ ασ−1)(uστ ) = (σ τ β τ−1 σ−1)(uστ ) = βM(u)στ

= Pτ (βM(u))σ = (ρ(τ) ρ(β)u)σ.

We have constructed a mapping ρ from TAutT(L) to
Aut(M), and verified that it is a representation. Also, it should
be clear that we still have Λ(τ(a)) = ρ(τ)(Λ(a)) for all
τ ∈ TAutT(L). We can now conclude that M is invariant
to TAutT(L) on L.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



VAN DE GRONDE AND ROERDINK 7

IV. INVARIANT FRAMES

Above, a lattice M invariant to some transformation group
T on a lattice L was easily constructed. We did not, however,
have any (satisfactory) way of going back to L. Interestingly,
if the original lattice is a vector space (with some additional
properties), and the group transformations are linear operators
acting on that space, then we can use frames [29, 30] to get
back to L in a useful way.

A. Preliminaries
1) Vector lattices and Hilbert spaces: If a lattice L is also

a vector space, and invariant to addition and multiplication
by positive scalars, then it is called a vector lattice (or Riesz
space). It is known that every vector lattice must be built up
from R by “direct and lexicographic union”, as Birkhoff [3,
thm. XV.1] puts it. Translated to our setting this means that we
can only use a product order, a lexicographical order, or some
combination of the two, if we wish to have a vector lattice.
Here we stick to using a product order.

To define a product order on a vector lattice, we use a basis.
In this context, a basis of a d-dimensional vector space L is
a set of d vectors {e1, · · · , ed}, that together span L. For
every vector a ∈ L there is then a unique way to write it as
a weighted sum of the basis vectors: a = a1 e1 + · · ·+ ad ed.
With K the index set {1, 2, · · · , d}, we then have a ≤ b ⇐⇒
∀k ∈ K (ak ≤ bk). We say that the vector lattice is ordered on
the basis {ek}k∈K. Note that we will assume all vector spaces
to be over the reals, so the ak will be real.

If a vector space is a Hilbert space, then it also has a positive
definite inner product, denoted by ‘·’3. The weights {ak}k∈K
are then given by ak = ek ·a. Here {ek}k∈K is a set of vectors
such that ek ·em = δk,m (k,m ∈ K), with δk,m the Kronecker
delta (1 if k = m, 0 otherwise). There is always exactly one
such set, called the “dual basis”. If a vector lattice is (also) a
Hilbert space, we will call it a Hilbert lattice.

Example 7. (The reals as a Hilbert space). As discussed
earlier, the usual lattice on the reals is invariant to addition. It
is also invariant to multiplication by a positive real; thus, the
reals form a (very simple) vector lattice, with the basis {1} for
example. Furthermore, using ordinary multiplication as “inner
product”, R is indeed a Hilbert space. The dual basis is then
simply equal to the basis {1}.

Alternatively, {2}, or any other singleton set with a real,
could also be used as a basis. In general, if we take {e} (with
e non-zero and real) to be our basis over the reals, then {1/e}
is the dual basis. For any a ∈ R, we then have a = a1 e, with
a1 = a · (1/e) = a/e.

2) Frames: Instead of having a set with precisely enough
vectors to span a Hilbert space L, more than enough vectors
may also be used. A set of vectors {fi}i∈I spanning L (not
necessarily finite or even countable), is called a frame if there
are finite and positive constants A and B (called the lower and
upper frame bound, respectively), such that for any a ∈ L

A ‖a‖2 ≤ ‖Fa‖2 ≤ B ‖a‖2. (1)

3Note that a vector space must also be “complete” to be called a Hilbert
space. In our examples the vector spaces are all complete.

Here the linear operator F : L→RI is called the analysis
operator, and is defined by (Fa)i = fi · a for all i ∈ I. The
squared norm of a ∈ L is given by ‖a‖2 = a · a. Similarly,
we take ‖Fa‖2 = Fa ·Fa. For simplicity, just assume that an
inner product on RI exists, we will explicitly give the inner
product being used in each example. The general case, using
measure theory, is covered by Christensen [30, §5.8].

The adjoint of the analysis operator of a frame is called the
synthesis operator. It is characterized, as usual, by (Fa) ·u =
a · (F ∗u) (for all a ∈ L and u ∈ RI). A dual frame of
{fi}i∈I is a frame {f̂i}i∈I whose synthesis operator F̂ ∗ is a
left inverse for the analysis operator F (so F̂ ∗F = id). When
the frame bounds A and B are equal, the frame is called tight,
and { 1

A fi}i∈I is a dual frame. In particular, when A = B = 1,
a frame is its own dual. The pair of a frame and a dual frame
together will be called a frame-dual pair.

It should be stressed that in general there is not just one dual
frame. In most cases, it is therefore important to specify which
dual frame is being used. One particularly important choice is
the canonical dual frame {(F ∗F )−1fi}i∈I . This choice has the
interesting property of minimizing u−FF̂ ∗u in a least-squares
sense. This follows from the fact that for this frame F̂ ∗ =
(F ∗F )−1F ∗, which is the Moore-Penrose pseudoinverse (or,
more generally, the maximal generalized inverse) of F . More
details are given by Christensen [30, §1.4] and Ben-Israel and
Greville [31, ch. 1 and 8]. Note that a tight frame with A =
B = 1 is not just its own dual, it is its own canonical dual.

