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Abstract

The Discrete Wavelet Transform (DWT) has a wide range

of applications from signal processing to video and im-

age compression. This transform, by means of the lifting

scheme, can be performed in a memory and computation

efficient way on modern, programmable GPUs, which can

be regarded as massively parallel co-processors through

NVidia’s CUDA compute paradigm. The method is scal-

able and the fastest GPU implementation among the meth-

ods considered. We have integrated our DWT into the Dirac

Wavelet Video Codec (DWVC), of which the overlapped

block motion compensation compensation and frame arith-

metic have been accelerated using CUDA as well.

1 Introduction

The Discrete Wavelet Transform (DWT) has been widely
applied in signal and image processing. To meet the com-
putational requirements for systems that handle very large
throughputs, for example in real-time multimedia process-
ing, custom hardware has been developed. Another option
is to use a more general, widely available and relatively
cheap platform, such as GPU hardware.

We recently developed a hardware-accelerated DWT al-
gorithm that makes use of NVidia’s Compute Unified De-
vice Architecture (CUDA) parallel programming model [6]
to fully exploit the new features offered by the Tesla ar-
chitecture, introduced in 2006 with the GeForce 8800
GPU [14]. It is a highly parallel computing architecture
available for systems ranging from laptops to high-end com-
pute servers. Our DWT implementation is based on the Lift-
ing Scheme [11] which reduces the number of arithmetic
operations compared to the straightforward convolution-
based approach. Also, the memory usage is reduced by fac-
toring the wavelet transform into a sequence of steps that
can be performed in-place. This is a great advantage given
the generally limited amount of high-speed memory and the
large data sizes that have to be processed in multimedia ap-
plications. The method is scalable and the fastest GPU im-
plementation available to date.

In this paper, we will show how to integrate our accel-
erated wavelet lifting into an implementation of the Dirac
Wavelet Video Codec (DWVC) [2]. This codec, first in-
troduced by the BBC, is gaining popularity as a free, open
source alternative to H.264 [15]. It is a modern video com-
pression scheme that employs wavelet transforms for inter-
and intra- frame image compression, and makes use of mo-
tion compensation for compact storage of the difference be-
tween successive frames. Moreover, it is on-par with other
modern video codec systems, e.g., H.264, which has gained
wide acceptance in many applications like Internet broad-
casting. It is a good alternative because the usage of H.264
incurs royalty fees, and while these costs are manageable
for commercial applications, they could become prohibitive
for public domain initiatives such as video archives. DWVC
provides an alternative that is free of these fees and is equal
in compression rates and quality [13]. Another advantage of
wavelet-based video compression is that, as it uses a global
transform, it does not suffer from the block artifacts other-
wise seen in traditional DCT-based codecs.

The acceleration of video decoding using GPU hard-
ware was also studied by Shen et al. [10], with the aim
to provide an architecture for video coding on the GPU,
with special focus on the motion compensation and frame
arithmetic parts. As they were programming the GPU us-
ing vertex and fragment shaders, the authors had to over-
come the additional complexity of mapping the video de-
coding process to the rendering pipeline. In this paper we
employ a more general programming architecture, which
means that we can focus on the actual parallel implementa-
tion of the algorithms. Doing so, we achieve speedups of a
factor 13 for the image operations, and a factor 5.4 for the
entire pipeline. In addition to the wavelet transform, we will
discuss how the motion compensation and frame arithmetic
steps of this codec can be accelerated using CUDA. Our
proposed algorithm applies similarly to other wavelet-based
video coding schemes that make use of the lifting scheme,
such as [7–9, 12].

The remainder of this paper is organized as follows. In
Section 2 we summarize the essentials of the hardware-
accelerated DWT algorithm, including a brief discussion of
the CUDA programming environment and execution model.
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Then in Section 3 we give the details of our implementation
of the DWVC in CUDA on the GPU. Section 4 presents
benchmark results and analyzes the performance of our
method. Finally, in Section 5 we draw conclusions and dis-
cuss future avenues of research.

2 CUDA-based implementation of the DWT

2.1 CUDA overview

NVidia’s CUDA programming environment allows the
GPU to be programmed through traditional CPU means: a
C++-like language and compiler. The usage of CUDA does
not add any overhead over rendering-based approaches, as it
is a native interface to the hardware, and not an abstraction
layer. CUDA broadly follows the data-parallel model of
computation [6]. The CPU invokes the GPU by calling a
kernel, which is a special C++ function.

