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Abstract. Path openings are morphological operators that are used to
preserve long, thin, and curved structures in images. They have the abil-
ity to adapt to local image structures, which allows them to detect lines
that are not perfectly straight. They are applicable in extracting cracks,
roads, and more. Although path openings are very efficient to imple-
ment for binary images, the greyscale case is more problematic. This
study provides an analysis of the main existing greyscale algorithm, and
shows that although its time complexity can be quadratic in the number
of pixels, this is optimal in terms of the output (if the full opening trans-
form is created). Also, it is shown that under many circumstances the
worst-case running time is much less than quadratic. Finally, a new al-
gorithm is provided, which has the same time complexity, but is simpler,
faster in practice and more amenable to parallelization.

Keywords: path openings, algebraic morphological operators, attributes,
stack opening, time complexity.

1 Introduction

It is often useful to be able to extract long, but not necessarily thick, structures,
for example: guide-wires in X-ray fluoroscopy [2], roads in remote sensing images
[12], and cracks for non-destructive testing [7]. A possible way to do this is to
apply openings using fixed line structural elements [8]. However, these openings
can be inadequate if the features of interest are not perfectly straight, and they
can be fairly expensive if needed for multiple directions. Path openings [4] solve
these issues by looking for paths in a small number of purpose-made directed
acyclic graphs (DAGs) (see Fig. 1).

Path openings were originally introduced by Heijmans et al. [4], along with
an algorithm for the binary case that is roughly linear in the number of pix-
els. Unfortunately, the proposed algorithm does not transfer immediately to the
greyscale case. To compute the opening in the greyscale case, we would have to
perform the binary opening for every unique grey level, which becomes highly
inefficient for images with a large number of grey levels. Talbot and Apple-
ton [11] improved on this by only looking at the differences between adjacent
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Fig. 1. Illustration of the
DAGs used for path openings
(our implementations only use
graphs for the horizontal and
vertical directions).

Fig. 2. A set X ⊆ Ω (black points on the left) and
its path opening with k = 7 (black points on the
right). Points only contained in paths of length 6 or
less have been discarded (also see Fig. 3). The under-
lying adjacency graph is light grey, with black arrows
highlighting the edges that are part of paths.

threshold levels, which can greatly reduce the amount of work needed. Unfortu-
nately, despite several (additional) optimizations, the Talbot algorithm can take
minutes when processing large images on modern desktop machines, raising the
question whether it is possible to do better. Morard et al. [10] propose using
1D “path” openings on a carefully selected subset of possible paths to speed up
path openings, but this only gives an approximation of the full path opening.

Despite some educated guesses [1, 3, 11] (of the expected time complexity),
the time complexity of the algorithm developed by Talbot and Appleton (Tal-
bot’s algorithm for short) was never rigorously analysed. Here we show that the
opening transform (the most general output of the algorithm) has a space com-
plexity in O(min(d, |L|) |Ω|), and that the time complexity of Talbot’s algorithm
is restricted purely by the size of the opening transform. Here d is the depth of
the graph (typically the width/height of the image), L the set of grey levels in
the image, and Ω the image domain. This implies the time complexity could be
quadratic in the worst case, but only in the unlikely event that both the depth
d and the number of grey levels |L| can be considered of the same order as the
number of pixels |Ω|. We also introduce a new algorithm with the same time
complexity as Talbot’s algorithm, but which is simpler, faster in practice, and
more amenable to parallelization. We demonstrate a considerable (additional)
speedup when using a parallel implementation. Finally, it should be noted that
our results are not limited to 2D images: in all our derivations and algorithms
we simply assume the input is a weighted (sparse) directed acyclic graph.

2 Definitions

Path openings are constructed on directed acyclic graphs (DAGs). DAGs can
be defined using a binary relation ‘ 7→’. When x 7→ y (x adjacent to y) it means
that there is an edge from x to y. We can also define the set of successors and
predecessors for each pixel from the adjacency relationship.
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Definition 1. Let (Ω, 7→) form a DAG. We define the set of successors of a set
X ∈ P(Ω) as

δ(X) = {y ∈ Ω | x 7→ y for some x ∈ X}. (1)

The set of predecessors can similarly be defined as

δ̂(X) = {y ∈ Ω | y 7→ x for some x ∈ X}. (2)

Definition 2. Let a = (a1, a2, ..., ak) be a k-tuple of pixels, then a is called a
path of length k iff ai 7→ ai+1 for all i ∈ [1, k − 1].