A frame-dual pair ({fi}, {f̂i}) for L is considered invariant
to a transformation group T on L, if there is a representation
ρ : T→S of T on RI , such that RI is invariant to S, and for
all τ ∈ T

F ◦ τ = ρ(τ) ◦ F and F̂ ∗ ◦ ρ(τ) = τ ◦ F̂ ∗. (2)

Also, if a frame satisfies the first part, then it is considered
T-invariant. The relevance of this definition of a T-invariant
frame-dual pair is that if we have an operator ψ on RI that is
invariant to automorphisms of RI , then the operator φ on L,
given by φ = F̂ ∗ ◦ ψ ◦ F , is invariant to T.

Example 8. (Negation invariant frame-dual pair). In Exam-
ple 6 we mapped a onto (−a,a) (with a ∈ R). Here we
write a in boldface to stress that we are talking about a vector
in the Hilbert space R. If we define the frame {−1, 1}, then
the corresponding analysis operator F : R→R2 implements
exactly the mapping a 7→ (−a,a). The analysis operator
corresponding to the canonical dual frame is then given by

F̂ =

[
−1
1

]([
−1 1

] [−1
1

])−1
=

[
−1
1

]
2−1 =

[
−1/2
1/2

]
.

We can now verify that this frame-dual pair is invariant to
negation on the reals. In Example 6 we already saw that the
first half of Eq. (2) can be satisfied by choosing to represent
negation by swapping. The second half is satisfied by the dual
frame found above:

F̂ ∗
[
0 1
1 0

]
=
[
−1/2 1/2

] [0 1
1 0

]
=
[
1/2 −1/2

]
= −

[
−1/2 1/2

]
.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8 IEEE TRANSACTIONS ON IMAGE PROCESSING

Note that any set of the form {−p, q} with p + q = 1 can
be seen to form a frame dual to {−1, 1}, but (in this case)
only the canonical dual frame results in a negation-invariant
frame-dual pair:[
−p q

] [0 1
1 0

]
=
[
q −p

]
= −

[
−p q

]
⇐⇒ p = q,

and since p+ q = 1 we have p = q = 1/2.

B. Constructing invariant frame-dual pairs

In Section III-C we showed how to construct a lattice M
that was invariant to a given transformation group T on the
lattice L. This construction boiled down to taking M = LT

and mapping elements from L to M using Λ, with Λ(a)τ =
τ a (a ∈ L and τ ∈ T). We write a in boldface to stress that
we are now talking about a vector in the Hilbert lattice L.

Now suppose that T is a group of linear transformations on
L. We then have (with a ∈ L, τ ∈ T and k ∈ K)

Λ(a)τ,k = (τ a)k = ek · (τ a) = (τ∗ ek) · a.

So Λ(a)i = fi · a for some set of vectors {fi}i∈I ⊆ L, with
I = T × K and fi = τ∗ ek. Depending on the group T,
this set of vectors may or may not form a frame. If it does
form a frame, then it is invariant to T, by the considerations
in Section III-C. We can now state Theorem 2, showing that
there is always at least one dual frame that allows us to go
back to L in a group-invariant way.

Theorem 2. If T is a transformation group acting on a lattice
L, {fi}i∈I is a T-invariant frame for L, and the inner product
on M = LT is invariant to ρ(τ) for all τ ∈ T (given by
(ρ(τ)u)σ = uστ for all u ∈ M), then the frame {fi}i∈I
forms a T-invariant frame-dual pair with its canonical dual.

Proof. We use the property that the canonical dual minimizes
‖u−FF̂ ∗ u‖2 for all u ∈M. Suppose that ρ : T→Aut(M)
is a representation, τ ∈ T, u ∈M, F is the analysis operator
corresponding to the frame {fi}i∈I , and F̂ ∗ is the synthesis
operator corresponding to its canonical dual. Define a = F̂ ∗ u
and b = F̂ ∗ ρ(τ)u. The theorem now effectively states that
b = F̂ ∗ ρ(τ)u = τ F̂ ∗ u = τ a, for all u and τ .

To prove the theorem, note that a is the unique minimizer of
‖u−Fa‖2, while b is the unique minimizer of ‖ρ(τ)u−Fb‖2
(by the definition of the canonical dual). Since we assume that
the inner product on M is invariant to ρ(τ) for all τ ∈ T, b
is also the (unique) minimizer of ‖u− ρ(τ−1)Fb‖2. By the
invariance of the original frame, this cost function is equal to
‖u − Fτ−1b‖2. Finally, since τ is a bijection on L, τ−1 b
and a must be equal and b equals τ a. This proves that the
canonical dual satisfies the second half of Eq. (2), and since
the statement is conditional on the original frame satisfying
the first half, this concludes the proof.

In Example 8 we already showed one example of a group-
invariant frame-dual pair, we will now show a more colour
related example of a group-invariant frame-dual pair.

Example 9. (Hue-invariant frame-dual pair). As alluded to
before, the problem with “false colours” is likely not that they

Basis
Hue invariant

Figure 6. The top and bottom bars cycle through all possible hues. The middle
two bars compute the infimum over a range of hues at each position (indicated
by the white rectangles). The top-middle bar uses a product order on the RGB
basis, giving a brighter and more saturated response at the primary colours
than elsewhere. In contrast, the bottom-middle bar uses the hue-invariant frame
developed in Example 9, giving a similar result for all hues.

are different from the original colours, but rather that they do
not make any sense. Why should the infimum of two colours
that are both (perceptually) close to magenta be black or grey,
while the infimum of two colours similarly close to green is
green(ish)? Here we show how to construct a frame-dual pair
that is invariant to hue rotations, resulting in a qualitatively
similar result in both cases, see Fig. 6.