The lowest level of parallelism is formed by scalar exe-
cution units called threads. A large number of threads can
run in parallel. Threads are organized in blocks, and the
threads within a block can share data through fast shared
memory. It is also possible to place synchronization points
(barriers) to control flow between all threads within a block.
The highest performance is realized if all threads within
a warp of 32 consecutive threads take the same execution
path. If flow control is used within a warp, and the threads
take different paths, they have to wait for each other (di-

vergence). The highest level, which encompasses the en-
tire kernel invocation, is called the grid, which consists of
blocks that execute in parallel (if multiprocessors are avail-
able). Currently blocks within a grid cannot communicate
with each other.

The CUDA architecture provides access to several kinds
of memory. Global (device) memory can be read and writ-
ten in any order (random access). Registers are limited per-
thread memory locations for local storage with very fast ac-
cess. Shared memory is a limited per-block chunk of mem-
ory which is used for communication between threads in a
block. Texture memory is a special case of device memory
which is cached for locality. Constant memory is cached
memory that can be written by the CPU and read by the
GPU. To achieve highest throughput, consecutive memory
locations must be simultaneously accessed by the threads.
This is called memory access coalescing [6], and it repre-
sents one of the most important optimizations in CUDA.

2.2 Wavelet lifting

In wavelet lifting an input signal or image is decomposed
into an approximation band x and one or more detail bands

ys using polyphase decomposition, see Fig. 1. In lifting
theory, this polyphase decomposition is a (trivial) wavelet
called the lazy wavelet transform, which splits the signal
into two parts, containing the even and odd coefficients, re-
spectively. A prediction step computes a prediction P (x)
from the approximation band x, after which the predicted
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Figure 1. Classical lifting scheme with one

detail band. x0 is the original image, WT is

the lazy (trivial) wavelet transform that trans-

forms the signal into approximation band x
and detail band y, P is the prediction step, U

the update step. (WT)−1 is the inverse of the

trivial wavelet transform.

values are subtracted from the detail band ys, to produce a
new detail band y�s, i.e.,

y�s = ys − P (x). (1)

An update step updates the approximation band x using the
detail bands ys,

x� = x + U (ys) . (2)

The entire scheme is reversible by applying the steps in re-
verse order while interchanging − and +. For a multilevel
transform the process is repeatedly applied to the approxi-
mation bands, until a desired number of decomposition lev-
els is reached. Wavelet lifting has the additional property
that it can be done entirely with integer operations, result-
ing in a lossless scheme when applied to discrete images.

2.3 Wavelet lifting in CUDA

For separable wavelet bases in 2-D it is possible to split
the operation into a horizontal and a vertical filtering step.
For each filter level, a horizontal pass performs a 1-D trans-
form on each row, while a vertical pass computes a 1-D
transform on each column. Each row can be handled in par-
allel during the horizontal pass, and then each column can
be handled in parallel during the vertical pass. In CUDA
this implies the use of two kernels, one for each pass.

In the horizontal pass, each block starts by reading a line
into shared memory using so-called coalesced reads from
device memory, executes the lifting steps in-place in fast
shared memory, and writes back the result using coalesced

writes. Some duplication of border elements is necessary
to properly implement the boundary conditions. Each step
is dependent on the output in shared memory of the pre-
vious step, therefore the threads within a block have to be
synchronized every time before the next step can start. By
reorganizing the coefficients [3] we can achieve higher ef-
ficiency for successive levels after the first transformation.
To be able to coalesce, it must be possible to read back the
coefficients consecutively, thus one writes the approxima-
tion and detail coefficients back to separate halves of the
memory, de-interleaving them.
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For the vertical pass we could use the same strategy as
for the horizontal pass, substituting rows for columns. But
we have shown [14] that a more efficient solution is possible
which makes optimal use of coalesced memory access. In-
stead of having each block process a column, we make each
block process multiple columns by dividing the image into
vertical slabs. The number of columns in each slab is such
that the resulting number of slab rows can still be coalesced.
Each thread block then processes one of the slabs, so that a
thread can do a coalesced read from each row within a slab,
do filtering in shared memory, and do a coalesced write to
each slab row.