The set of elements in a path a is denoted by σ(a). We can now define the
concept of a path opening.

Definition 3. Let Πk be the set of all paths of length k, and let X be the fore-
ground image. Then the path opening is defined by

αk(X) =
⋃
{σ(a) | a ∈ Πk and σ(a) ⊆ X}. (3)

The path opening αk gives the union of all sets of elements in k-tuple paths
contained in X (see Fig. 2). It can be established that it is indeed an opening, i.e.,
it is increasing, anti-extensive and idempotent [4]. It is important to note that
the final result is typically the union of the path openings for a set of different
DAGs. However, this is immaterial to our discussion, so we will not stress this
point further (a typical set of DAGs used is illustrated in Fig. 1).

The path opening can also be defined in an alternative manner. To this
end, define the opening transform λX : Ω → N as the mapping that gives the
maximum length of all paths restricted to X that visit a given pixel in Ω (so
λX(x) = 0 for any x 6∈ X). Here N denotes the set of all non-negative integers.
Using λX we then create the following definition of a path opening:

αk(X) = {x ∈ X | λX(x) ≥ k}. (4)

This simply preserves those pixels satisfying the path length criterion. Since only
path lengths are important in the path opening, we can efficiently compute a
path opening without keeping track of the paths themselves, as shown below.

In the greyscale case, we conceptually apply the binary algorithm to every
upper level set. This can be expressed using the greyscale opening transform
λf : Ω ×R→ N, which returns the maximum path length for a certain position
and threshold in a greyscale image f : Ω → R.

3 Sizing up the opening transform

The time complexity of an algorithm is always bounded from below by the space
complexity of its output. After all, it has to have the time to construct this
output. The algorithms for path openings that we discuss here (and that have
been discussed, to our knowledge, in the literature) all output the full opening
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transform, or are all capable of outputting the opening transform (without this
affecting their time complexity). In fact, we will see that their time complexities
can be given solely in terms of the size of the opening transform. Theorem 1 and
Corollary 1 give bounds for the size of the opening transform, and by extension
for the time complexities of the presented algorithms.

Suppose we have a greyscale image f : Ω → R and the associated opening
transform λf : Ω × R → N. How much data is necessary to represent this
opening transform? If we just look at a certain position x, then the mapping
λf (x) : R → N given by l 7→ λf (x, l) can be seen to be weakly decreasing.
That is, as the threshold level goes up, the maximum path length must go
down (because the upper level sets become smaller). This means λf (x) can be
represented using any set Λf (x) ∈ P(R × N) of pairs of grey levels and their
associated maximum path lengths, such that

λf (x, l) = sup{λ | (l′, λ) ∈ Λf (x) and l′ ≥ l}. (5)

When the set over which a supremum is computed is empty, the result is taken
to be zero (there is no path at this position and threshold level). It should be
clear that if Λf (x) and Λ′f (x) are two sets satisfying Eq. (5) (so both give rise to
the correct λf (x)), then Λf (x)∩Λ′f (x) must also satisfy Eq. (5). In fact, it can be
shown that this is true for the intersection of any set of sets that satisfy Eq. (5).
We can thus speak of the smallest set of pairs of grey levels and maximum path
lengths that satisfies Eq. (5), and in the remainder we will assume that Λf (x)
is in fact this smallest set of pairs. This means that it cannot contain two pairs
with the same grey level or maximum path length. With a finite number of pixels
|Ω|, we can now bound the space needed to represent the opening transform.

Theorem 1. If L is the set of grey levels in f : Ω → R and d is the maximum
path length in the DAG given by ‘7→’ on Ω, then the total number of pairs in
Λf : Ω → P(R × N) is bounded from below by |Ω| and from above by the class
O(min(d, |L|) |Ω|). Both bounds can be reached.

Proof. The lower bound follows from the fact that for each position x the path
length at threshold f(x) is greater than zero, implying that Λf (x) always con-
tains at least one pair. For the upper bound we simply prove that the number
of pairs in Λf (x) is less than or equal to min(d, |L|) for all x ∈ Ω, the statement
then follows by multiplying this bound by |Ω|. That |Λf (x)| is less than or equal
to the number of grey levels follows from the fact that we cannot have two pairs
in Λf (x) with the same grey level. Similarly, we cannot have more than d pairs
in Λf (x), since we cannot have more than d distinct positive integer path lengths
less than or equal to d (zero path lengths would not occur explicitly in Λf (x)).