Example 3 showed that the set of all hue rotations can be
considered a transformation group T on the RGB colour space
(here considered to be R3). The group T is (group) isomorphic
to the two-dimensional rotation group SO(2). A rotation of
φ degrees around the grey axis will be denoted by rg,φ, but
instead of writing urg,φ we will use the more readable uφ. The
index set I can then be considered to be [0, 2π)×{1, 2, 3} and
fφ,k = r∗g,φ e

k. Taking u,v ∈ RI , we now define the inner
product on RI by using the inner product on R3:

u · v =
1

2π

∫ 2π

0

uφ · vφ dφ.

Clearly, this inner product is invariant to the group T.
The set of vectors {fi}i∈I as defined above forms a tight

frame with frame constants A = B = 1:

‖Fa‖2 = Fa · Fa =
1

2π

∫ 2π

0

‖rg,φ a‖2 dφ

=
1

2π

∫ 2π

0

‖a‖2 dφ (rotations are orthogonal)

= ‖a‖2.

This means that the frame is its own (canonical) dual. Also,
since the frame itself is invariant to T (as illustrated in
Fig. 7), it forms a T-invariant frame-dual pair (with itself),
by Theorem 2.

The synthesis operator corresponding to the hue-invariant
frame found above can be given explicitly. By the definitions
above and the linearity of the inner product, we must have:

F ∗u · a = u · Fa =
1

2π

∫ 2π

0

uφ · (rg,φ a) dφ

=
1

2π

∫ 2π

0

(r∗g,φ uφ) · a dφ

=

(
1

2π

∫ 2π

0

r∗g,φ uφ dφ

)
· a.

So F ∗u = 1
2π

∫ 2π

0
r∗g,φ uφ dφ.

The above example can be easily extended to colour images,
rather than single colours. A colour image can be considered

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



VAN DE GRONDE AND ROERDINK 9

(a) v : (224, 120, 16) (b) v̄ = Fv (c) v̄∧ w̄

Figure 7. Illustration of taking the infimum in a hue-invariant representation.
(a) Colours are often represented using their red, green and blue components.
As established before, taking the infimum is not invariant to changes in hue
in that representation. (b) The same colour as in (a), but now in the hue-
invariant frame developed in Example 9. The colour is shown using a polar
plot of the inner product with the frame vectors. (c) The infimum of two
colours (indicated using orange and magenta polar region plots) in a hue-
invariant frame, with w̄ = Frg,−60◦v.

L

L

M

M

φ

Λ = F

ψ

F̂ ∗

Figure 8. If the lattice L is (also) a Hilbert space, and T consists purely
of linear transformations, then Λ can be seen to be the analysis operator F
corresponding to a frame. This means we can easily define a mapping back
to L using the synthesis operator corresponding to the canonical dual of this
frame. If ψ is then invariant to T on L, then φ = F̂ ∗ ◦ψ ◦F is T-invariant.

an element of the lattice Fun(E,C), where C is the colour
space and E the image domain. Assuming that C is a Hilbert
lattice, Fun(E,C) is a Hilbert lattice as well, with “scalars”
being elements of Fun(E,R). Now assume T is a group of
transformations on C. This group can then be used to construct
an isomorphic group T′ on Fun(E,C), such that for every
τ ∈ T there is a τ ′ ∈ T′, defined by τ ′(a)(x) = τ(a(x)), for
all x ∈ E. It can then be seen that Fun(E,C)T

′
is isomorphic

to Fun(E,CT). So whenever we can find a useful frame for a
colour space, we can easily extend this result to colour images.

To recap, in Section III-C we showed how to construct a
mapping Λ that can lift a lattice L to a lattice M that is
invariant to T on L. We motivated that this allowed the easy
definition of a morphological operator ψ onM that is invariant
to T on L. However, we could not easily get back to L. In this
section we showed how this can be done in one common case.
If L is (also) a Hilbert space spanned by the basis {ek}k∈K,
and T contains only linear transformations, then Λ (under
certain conditions on the group) is the analysis operator for
the frame {fi}i∈I ⊆ L, with i ∈ T × K and fi = τ∗ ek. We
have shown that the constructed frame always leads to a T-
invariant frame-dual pair with its canonical dual. This allows
us to go back to L in a such a way that the compound operator
φ, defined by φ = F̂ ∗ ◦ψ ◦F , is a T-invariant operator on L.
This is illustrated in Fig. 8.

It should be noted that, for example, an erosion defined on
M does not (necessarily) result in an erosion after mapping
back to L. In fact, it typically will not. However, as we use
the canonical dual, mapping back to L and then to M again
does lose as little as possible (in a least squares sense). As it is
often simply not possible to define a certain kind of operator

in a group invariant manner on the original space (at least in
a non-trivial way), this seems like a reasonable compromise.

Example 10. (A simple hue-invariant dilation). Suppose we
wish to create a hue-invariant simple dilation by a flat structur-
ing element B. On a greyscale image p ∈ Fun(E,R), where
E is some Euclidean space, we would have (with x ∈ E)

δB(p)(x) =
∨

b∈B
p(x− b).

If we have lifted an RGB colour image a ∈ Fun(E,R3) to
u ∈ Fun(E,RI) using Example 9, then we can define a hue-
invariant dilation on the lifted lattice using the exact same
formula as for the greyscale case. So for every i ∈ I

δB(u)(x)i =
∨

b∈B
u(x− b)i.

