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Abstract

Multidimensional projections (MPs) are key tools for the analysis of multidimensional data. MPs reduce data dimensionality
while keeping the original distance structure in the low-dimensional output space, typically shown by a 2D scatterplot. While
MP techniques grow more precise and scalable, they still do not show how the original dimensions (attributes) influence the
projection’s layout. In other words, MPs show which points are similar, but not why. We propose a visual approach to describe
which dimensions contribute mostly to similarity relationships over the projection, thus explain the projection’s layout. For
this, we rank dimensions by increasing variance over each point-neighborhood, and propose a visual encoding to show the
least-varying dimensions over each neighborhood. We demonstrate our technique with both synthetic and real-world datasets.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User Interfaces—

1. Introduction

The analysis of multidimensional data is important in many areas
like text mining and business intelligence. Such datasets have hun-
dreds (or more) data points or observations, each having n (tens
up to hundreds of) measured dimensions or attributes. Multidimen-
sional projections (MPs) are often used for tasks such as finding
groups of similar observations. MPs project the nD observations to a
low-dimensional space, typically 2D, keeping the distance-structure
of the original nD points as much as possible. Visualizing the 2D
MP output by e.g. scatterplots lets one easily find groups of similar
points, correlations, and outliers [SMT13]. While such visualiza-
tions tell us which points are similar, they do not tell us why.

We address this by enriching 2D MP scatterplots with explana-
tory visuals that highlight the key dimensions that make closely-
projected points similar. We compute such explanations over all
point neighborhoods of a 2D projection and render them by image-
based techniques. The result is a smooth color-and-luminance map
that partitions the 2D projection into same-explanation regions. A
level-of-detail parameter allows controlling the scale at which ex-
planations are provided and also to filter out noise. We demonstrate
our method on several real-world high-dimensional datasets.

2. Related Work

For a dataset D = {p1, . . . ,pN} ∈ Rn of N n-dimensional elements
pi = (p1

i , . . .p
n
i ), a multidimensional projection (MP) performs the

transformation P : Rn→ Rm, where m is a low-dimensional space,
typically 2. The projected elements DP = {qi = P(pi ∈D)} are next
typically shown as an mD scatterplot. Explaining multidimensional
projections is an important problem in visual analytics. Methods
designed to this end can be classified in three groups, as follows.

Quality maps explain projections by showing how much they cap-
ture the similarity structure of the nD data. Schreck et al. compute
a score for each projected point based on the stress measure of its
neighborhood, and create a continuous 2D error map showing how

the projection error varies [SvLB10]. This idea is extended to maps
showing false neighbors (points projected too closely to their neigh-
bors) and missing neighbors (points too far away from their neigh-
bors ) [MCMT14]. Pagliosa et al. color-code the value of quality
measurements on a family of projections and their interpolation, to
show differences between projections vs a particular error distribu-
tion and also to provide alternative mappings between distinct pro-
jections [PPM∗15]. Showing the type and distribution of projection
errors gives detailed insight in a projection’s quality with little or
no user intervention. However, assume a good-quality projection in
which we see several dense point-groups: Such techniques do not
tell us what these groups mean.

Interactive approaches explain MPs by showing additional infor-
mation on-demand on user-selected point groups to help one define
their meaning. The simplest such tool shows the dimension values
of the point under the mouse in a tooltip. By brushing a point-group,
one can see which dimensions are most similar and thus likely cap-
ture the group’s meaning. ForceSPICE uses a force-directed spring
model to lay out a scatterplot of textual elements [EFN12]. The
content similarity of each document can be further inspected and
the user can incrementally add annotations over the layout or high-
light specific text words. These actions update the spring model to
change the layout, to better reflect the user’s mental model. Cuadros
et al. [CPMT07] use a phylogenetic tree algorithm to project docu-
ments by placing similar ones in close nodes of the tree. Next, users
can execute a topic extraction algorithm which automatically labels
selected tree branches to guide exploration. Such approaches ex-
plain an MP on several levels of detail, but require user interaction
effort to specify where to explain the projection.