To see that the lower bound can be reached, just consider a constant image.
There is then exactly one pair in Λf (x) for all x ∈ Ω. To prove that the upper
bound can be reached, consider an image that consists of a sequence of rows
with strictly increasing grey levels (but constant within each row), with edges
(only) between adjacent rows (see Fig. 1). In this case the pixels on the first row
have one pair in Λf (x), the pixels on the second row two pairs, and so on, for a
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total numbers of pairs in Θ(d |Ω|). If the grey levels stay constant after |L| ≤ d
rows, the total number of pairs is in Θ(min(d, |L|) |Ω|). ut

The above result shows that even on images with high bit depths, the size
of the path opening transform will typically not be quadratic in the number of
pixels, as d tends be O(

√
|Ω|). On the other hand, for low bit depths the size

will be linear in the number of pixels (albeit with a potentially high constant).
Still, the resulting space complexity can be worse than linear. One optimization
that has been applied in the literature is to consider all path lengths above a
certain threshold to be equivalent. If we know the path length threshold we will
be interested in, or at least some upper bound t, then we can define λtf (x, l) =

min(λf (x, l), t) and the associated Λt. Crucially, Λt would contain at most one
pair with a path length greater than or equal to t (as it is known that the path
length will be even greater for lower grey levels).

Corollary 1. If L is the set of grey levels in f , d is the maximum path length
in the DAG given by ‘ 7→’ on Ω, and t > 0 is the maximum path length threshold,
then the total number of pairs in Λt

f : Ω → P(R×N) is in O(min(t, d, |L|) |Ω|).

Proof. This follows from Theorem 1, except that we can now also constrain the
number of positive path lengths by t: at most t − 1 positive path lengths less
than t and at most one path length greater than or equal to t. ut

If we were to allow non-integer path lengths we get a bound in O(|L| |Ω|),
but a lot of work on path openings does use integer path lengths. In either case,
the reader might wonder whether it is possible to give better bounds. As shown
above, it is possible to provide examples for which the path opening actually does
require the amount of space suggested by the bounds derived above. On the other
hand, we would expect a typical image to require much less storage, so there is
definitely some room for making the above bounds more precise. Also, although
it seems doubtful that much could be improved in terms of representing the
opening transform at a specific position, it is definitely not beyond the realm
of possibility that there exists a more efficient representation of the opening
transform as a whole. We have not found one, however.

4 Algorithms

In this section we present three algorithms: the traditional binary algorithm,
Talbot’s algorithm, and our new stack-based algorithm.

4.1 Binary images

An algorithm which computes the binary path opening efficiently is given by
Heijmans et al. [4]. The idea is to do two sequential scans on the binary image,
computing the largest path length up to each pixel in opposite directions, and
then combining these results to compute λ. In the first scan we traverse all the
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Fig. 3. Computation of λ in the example shown in Fig. 2. From left to right: the forward
scan pass λ+, the backward scan pass λ−, the calculated length per pixel λ.

rows (or columns, or . . . ) of the image from top to bottom. Let λ+ : Ω → R
be the map which gives the maximum path length for each pixel x ∈ X based
only on its predecessors. To compute such a map we use the following relations
[4] (only for x ∈ X, for other pixels the λ’s are set to zero):

λ+(x) = max
y∈X|y 7→x

λ+(y) + 1, λ−(x) = max
y∈X|x 7→y

λ−(y) + 1. (6)

It was shown by Heijmans et al. [4] that by combining λ+(x) and λ−(x), we can
recover the maximum path length using the following relation (for x ∈ X):

λ(x) = λ+(x) + λ−(x)− 1. (7)

This notion is intuitive, as λ+(x) holds the maximum path length of all paths
ending in x, and λ−(x) holds the maximum path length of all paths starting
in x, so by combining them we recover the maximum path length through x.
We subtract one from the sum of the two partial path lengths to avoid counting
pixel x twice. Figure 3 shows an example of the computation of λ.

The above can be easily turned into an actual algorithm by topologically
sorting [5] the DAG and then applying Eq. (6) in (reverse) topological order.
This way the λ+ and λ− only need to be set once for each pixel.