Because the shared memory in CUDA is usually not
large enough to store all columns, we use a sliding window
within each slab. The dimensions of this window need to
be such that each thread in the block can transform a signal
element, and additional space to make sure that the support
of the wavelet does not exceed the top or bottom of the win-
dow.

3 Accelerating the Dirac Video Codec

The weakest point of DWVC is currently its execution
time [13]. Real-time decoding is limited to smaller res-
olutions (such as 800 × 600), even for the latest proces-
sors. The relatively heavy computational load of the global
wavelet transform compared to more traditional block-wise
Discrete Cosine Transforms (DCT) has prevented wavelets
from being used in mainstream video compression. In an
aim to speed up decoding, we implemented all the image
operations of DWVC on the GPU, including the wavelet
transform, motion compensation and frame arithmetic. As
the CPU implementation (called Schrödinger) is already
heavily optimized, it provides a good basis for performance
comparison of our GPU wavelet lifting algorithm.

A DWVC stream consists of intra- and inter-frames.
Intra-frames are self-contained images, while inter-frames
store the difference with respect to one or two reference
frames.

Decoding consists of three major parts (Fig. 2): arith-
metic decoding, motion compensation, and inverse wavelet
transform. Arithmetic decoding takes the bitstream and ex-
tracts parameters, motion vectors and wavelet coefficients
needed to reconstruct the video sequence. It reverses the
work of the entropy coder, which removes statistical redun-
dancies from the data by representing common values with
shorter bit sequences. This part is most conveniently han-
dled by the CPU, as there is very little inherent parallelism
in the process.

Motion compensation exploits the similarity between
neighboring video frames. It reconstructs a frame from one
or two frames preceding the current one in the stream. Mo-
tion compensation is done both on a global and local level.
Global motion compensation seeks to describe movements
of the camera, while local motion compensation acts on a
per-block basis for smaller moving objects.

The images (for intra-frames) and residue (for inter-

frames) are stored as wavelet coefficients in a per-
component, per-subband basis in the video stream. Sub-
bands that are zero or mostly zero are encoded as empty
subbands, represented by only one bit. Only the non-zero
subbands are transferred to the hardware. The wavelet fil-
ters that are used in the default settings of the encoder are
the Deslauriers-Dubuc (9, 3) filter [4] for intra-frames and
the LeGall (5, 3) filter [5] for inter-frames. A full list of
wavelet filters used in DWVC can be found in [2].

The result of the motion compensation process is a pre-
diction. The reconstructed residue is added to this predic-
tion to form the final decoded frame which is shown on the
screen. If the frame was marked as a reference for a future
frame, it is stored until the stream tells it to retire.

As we already mentioned, we implemented the wavelet
transforms, motion compensation and frame operations like
adding, subtracting, conversion and (un)packing on the
GPU. In the upcoming sections we will discuss these oper-
ations, and show how they can be applied to decoding and
encoding of video data.

3.1 Motion compensation

Traditional motion compensation algorithms divide the
image into equally-sized, disjoint blocks of pixels. This has
the disadvantage that there can be strong discontinuities be-
tween neighboring blocks, and moreover, the prediction ac-
curacy on block edges is low. The residual difference image
should be as smooth as possible to achieve the best com-
pression, as jumps and discontinuities in the image cause
large values in the detail subbands after the wavelet trans-
form, which in turn results in a less compact representa-
tion. Overlapped Block Motion Compensation (OBMC) [1]
overlaps neighboring blocks a bit, blending them together in
the area which they share, thus increasing prediction accu-
racy.

The coverage of the image by blocks is defined using
four parameters. The first two, xlen and ylen, define the
size of the blocks in the horizontal and vertical direction.
The second two parameters, xsep and ysep, define the
separation of the beginning of a block to the beginning of
the next one in the x- and y-direction, respectively. OBMC
is a generalization of traditional motion compensation, as it
equals standard disjoint motion compensation if xlen =
xsep and ylen = ysep.

One or two reference frames can be arbitrarily selected
from preceding or subsequent frames. For example, it is
possible to do a blending between the previous and the next
frame, useful in the case of a fade-in or fade-out, but it is
also possible to use an image a few frames back for refer-
ence, if that image provides a better match to the current
one. If two reference frames are used, these are blended
together with weights w1 and w2.