On colour images we could thus define a hue-invariant
dilation-like operator using δ̃B(a) = F̂ ∗ δB(Fa).

Example 11. (A dilation using group-valued structuring ele-
ments). Continuing the previous example, rather than writing
u ∈ Fun(E,RI) we could also write u ∈ Fun(E × T,R3)
(recall that in this case I = T × {1, 2, 3}, with T the group
of hue rotations). Identifying E with the Euclidean translation
group we can see that E×T is a group: the direct product of
the Euclidean translation group and the group of hue rotations.
We could thus have a structuring element B that is a subset
of the group E × T and use (ξ ∈ E × T, i ∈ {1, 2, 3})

δB(u)(ξ)i =
∨

β∈B
u(β−1 ξ)i.

This operation is invariant to the representation of hue rota-
tions on the lattice Fun(E,RI), defined by [ρ(τ)u](x, σ) =
u(x, σ τ), with x ∈ E and σ, τ ∈ T:

δB(ρ(τ)u)(x, σ) =
∨

β∈B
[ρ(τ)u](β−1 (x, σ))

=
∨

(b,ω)∈B
u(b−1 x, ω−1 σ τ) = δB(ρ(τ)u)(x, σ τ)

= [ρ(τ) δB(u)](x, σ)

This example is closely related to group morphology [2, 26].

At this point it is interesting to examine what would
happen if we would simply order colours by their lightness
or luminance (essentially their projection on the grey axis).
Clearly, such an order would be invariant to hue rotations.
However, it would also not give rise to well-defined infima and
suprema (as the order says nothing about what to do with the
colour information). To use such a preorder for morphological
filters we thus need something extra. For example, we could
simply keep the original hue and saturation, or take the hue
and saturation of the least/greatest element according to the
preorder. In both cases we essentially forego filtering the
colour information. To avoid that one could order colours using
a basis (or frame) of which one of the vectors is the grey axis.
In that case hue (and possibly saturation) invariance could
become an issue, and we can apply our method [32].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10 IEEE TRANSACTIONS ON IMAGE PROCESSING

C. Invariance of the inner product

Theorem 2 explicitly requires the inner product onM to be
invariant to the chosen representation of T. Is this a sensible
restriction? In our example this posed no great difficulty, but
what about other kinds of transformations?

As a first step to getting a grip on the scope of the restriction
to group-invariant inner products, consider Lemma 3.

Lemma 3. A linear transformation ρ(τ) onM (with τ ∈ T) is
orthogonal if and only if the inner product on M is invariant
to ρ(τ).

Proof. The transformation ρ(τ) is orthogonal if and only if
ρ(τ)∗ = ρ(τ)−1. Here ρ(τ)∗ is defined to be the linear
transformation that satisfies (ρ(τ)u) · v = u · (ρ(τ)∗ v), with
u, v ∈M. So if ρ(τ) is orthogonal, then the inner product on
M is invariant to ρ(τ):

(ρ(τ)u) · (ρ(τ)v) = (ρ(τ)∗ ρ(τ)u) · v
= (ρ(τ)−1 ρ(τ)u) · v = u · v.

Conversely, if the inner product is invariant to ρ(τ), then for
u,v ∈M and τ ∈ T:

(ρ(τ)u) · v = u · (ρ(τ)∗ v) = (ρ(τ)u) · (ρ(τ) ρ(τ)∗ v).

In other words, (ρ(τ)u) · (v − ρ(τ) ρ(τ)∗ v) = 0 for all u
and v in M. Considering that the inner product is positive
definite, and taking r = v − ρ(τ) ρ(τ)∗ v and u = ρ(τ)−1 r,
we get r = 0. Thus v = ρ(τ) ρ(τ)∗ v and ρ(τ)∗ = ρ(τ)−1.
This leads us to conclude that if the inner product is invariant
to ρ(τ), that ρ(τ) is orthogonal. Since we also showed the
converse, this concludes the proof.

Based on the above, Proposition 1 rules out a whole class
of transformations. In particular, any group that includes
some sort of scaling transformation will not work with the
construction developed above.

Proposition 1. If there is an eigenvector e ∈ L of τ ∈ T with
associated eigenvalue λ such that |λ| 6= 1, then ρ(τ) cannot
be orthogonal.

Proof. Consider the frame condition stated in Eq. (1). There
must be finite positive frame constants A and B, such that the
squared norm of the frame vector Fa is between A ‖a‖2 and
B ‖a‖2 (for any a ∈ L). Without loss of generality, assume
that ‖e‖2 = 1, so that A ≤ ‖Fe‖2 ≤ B and ‖τn e‖ = |λ|n.
Here τn is used to denote the n times repeated application of
τ .

We can now use a proof by contradiction. If ρ(τ) would be
orthogonal, then ‖ρ(τ)nFe‖2 = ‖Fe‖2 and we would thus
have A ≤ ‖ρ(τ)nFe‖2 ≤ B for all (integer) n ≥ 0. On the
other hand, since ρ(τ)nFe = Fτne, we should also have
A |λ|n ≤ ‖ρ(τ)nFe‖2 ≤ B |λ|n. If |λ| < 1, we can choose
an n such that B |λ|n < A, leading to the contradiction A ≤
‖ρ(τ)nFe‖2 ≤ B |λ|n < A. Similarly, if |λ| > 1, then we
can choose an n such that A |λ|n > B, again leading to a
contradiction. This leads us to conclude that if |λ| 6= 1, ρ(τ)
cannot be orthogonal.