4.2 Talbot’s algorithm

If we apply the algorithm described in the previous section to all upper level
sets of an image f : Ω → R, then we can find the path opening (transform) by
combining all those results. However, this could be quite expensive. Luckily, as
described by Talbot and Appleton [11], the algorithm described above can be
modified to only update λ+ and λ− based on the changes resulting from going to
one grey level to the next. This works by first sorting all grey levels and initial-
izing all λ± to the largest possible path length, and then applying Algorithm 1
for each grey level (and an analogous algorithm for λ−), in increasing order
of grey level. For each grey level, after λ+ and λ− are updated, the algorithm
goes through all the affected pixels and records any changes in per-pixel lists to
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Algorithm 1: Update of λ+.

Input : λ+ for the current grey level.
Output: λ+ for the next grey level.

1 Initialize the priority queue Q with all pixels at the current grey level.
/* Priorities compatible with the topological order of the DAG. */

2 while Q not empty do
3 remove smallest pixel x from Q
4 λ← 0
5 if f(x) above current grey level then
6 λ← maxy∈X|y 7→x λ+(y) + 1
7 if λ < λ+(x) then
8 λ+(x)← λ
9 push successors of y onto Q

build up the opening transform. Although presented somewhat differently from
the original, we will call the resulting algorithm “Talbot’s algorithm”. Instead
of computing the entire opening transform, it can also directly compute the
opening (but this does not affect the time complexity).

Theorem 2. Assume each position has O(1) predecessors/successors (the DAG
induced by ‘7→’ is sparse), and that the priority queue in Algorithm 1 allows
insertion and removal in O(log(|Q|)). Talbot’s algorithm then has a time com-
plexity of O(|Λf | log(|Λf |)), where |Λf | is taken to mean the total number of pairs
needed to represent Λf and f : Ω → R is the input image.

Proof. Disregarding the time needed to sort the grey levels, it can be seen that
asymptotically the running time is determined by the work done in Algorithm 1
(the amount of work done by the rest of the algorithm is dominated by the
amount of work done in the update steps).

The crucial observation is now that Λf (x) has a pair with the current grey
level if and only if x is processed when updating λ+ and/or λ− and while doing
so, the condition on Line 9 is true (or the analogous condition for λ−). Each
time this happens O(1) elements are pushed onto Q (due to the sparse graph
assumption), so if we look at all applications of Algorithm 1, the total number of
queue pushes and (thus) executions of the while loop must be in Θ(|Ω|+ |Λf |) =
Θ(|Λf |). Assuming a priority queue with O(log(|Q|)) insertion and removal, the
total amount of work done is then in O(|Λf | log(|Λf |)). Finally, we conclude that
sorting all grey levels requires at most O(|Ω| log(|Ω|)) time, so it does not alter
the time complexity. ut

The assumption that the DAG is sparse is fairly benign, as all existing use
cases (to our knowledge) satisfy this assumption. That the priority queue allows
O(log(|Q|)) insertion and removal is also fairly standard. In some cases (like the
typical DAGs used on images), it is even possible to get constant-time insertion
and removal, by grouping pixels into “rows” based on their depth in the DAG.
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We conjecture that in general it may be possible to get (amortized) constant-time
insertion and removal by using specialized data structures. In combination with
linear time sorting of all (integer) grey levels, this would put the time complexity
of Talbot’s algorithm in Θ(|Λf |).

It should be noted that some tweaks to Talbot’s algorithm can further re-
duce the time complexity by essentially restricting the opening transform as
in Corollary 1, as well as ignoring pixels whose path length dropped below a
certain threshold. It is currently not entirely clear how this affects the time com-
plexity of the algorithm. Also, although Luengo Hendriks [6] presents a mod-
ification of Talbot’s algorithm that is dimensionality independent, it does not
necessarily process the pixels in optimal order, leading us to start from Talbot’s
algorithm instead (note that our presentation of Talbot’s algorithm is also di-
mensionality independent). Similarly, if we look at Talbot’s code, it loops over all
rows/columns in each update step, while our code only visits those rows/columns
where it has to do something. We do not expect these implementation differences
to make a huge difference in performance, but it should be understood that due
to these differences actual implementations might have slightly different time
complexities from the one presented here.

4.3 Stack-based path openings

Talbot’s algorithm is essentially optimal in terms of its time complexity, but
a truly optimal implementation (without the logarithmic factor) can be quite
complex, and the algorithm has a fairly random memory access pattern, which
is undesirable in most modern computer architectures. In this section we present
an algorithm that suffers from none of these problems, based on the 1D algorithm
presented by Morard et al. [9].