A motion vector is a two-dimensional vector that stores
the displacement of a block as compared the the reference
frame. For example, if the previous frame is used as a ref-
erence, and an object moved two pixels to the right since
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Figure 2. Overview of decoding a DWVC stream. The steps are: arithmetic decoding, motion com-

pensation, and inverse wavelet transform.

the last frame, the motion vector for the block containing
the object would be (2, 0). Sub-pixel precision is supported
by interpolating the reference frame using a bicubic spline
filter. This fits perfectly to texture mapping hardware, if one
stores the reference frames as textures.

As each pixel of the resulting image is computed inde-
pendently, motion compensation is very well suited to a par-
allel GPU implementation. Each pixel can be part of up to
four motion compensation blocks per reference frame. The
value of an output pixel (x, y) is calculated by

I (x, y) =
�

m∈M

wm (x, y)
�
w1R1 (x + mx1, y + my1)

+w2R2 (x + mx2, y + my2)
�
, (3)

in which I is the output frame, M is the set of all blocks,
wm (x, y) is the weight of block m at position (x, y), w1

and w2 are the reference frame weights, Ri are the refer-
ence frames, and (mxi,myi), i = 1, 2, are the two motion
vectors for block m. The block weights are defined so that

�

m∈M

wm (x, y) = 1,

and the weights have a linear fall-off at the block edges.
The most obvious approach to a GPU implementation is

to divide the image into equally-sized CUDA blocks, whose
pixels are then processed by a CUDA thread. This thread

Figure 3. Dividing the frame into four block

types according to the number of overlapping

blocks, for efficient motion compensation.

determines which motion compensation blocks overlap a
pixel, and calculates the output value using Eq. (3).

Such an approach will result in quite some flow con-
trol per pixel, and as neighboring pixels might need values
from different motion compensation blocks, thread diver-
gence arises. In other words, in the optimal setting threads
within each CUDA block should perform the same opera-
tions, while different CUDA blocks can do different com-
putations. An improved algorithm divides the image into
regions according to the number of overlapping blocks and
orientation of overlap (Fig. 3); in the center of the blocks,
it suffices to take a sample from one block. Then there are
the cases in which two blocks overlap, horizontally or ver-
tically. Here, the two blocks need to be blended together
linearly, so that there is a smooth transition. And finally
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there are the diagonal overlaps where four blocks overlap,
which must be blended together. A bilinear blending is used
to create a smooth transition here.

Therefore, for each region, we know exactly how many,
and which blocks it depends on, and how to blend the
blocks. Thus, regions can be handled in parallel, but each
needs to be handled in a different way. In CUDA, differ-
ent blocks can execute different kernels when a large con-
ditional statement is put around them that depends on the
block identifier. As the threads within the block all take the
same path, no divergence is introduced. To use this, we pass
a block type parameter to each CUDA block. This block
type tells the kernel which of the four regions mentioned
before should take part in the computation. As CUDA sup-
ports scattered writes, each block can write to the part of the
image that it computed.

The motion vectors themselves can be passed to the ker-
nel through an array in constant memory, or by using a tex-
ture. We noticed that using a texture is significantly faster
than constant memory in a case like this, where each thread
potentially accesses a different location, so this is preferred
to the other approach. Also, unlike constant memory, tex-
tures have no 64KB limit.

3.2 Frame arithmetic

The frames resulting from the inverse wavelet transform
and the motion compensation are added together to com-
pute the resulting frame. All computations are done on 16-
bit per component, but the final rendering needs an 8-bit
image, so the values are clamped between 0 and 255. The
output of the algorithm can be directly sent to a texture,
without having to pass through the host CPU, by using the
CUDA-OpenGL interoperability API. This texture can then
be rendered on a quadrilateral to show the frame. If the
frame is marked as a reference frame, a copy of the texture
is kept for use in a later motion compensation stage.

The fact that DWVC uses 16-bit integers instead of 32-
bit complicates the implementation, as both shared and
global memory access is geared toward 32-bit values. Two
16-bit integers can be combined into a 32-bit read only as
long as the address is aligned to four bytes, which means
that reading or writing cannot start from an odd column. To
get around this constraint, a one-column border at the left or
right of the rectangle must be processed using 16-bit mem-
ory operations. Even though this gives some overhead, it is
much faster than using only 16-bit memory accesses.