V. RESULTS

Aptoula and Lefèvre [4] evaluated different orders for
use with mathematical morphology. We use the same noise
reduction and texture classification tasks to demonstrate the
objective benefits of group-invariant frames.

We use the RGB basis, the hue-invariant frame developed
in Example 9 and a similar one that is invariant to all rotations
(not just the ones around the grey axis). The latter effectively
consists of all unit vectors in R3 (weighted equally), and is
tight, just like the hue-invariant frame [32].

Our current implementation4 is a very basic one that simply
uses a fairly large sampling of frame vectors to approximate
the exact result. Because of this the running time of the
operators based on frames is simply a (large) constant factor
more than that of the operators based on bases. However, we
expect that in practice many optimizations could be made to
decrease the runtime impact of our method. For example, the
current implementation uses a particularly huge number of
frame vectors to ensure a very accurate answer, but in our
experience a much small number of vectors often already give
quite acceptable results. Also, we expect that the choice of
frame vectors could be optimized for specific images to further
reduce the number of directions to sample (in the degenerate
case of greyscale images encoded as RGB images one or two
directions would suffice for example). Finally, some frame-
based filters can probably be computed directly on the original
representation.

A. Noise reduction

In the noise reduction task Gaussian noise was added
to an image (Lena), the noisy image was lifted to one of
three different frames, filtered, and then projected back to the
original colour space. Only the RGB colour space was used, as
this makes the most sense with this particular test (after all, the
noise is added in this space), and led to best performance in the
original experiments. Also, the aim is primarily to demonstrate
the potential impact of using group-invariant frames.

The noise was Gaussian, with the covariance matrix (using
ρ to denote the correlation coefficient)

Σ = σ2

1 ρ ρ
ρ 1 ρ
ρ ρ 1

 .

To generate Gaussian random numbers with the above covari-
ance matrix: first find a matrix Σ

1
2 such that Σ

1
2 (Σ

1
2 )T = Σ;

the correlated noise is then generated by generating normally
distributed samples and multiplying them by Σ

1
2 .

The noise reduction filter was the OCCO filter. It is built
from a structural opening γb and a structural closing φb, both
using the same structuring element b. In this case a 3×3 cross
was used (the origin and its four nearest neighbours). Both
filters operate on L = Fun(E,C) using a product order, with
C the (RGB) colour space. Following Aptoula and Lefèvre
[4], the operator is then defined by (a ∈ L)

OCCOb(a) =
1

2
(γb(φb(a)) + φb(γb(a))) . (3)

4Our code is available as supplemental material.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



VAN DE GRONDE AND ROERDINK 11

ρ RGB Hue Rot. Lex.

0 0.78 0.68 0.64 2.22
0.9 0.78 0.76 0.74 1.09

Normalised MSE (×100)

0 40.3 37.7 36.5 68.1
0.9 40.2 39.8 39.2 47.8

RMSE remaining (%)

Figure 9. The “Lena” image, with image values in the range [0, 255], was
corrupted with Gaussian noise (σ = 32), with different correlation coefficients
(ρ). The OCCO operator was applied to the corrupted images in the original
RGB basis, the hue-invariant frame and the rotation-invariant frame. For
comparison purposes, the same filter was also applied using a lexicographical
order (ordering first on red, then on green, then on blue). The values in the
top part of the table show the normalised mean squared error (multiplied by
100), while the bottom part uses the RMSE remaining. As can be seen, using
a group-invariant frame can give a clear improvement.

Figure 10. The effect of rotation invariance on the OCCO filter. Each diagram
shows part of a one-dimensional signal in which each value is a 2D vector. The
signals are plotted as in Fig. 2. The error-free signals are not shown, but as-
sumed to be linear ramps of the form u[i] = (1/2, 1/2)+ i (cos(a), sin(a)).
Shown in grey are the perturbed signals, where the value at i = 0 is offset
at a right angle to the original signal. Shown in black are the OCCO filtered
signals (the structuring element has a width of 3). The top row shows the
results for using the OCCO filter directly on the 2D basis, the bottom row
shows the results for the rotation-invariant frame (in 2D). As can be seen, the
OCCO filter on the basis performs perfectly for signals that are aligned with
one of the basis directions, but quite badly for signals that are even slightly
misaligned. In contrast, the OCCO filter on the rotation-invariant frame gives
a much more consistent result, effectively the average behaviour of the filter
on the basis, averaged over all rotations of the space (this is better than the
RGB basis result in most cases).

The OCCO operator was lifted to the group-invariant frames
by taking OCCOb(u)τ = OCCOb(uτ ). An image was then
filtered by lifting it toM = Fun(E,CT), applying the (lifted)
OCCO operator, and then projecting back to L = Fun(E,C)
using the canonical dual frame.

The results of the noise reduction task are summarized in
Fig. 9. The error metric used originally is the normalised mean
squared error (MSE), which is just the squared L2-norm of the
error in the filtered image divided by the squared L2-norm of
the original image (see [4] for details). Unfortunately this error
metric is quite difficult to interpret when comparing results
for different images. Therefore, we also use the root mean
squared error (RMSE) remaining: the RMSE in the filtered
image divided by the RMSE in the noisy image. For example,
looking at the table in Fig. 9 we see that noise is reduced to
approximately 40% (or less) of its original strength.