The basic idea is to use the traditional binary algorithm, but instead of
having the scalar λ+(x) and λ−(x), we use sets Λ+(x) and Λ−(x), represented
by non-redundant ordered lists of pairs of grey levels and path lengths. The 1D
algorithm only needs to push and pop elements, so can use a traditional stack.
Our algorithm does the same, but also needs to merge lists. We will still refer to
the lists as stacks though. Algorithm 2 details the algorithm needed to compute
Λ+. Λ− is computed in much the same way in a second pass over the data, and
since all the lists are already sorted, merging Λ+ and Λ− to get the final opening
transform can be done easily and efficiently. Note that the merge procedures
should leave their output sorted and without any redundant pairs. This can be
accomplished using a technique similar to the one used in merge sort.

Theorem 3. Assume each position has O(1) predecessors/successors (the DAG
induced by ‘7→’ is sparse), the stack-based path opening then has a time complex-
ity in Θ(|Λf |), where f : Ω → R is the input image.

Proof. First of all topological sorting can be done in O(|Ω|) [5], so will not be a
bottleneck. Similarly, merging the two partial path opening transforms into the
final answer just requires iterating over the partial transforms (once), so also
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Algorithm 2: Computation of Λ+.

Input : The input image f .
Output: The partial opening transform Λ+.

1 for x in Ω in topological order do

2 Λtemp
+ ← merge({Λ+(y) | y 7→ x})

3 λtemp
+ ← max({0} ∪ {λ | (l′, λ) ∈ Λtemp

+ and l′ ≥ f(x)}) + 1

4 Λ+(x)← {(l, λ+ 1) | (l, λ) ∈ Λtemp
+ and l < f(x)} ∪ {(f(x), λtemp

+ )}

does not add anything to the time complexity. It remains to examine the time
spent in Algorithm 2.

Algorithm 2 visits each pixel exactly once. For each pixel it first merges the
partial transforms (stacks) from its predecessors (successors if computing Λ−),
then it computes λtemp

+ = λ+(x, f(x)), and finally it makes sure f(x) is the
highest grey level in the new stack, while updating path lengths for grey levels
below f(x). Since the number of stacks being merged in Line 2 is in O(1), we can
assume the merge procedure to take time linear in its input. Since each stack is
involved in O(1) merges, the total time taken up by all merges (in both passes)
is in O(|Λ+|+ |Λ−|). Lines 3 and 4 can be implemented together with an overall
time complexity in Θ(|Λ±(x)|). Summarizing, the total amount of work done by
Algorithm 2 (in both passes, one for Λ+ and one for Λ−) is in Θ(|Λ+|+ |Λ−|).

We now note that |Λf | ≤ |Λ+|+ |Λ−| ≤ 2 |Λf |. The lower bound follows from
the fact that (by definition) every pair in Λf must correspond to a pair in Λ+

or Λ−. The upper bound can be shown similarly, by considering that every pair
in Λ+ and Λ− must correspond to a pair in Λf . In particular, because of the
monotonicity of the (partial) path opening transforms we cannot have a pair in
Λ+ “cancel out” a pair at the same grey level in Λ−. We can now conclude that
the time complexity of the stack-based path opening is indeed in Θ(|Λf |). ut

The optimization referred to in Corollary 1 can be applied to the stack-based
algorithm very easily, preserving the output sensitivity of the algorithm. The
other optimization applied by Talbot and Appleton [11] seems to be harder to
apply to the stack-based algorithm though. The problem is that this optimization
discards any points whose total path length drops below the desired threshold,
and in the stack-based algorithm we only have access to the total path length
(for any grey level) after all computations have been done. For now it is not
clear how this effects the time complexity of the algorithm. In terms of the space
complexity, Talbot’s algorithm is the clear winner though, as the stack-based
algorithm always has to build at least part of the opening transform.

The stack-based algorithm will process an image row by row (instead of
“row” one can also read column, or diagonal), and within each row the results
only depend on the previous row. This allows us to compute the values within a
single row in parallel. This kind of parallelization is somewhat limited by needing
a synchronization point after each row, but as the next section demonstrates, it
still allows for a very decent speedup using a small number of cores. Applying this
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Fig. 4. Running times of the Talbot algorithm, and the stack-based opening (both
generating the full opening transform). (a) On an 8-bit image, and (b) on an artificial
32-bit image representing a gradient. Code available at http://bit.ly/1BTC2Je.

technique to Talbot’s algorithm would be possible, but would be complicated by
not knowing beforehand what pixels need to be processed in each row. Also, this
would involve (even) more synchronization, as Talbot’s algorithm uses multiple
(simpler) passes rather than one pass (per direction). It would of course also be
possible to compute Λ+ and Λ− independently, as well as to process each of the
directions independently, but these measures would apply equally well to either
algorithm and are not evaluated here.