4 Performance results

The benchmarks in this section were run on a machine
with a Dual Core AMD Opteron(tm) Processor 280 and a
NVidia GeForce GTX280 graphics card, using CUDA ver-
sion 2.2 for the CUDA programs. The codec was bench-
marked in single-threaded mode. Using multiple threads
on a multi-core machine would increase the performance of

both the CPU and GPU implementations, but the coordina-
tion involved in using a GPU from multiple threads, though
it became possible in version 2 of CUDA, is quite difficult.
For the CUDA implementation, the result was not copied
back to the CPU after each frame, as we used direct render-
ing through OpenGL textures.

In Table 1 we compare the overall performance of the
DWVC accelerated by our GPU implementation to the op-
timized CPU implementation. The experiment was per-
formed using two HD video sequences and one lower res-
olution sequence. Our method runs at an average of 56.4
frames per second for a 1920 × 1080 sequence, while the
CPU version runs at 10.5 frames per second on the same
video sequence. This means we achieve a speedup of 5.4 of
the entire process.

A breakdown of the computation time into different
stages for two different video sequences is shown in Table
2. To make a valid comparison of the total time spent in
each stage, the CPU and GPU were synchronized between
stages. This prevents overlap in computation and thus re-
sults in a somewhat lower overall performance. Stage 1
performs motion compensation (Section 3.1), and is a fac-
tor 8 to 12 faster in our CUDA implementation. Stage 2
performs arithmetic decoding of motion vectors and is the
same in both implementations. Stage 3 decodes the wavelet
subbands from the input stream. This stage is a bit slower
for the CUDA version, because it includes copying the non-
zero subbands to GPU memory. Stage 4 performs the in-
verse integer wavelet lifting transform (Section 2.2) on the
decoded residue, and is a factor 9 to 13 faster in the CUDA
implementation. Stage 5 combines the motion compensa-
tion result and residue (Section 3.2), and is a factor 10 to
28 faster in the CUDA implementation. Stage 6 performs
upsampling of reference frames for sub-pixel motion com-
pensation, and is a factor 10 to 17 faster in the CUDA im-
plementation.

By excluding DECODE (arithmetic decoding) stages,
subtracting 12.64 from both totals for the sequence in Ta-
ble 2, one can determine the speedup of the GPU acceler-
ated operations compared to their CPU counterpart. This
amounts to a factor of about 13.

The frame-rate achieved with our method (56.4) allows
for playback of high definition video significantly faster
than strictly needed for playback of those movie sequences
(25).

5 Conclusion

In this paper, we showed how to accelerate the Dirac
Video Codec by a fast wavelet lifting implementation on
graphics hardware using CUDA. The method maximizes
coalesced memory access. We also accelerated the motion
compensation and frame arithmetic stages of this codec.

The experiments on high definition video sequences have
demonstrated that one can achieve a speedup factor of 5.4
for the entire decoding process including the CPU steps,
and of 13 times for just the GPU part. In our benchmark we
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Table 1. Performance in frames per second

(FPS) for decoding various DWVC video se-

quences with: (i) Schrödinger CPU imple-

mentation; (ii) Our CUDA implementation

Sequence Frame size CPU CUDA

Big Buck Bunny trailer 1920× 1080 10.5 56.4
Elephant’s Dream 1024× 576 33.7 125.6
2012 movie trailer 1920× 800 13.2 71.2

Table 2. Big Buck Bunny trailer (813 frames,

1920 × 1080) decoded with: (i) Schrödinger

CPU implementation; (ii) Our CUDA imple-

mentation

Stage CPU (s) CUDA (s)

1 MOTION DECODE 0.64 0.64
2 MOTION RENDER 16.16 1.33
3 RESIDUAL DECODE 12.00 12.94
4 WAVELET TRANSFORM 22.52 1.63
5 COMBINE 11.27 0.39
6 UPSAMPLE 14.53 0.85

Total 77.13 17.76

could playback a 1080p resolution video at 56.4 frames per
second.

As the decoding stages that remain on the CPU are quite
involved, further work could involve the acceleration of
the arithmetic decoding on (future) GPU hardware, or the
development of statistics-based data compression methods
that are more paralellizable.
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