The group-invariant frames clearly lead to better noise
reduction5. This makes sense: The OCCO filter essentially

5The experiment was repeated using a set of 20 images, with similar results.

removes bumps. When using the RGB basis it only removes
bumps in the red, green and blue directions. So “yellow” noise
is less likely to be suppressed than red or green noise. Using
the hue-invariant frame remedies this, but still not covers
all possible directions (for example the direction (1,−1, 0)).
This could explain why the rotation-invariant frame (whose
frame vectors point in all directions) performs best. This
phenomenon is illustrated in 2D in Fig. 10.

The effect of correlation is also interesting. As can be seen,
increasing correlation decreases the benefit of using group-
invariant frames. This likely has to do with the fact that in
many images the main variation is along (or close to) the grey
axis. As the correlated noise is strongest along the grey axis,
noise and data values “line up”. As points on a line can only
be ordered in two ways, rotational invariance does not help
here. This is corroborated by repeating the experiment using a
version of Lenna where the green channel has been inverted.
In that case the predominant gradient directions are no longer
aligned with the grey axis, and the effect is less pronounced
(see Fig. 11). This shows the ability of group-invariant frames
to do better than a basis, while gracefully degrading to similar
performance when it cannot do better.

B. Texture classification

In this task a number of textures are grouped into classes.
Part of the textures serve as training data and the rest is used
for testing. The textures are taken from Outex13 [33]. Nearest-
neighbour classification is used, based on the Euclidean dis-
tance between feature vectors. Again we limit ourselves to
the RGB colour space (and derived group-invariant frames),
as using different colour spaces had hardly any effect on the
performance in the original tests using a product order [4].

The feature vectors are based on morphological covariance.
To compute the morphological covariance of an image (for a
specific shift), a point-wise infimum is computed of the image
and a shifted version of itself. The result is then summed
over all positions (but independently for each “channel”), and
divided by the sum of the pixel values of the original image.
This is done for a fixed set of shifts, and when using group-
invariant frames, for a finite (fixed) subset of the frame.

Shifts in four different directions (0◦, 45◦, 90◦ and 135◦),
and in each direction by L∞ distances of 1 to 49 pixels (in
step sizes of two), were used in both cases. In total this gives
25 feature values per direction and 100 per channel. In the
RGB case 3 channels were used, for the group-invariant frames
subsets of 150 frame vectors were used to create 150 channels.
(Note that in this task we do not need to project back to the
original colour space.) This follows the description given by
Aptoula and Lefèvre [4].

The results summarized in Fig. 12 again show improved
performance using the group-invariant frames. However, there
are some complications. First of all, the classification results
are better than in the original work, even using the RGB basis.
This is probably due to slight differences in implementation.
Secondly, we need some tricks to make sure that the features
can be computed in a sensible manner when using the group-
invariant frames. Specifically, for each direction we make sure

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12 IEEE TRANSACTIONS ON IMAGE PROCESSING

ρ RGB Rot.

0 40.2 (40.3) 36.5 (36.5)
0.9 40.3 (40.2) 38.0 (39.2)

RMSE remaining (%)

Figure 11. For the rotation-invariant frame, inverting the green channel of
Lena leads to improved performance when filtering images corrupted with
correlated noise. Presumably this effect is a result of having less of the data
aligned with the noise. The performance for the RGB basis remains essentially
the same (as the filter is self-dual and applied per channel). For comparison
purposes, the values from Fig. 9 are shown between parentheses.

RGB Hue Rot.

81.8 84.1 85.4
Classification rate (%)

Figure 12. The classification rates for a simple nearest-neighbour scheme
based on features computed using different frames. Clearly, the group-
invariant frames again lead to better performance than the original RGB basis.
On the left a couple of the textures used in the test are shown.

that the projection of the entire RGB cube is non-negative.
Otherwise some directions give much less stable results than
others (due to division by numbers close to zero).

Still, that the group-invariant frames lead to improved
performance is not surprising. As an extreme case, consider
a texture that simply oscillates between pure red and blue.
When analysing this using just the original RGB basis such
a texture is indistinguishable from a texture that oscillates
between black and magenta (a combination of red and blue),
as we effectively have no information about the relative phase
of the red and blue components. On the other hand, using the
rotation-invariant frame we also look at the projection onto
the vector (−1, 0, 1), giving excellent discrimination.

VI. CONCLUSIONS AND FUTURE WORK

Mathematical morphology can (and often should) be gen-
eralized to colour images using a product order. However,
it is important to use a colour space that is invariant to
certain transformations, as ignoring such invariances leads to
unintuitive results. Explicitly building invariant colour repre-
sentations and applying morphological filters to them gives the
best performance to date in several tasks that were previously
used to compare different orders.

A fresh look at the history of the notorious “false colour
problem” reveals that it stems from a lack of invariance
to certain transformations, rather than, as is often assumed,
the lack of a total order. This suggests building lattices and
operators that are invariant to such transformations. This work
shows a systematic way of doing just that, for groups of linear
transformations on Hilbert (vector) spaces.

In future work it might make sense to look at groups
containing non-linear transformations. In this light, it might
also make sense to look more closely at what kind of trans-
formation group is actually meaningful. For example, in this
work a very crude approximation to a hue rotation was used (it
does not fully preserve perceptual brightness and saturation).
So what transformation groups would make sense from a
perceptual point of view? And what about transformation
groups that are optimal for a given task and data set?

Also, the method developed here was derived from the
viewpoint of mathematical morphology, but could in principle
apply to other settings as well. For example, the argument in
favour of rotation invariance for computing the morphological
covariance applies equally well to computing the autocorre-
lation. It would be interesting to explore such (generalised)
approaches in more detail.