5 Results

To assess the performance of the path openings, we created an application in
C++ which implements all of the previously discussed algorithms. In particular,
we implemented the Talbot opening as discussed in Section 4.2, and the newly
introduced stack opening as discussed in Section 4.3. Although we use our own
implementation of Talbot’s algorithm, it was verified that our implementation
has similar or better performance. Although all the algorithms are applicable
to arbitrary DAGs, we decided to implement the algorithms using the graphs
illustrated in Fig. 1. Note that in the interest of simplicity we only used the
horizontal and vertical ones, while Talbot originally included the diagonal ones
as well. For the purposes of seeing which implementation was faster the diagonal
ones were disabled in Talbot’s implementation. This decision does not affect the
above analysis in any way (since it holds for arbitrary sparse DAGs), and we
also do not expect any major influence on the results in this section either (our
parallelization strategy could be slightly less efficient on these other DAGs).

http://bit.ly/1BTC2Je
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The algorithms were tested for their performance on an Intel R© Xeon R© E5-
2630 with 32 logical cores and 512 GB of memory. The tests measure the per-
formance of the complete opening transform. The differently sized images were
generated by downscaling the test images using bilinear interpolation. Both 8-
bit images and 32-bit images were assessed, where the 32-bit image is created
from a gradient image where all the pixel values are strictly increasing from top
to bottom and left to right. This allows us to see the worst-case behaviour of
the algorithms and confirm our bound. The running times of the stack-based
algorithm and Talbot’s algorithm are shown in Fig. 4.

On sparse graphs, both the stack opening and the Talbot opening have a time
complexity of O(min(d, |L|) |Ω|), where |L| ≤ 256, so we expect (roughly) linear
behaviour. This is confirmed by Fig. 4a. Figure 4b, however, shows superlinear
behaviour. This is expected, as the number of grey values is no longer the limiting
factor. Since d is is equal to the width or the height of the image, the time
complexity should be in O(n

√
n) (with n the number of pixels |Ω|). The function

f(n) = c n
√
n was fitted to the 32-bit results using least squares, where c is the

fitted parameter. We indeed see roughly n
√
n behaviour in the results.

Both in the single-threaded case and in the multi-threaded case, the stack-
based path opening outperforms Talbot’s algorithm, by a factor of roughly 4
(or 25 using twelve threads). This is likely because of the data locality of the
algorithm, as the algorithm walks more or less sequentially through the image,
rather than having to reprocess certain sections repeatedly.

6 Conclusion

We have shown that the space complexity of the path opening transform is in
O(min(d, |L|) |Ω|), with d the depth of the graph being processed, L the set of
grey levels in the image, and Ω the image domain. We also showed that although
there might be room for refinement, it is possible to construct graphs that reach
this bound. Next we analysed the time complexity of a paraphrased version of the
algorithm proposed by Talbot and Appleton [11], and found that it is (depend-
ing on the exact implementation) optimally output-sensitive, assuming the full
opening transform is output. Finally, we presented a new algorithm that is easier
to implement (at least in optimal fashion), is still optimally output-sensitive, al-
lows for easier parallelization, and is significantly faster in practice. We presented
results demonstrating our new algorithm outperforming an implementation of
Talbot’s algorithm by a factor of roughly 4 (and 25 when using parallelization on
12 cores). We also experimentally demonstrated that for high bit-depth images
the performance of the algorithms can indeed scale superlinearly.

In future work it would be interesting to take a further look at various op-
timizations that one can apply if only part of the opening transform (or indeed
just the actual opening) is needed. It would also be interesting to see whether the
opening transform can be stored more efficiently than we propose here, and if so,
whether this can actually lead to faster algorithms. Additionally, it would be in-
teresting to try adapting the stack-based algorithm to robust [3] and incomplete
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[4] path openings, or other schemes for making path openings more robust to
noise. Different schemes for parallelization could also be explored (for example
by dividing the grey levels, rather than pixels, among different processors).
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