As far as performance goes, the current approach effectively
boils down to filtering a greyscale image 150 times, which is
pretty slow. This is the result of trying to approximate filtering
an infinite number of “channels” in the frame representation.
In future research it might pay to look closer at how best to
select such a subset. Or even to find a completely different
way to achieve the same end result.

It could also be interesting to compare the rotation-invariant
approach developed here with an approach based on principal
component analysis (PCA). A PCA-based approach might be
able to mitigate some of the issues discussed above (like not
being able to differentiate a red-blue oscillation from a black-
magenta oscillation), but necessarily cannot do so for all such
cases at the same time (as it still relies on finding a basis).
Also, it is not immediately clear how a PCA-based approach
could relate to using a frame like the hue-invariant frame.

Finally, this work focuses on colour, but really any type
of multi-variate data could be treated in a similar manner,
for example (diffusion) tensor data [34]. Burgeth et al. [35]
suggested that morphological operators on tensors should be
“rotationally invariant”, and taking this as a basis for mathe-
matical morphology on diffusion tensor data seems promising.

REFERENCES

[1] J. Serra, Ed., Theoretical Advances, ser. Image Analysis
and Mathematical Morphology. Academic Press, 1988,
vol. 2.

[2] H. J. A. M. Heijmans, Morphological image operators.
Academic Press, 1994.

[3] G. Birkhoff, Lattice theory, ser. American Mathematical
Society Colloquium Publications. American Mathemat-
ical Society, 1961, vol. 25.

[4] E. Aptoula and S. Lefèvre, “A comparative study on mul-
tivariate mathematical morphology,” Pattern Recognit.,
vol. 40, no. 11, pp. 2914–2929, Nov. 2007.

[5] B. Naegel and N. Passat, “Component-Trees and Multi-
value Images: A Comparative Study,” in Mathematical
Morphology and Its Application to Signal and Image
Processing, ser. LNCS, M. H. F. Wilkinson and J. B.
T. M. Roerdink, Eds. Springer Berlin Heidelberg, 2009,
vol. 5720, ch. 24, pp. 261–271.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



VAN DE GRONDE AND ROERDINK 13

[6] J. Chanussot and P. Lambert, “Total ordering based
on space filling curves for multivalued morphology,” in
Mathematical Morphology and its Applications to Image
and Signal Processing, H. J. A. M. Heijmans and J. B.
T. M. Roerdink, Eds. Kluwer Academic Publishers,
1998, pp. 51–58.

[7] H. Talbot, C. Evans, and R. Jones, “Complete Ordering
and Multivariate Mathematical Morphology,” in Mathe-
matical Morphology and its Applications to Image and
Signal Processing, H. J. A. M. Heijmans and J. B. T. M.
Roerdink, Eds. Kluwer Academic Publishers, 1998, pp.
27–34.

[8] F. G. Ortiz, F. Torres, J. Angulo, and S. T. Puente,
“Comparative study of vectorial morphological opera-
tions in different color spaces,” in Intelligent Robots
and Computer Vision XX, ser. SPIE Proceedings, D. P.
Casasent and E. L. Hall, Eds., vol. 4572, no. 1, Oct. 2001,
pp. 259+.

[9] A. Hanbury and J. Serra, “Mathematical Morphology in
the HLS Colour Space,” in BMVC, T. F. Cootes and C. J.
Taylor, Eds. British Machine Vision Association, 2001.

[10] ——, “Mathematical Morphology in the CIELAB
Space,” Image Analysis & Stereology, vol. 21, no. 3, pp.
201–206, Nov. 2002.

[11] G. Louverdis, M. I. Vardavoulia, I. Andreadis, and
P. Tsalides, “A new approach to morphological color
image processing,” Pattern Recognit., vol. 35, no. 8, pp.
1733–1741, Aug. 2002.

[12] V. De Witte, S. Schulte, M. Nachtegael, D. Van der
Weken, and E. Kerre, “Vector Morphological Operators
for Colour Images,” in Image Analysis and Recognition,
ser. LNCS, M. Kamel and A. Campilho, Eds. Springer
Berlin Heidelberg, 2005, vol. 3656, ch. 82, pp. 667–675.

[13] F. Flórez-Revuelta, “Ordering of the RGB Space with a
Growing Self-organizing Network. Application to Color
Mathematical Morphology,” in Artificial Neural Net-
works: Biological Inspirations — ICANN 2005, ser.
LNCS, W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny,
Eds. Springer Berlin Heidelberg, 2005, vol. 3696, ch. 60,
pp. 385–390.

[14] J. Angulo, “Morphological colour operators in totally
ordered lattices based on distances: Application to image
filtering, enhancement and analysis,” Comput. Vis. Image
Underst., vol. 107, no. 1-2, pp. 56–73, Jul. 2007.

[15] V. De Witte, S. Schulte, M. Nachtegael, T. Mélange,
and E. E. Kerre, “A Lattice-Based Approach to Math-
ematical Morphology for Greyscale and Colour Images,”
in Computational Intelligence Based on Lattice Theory,
ser. Studies in Computational Intelligence, V. Kaburlasos
and G. Ritter, Eds. Springer Berlin Heidelberg, 2007,
vol. 67, ch. 7, pp. 129–148.

[16] E. Aptoula and S. Lefèvre, “On lexicographical order-
ing in multivariate mathematical morphology,” Pattern
Recognit. Lett., vol. 29, no. 2, pp. 109–118, Jan. 2008.

[17] J. Serra, “The “False Colour” Problem,” in Mathematical
Morphology and Its Application to Signal and Image
Processing, ser. LNCS, M. H. F. Wilkinson and J. B.
T. M. Roerdink, Eds. Springer Berlin Heidelberg, 2009,

vol. 5720, ch. 2, pp. 13–23.
[18] J. Goutsias, H. J. A. M. Heijmans, and K. Sivakumar,

“Morphological Operators for Image Sequences,” Com-
put. Vis. Image Underst., vol. 62, no. 3, pp. 326–346,
Nov. 1995.

[19] E. Aptoula and S. Lefèvre, “α-Trimmed lexicographical
extrema for pseudo-morphological image analysis,” J.
Vis. Commun. Image Represent., vol. 19, no. 3, pp. 165–
174, Apr. 2008.

[20] M. D’Zmura, “Colour and the Processing of Chromatic
Information,” in Colour Perception: Mind and the phys-
ical world, R. Mausfeld and D. Heyer, Eds. Oxford
University Press, Nov. 2003, pp. 142–153.

[21] J. Astola, P. Haavisto, and Y. Neuvo, “Vector median
filters,” Proc. IEEE, vol. 78, no. 4, pp. 678–689, Apr.
1990.

[22] N. Bouaynaya and D. Schonfeld, “Theoretical Founda-
tions of Spatially-Variant Mathematical Morphology Part
II: Gray-Level Images,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, no. 5, pp. 837–850, May 2008.

[23] J. Serra, “Anamorphoses and function lattices,” in Image
Algebra and Morphological Image Processing IV, ser.
SPIE Proceedings, E. R. Dougherty, P. D. Gader, and
J. C. Serra, Eds., vol. 2030, no. 1, Jun. 1993, pp. 2–11.

[24] P. Soille, “Beyond self-duality in morphological image
analysis,” Image Vis. Comput., vol. 23, no. 2, pp. 249–
257, Feb. 2005.

[25] R. A. Peters, “A new algorithm for image noise reduction
using mathematical morphology,” IEEE Trans. Image
Process., vol. 4, no. 5, pp. 554–568, May 1995.

[26] J. B. T. M. Roerdink, “Group morphology,” Pattern
Recognit., vol. 33, no. 6, pp. 877–895, Jun. 2000.

[27] D. J. Robinson, A course in the theory of groups, ser.
Graduate Texts in Mathematics. Springer-Verlag, 1982,
vol. 80.

[28] M. Suzuki, Group theory, 1. Springer, 1982.
[29] R. J. Duffin and A. C. Schaeffer, “A Class of Nonhar-

monic Fourier Series,” Trans. Am. Math. Soc., vol. 72,
no. 2, pp. 341+, Mar. 1952.

[30] O. Christensen, Frames and Bases: An Introductory
Course. Birkhäuser ; Springer e-books, 2008.

[31] A. Ben-Israel and T. N. Greville, Generalized inverses:
theory and applicatons. New York: Wiley, 1974.

[32] J. J. van de Gronde and J. B. T. M. Roerdink, “Group-
invariant frames for colour morphology,” in Mathemat-
ical Morphology and Its Applications to Signal and
Image Processing, ser. LNCS, C. L. Luengo Hendriks,
G. Borgefors, and R. Strand, Eds., vol. 7883. Springer
Berlin Heidelberg, 2013, pp. 267–278.

[33] T. Ojala, T. Mäenpää, M. Pietikäinen, J. Viertola,
J. Kyllönen, and S. Huovinen, “Outex - New framework
for empirical evaluation of texture analysis algorithms,”
in Int. Conf. Pattern Recognit., 2002, pp. 701–706.

[34] J. J. van de Gronde and J. B. T. M. Roerdink, “Frames
for tensor field morphology,” in Geometric Science of
Information, ser. LNCS, F. Nielsen and F. Barbaresco,
Eds., vol. 8085. Springer Berlin Heidelberg, 2013, pp.
527–534.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



14 IEEE TRANSACTIONS ON IMAGE PROCESSING

[35] B. Burgeth, A. Bruhn, S. Didas, J. Weickert, and
M. Welk, “Morphology for matrix data: Ordering versus
PDE-based approach,” Image Vis. Comput., vol. 25, no. 4,
pp. 496–511, Apr. 2007.

Jasper van de Gronde studied computing science
at the University of Groningen, the Netherlands,
where he obtained his M.Sc. in 2011. He is currently
working towards his Ph.D. as a member of the Sci-
entific Visualization and Computer Graphics group
at the Johann Bernoulli Institute for Mathematics
and Computer Science of the University of Gronin-
gen. His research interests include mathematical
morphology, compressed sensing, and signal/image
processing in general.

Jos Roerdink studied biology and physics at the
University of Nijmegen, the Netherlands, where he
obtained his M.Sc. in theoretical physics in 1979.
Following his Ph.D. (1983) from the University of
Utrecht and a two-year position (1983-1985) as a
Postdoctoral Fellow at the University of California,
San Diego, both in the area of stochastic processes,
he joined the Centre for Mathematics and Com-
puter Science in Amsterdam, where he worked from
1986-1992 on image processing and tomographic
reconstruction. He was appointed associate professor

(1992) and full professor (2003), respectively, at the Johann Bernoulli Institute
for Mathematics and Computer Science of the University of Groningen,
where he currently holds a chair in Scientific Visualization and Computer
Graphics. His research interests include mathematical morphology, biomedical
visualization, neuroimaging and bioinformatics.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2300816

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