Clustering can be used to separate the nD data into closely-related
point groups. Projecting clusters instead of individual points cre-
ates various multi-level visualizations where each projected cluster
can be potentially explained by one or a few ‘representative ele-
ments’ drawn atop of it using glyphs. ImageHIVE [TSLX12] ap-
plies this idea by defining clusters from a collection of images.
Using representatives of each cluster, a graph is created based on
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the nD distances between images, which is next drawn in 2D us-
ing a graph layout technique. A Voronoi diagram is used to show
the representatives’ contents. Multi-level maps are also used to vi-
sualize documents [NB12]. The document corpus is projected and
clustered by a hierarchical clustering method. Cluster representa-
tives are used to create a Voronoi diagram filled with representa-
tive words. Showing representatives, however, does not explain, in
terms of attributes or dimensions, why documents are placed to-
gether. Kandogan [Kan12] visually annotate clusters occurring in
scatterplots based on the attribute trends detected in them. Clusters
are computed by an image-based scatterplot density estimation. Im-
portant attributes are identified based on their statistical relevance.
This approach works well when the data and projection can be eas-
ily and robustly separated into several clusters, and less well when
there is no such clear separation.

3. Proposed visual explanation

Since MPs place similar points closely in 2D, a natural idea is to
try to explain what such closely-placed points have in common. We
proceed as follows. For each 2D projected point qi, we define its 2D
neighborhood ν

P
i = {q ∈ DP|‖q−qi‖ ≤ ρ} as all projected points

closer to qi than a given radius ρ. This defines an nD neighborhood
νi = {p∈D|P(p)∈ ν

P
i } of point pi. We use νi to compute a ranking

µi = (µ1
i , . . .µ

n
i )∈Rn for all n dimensions of pi. The lower a rank µ j

i
is, the better can dimension j explain the similarity of points over
νi. Computing dimension ranks is detailed next.

3.1. Dimension Ranking

To compute the ranks µi, we propose two metrics: Euclidean dis-
tance contribution and dimension variance, as follows.

Euclidean ranking: We first define the contribution lc j
p,r of dimen-

sion j to the squared distance between two nD points p and r as

lc j
p,r =

(p j− r j)2

‖p− r‖2 . (1)

Next, for each nD point pi of our dataset D, we define the lo-
cal contribution of a dimension j as the average of the distance-
contributions between pi and all its neighbors r ∈ νi

lc j
i =

∑r∈νi
lc j

pi,r
|νi|

. (2)

To explain a neighborhood ν, it is intuitive to highlight dimensions
that contribute to similarities in ν and that are not similar outside ν –
or in other words, dimensions that can discriminate between points
inside and outside ν. For this, we first compute the global dimen-
sion contributions (gc) for the distance. This is done by defining as
the focused point the nD centroid and setting all projected points as
its neighborhood. We then compute the Euclidean ranking contribu-
tion as the ratio between global and local contributions. Finally, we
normalize rankings to indicate the relative importance of different
dimensions. Thus, the rank of dimension j for point i is given by

µ j
i =

lc j
i /gc j

∑
n
j=1

(
lc j

i /gc j
) . (3)

Variance ranking: We first compute the global variance GV =

(var(p1), . . . ,var(pn)) of all dimensions over all points in D. Next,
for each point i we compute the local variance LVi over νi. As for
the Euclidean metric, we want to emphasize how dimensions con-
tribute to similarity within local neighborhood. For this, we compute
the ratio between the local and the global variance, and normalize
this ratio to indicate relative importance of dimensions. If we denote

the jth component of GV and LVi by GV j and LV j
i respectively, the

rank of dimension j for point i is thus given by

µ j
i =

LV j
i /GV j

∑
n
j=1(LV j

i /GV j)
. (4)

Note that, for both the Euclidean and variance ranking, low values
indicate dimensions which are better for explaining a local neigh-
borhood. Indeed, a low rank indicates more similar values for that
dimension, i.e. a stronger cohesion of points from the perspective of
the property sampled by that particular attribute.

3.2. Visual encoding

For each point i, we store a ranking vector {( j,µ j
i )}1≤ j≤n with the

IDs and ranks of all its n dimensions, sorted increasingly on rank
values. Next, we select the C dimensions having top ranks for most
of the N points, and map their IDs to colors via categorical colormap
having C = 9 entries. This way, dimensions which are top-rank for
many points get mapped to distinct colors. Dimensions which are
top-tank for few points do not get colors (due to the colormap’s lim-
ited size C) and are mapped to the reserved color dark blue. Using
a color coding approach on the visualization allows to quickly iden-
tify which regions are mainly explained by the same dimensions. A
similar approach is used by Gleicher [Gle13] which employs a color
field visualization to quickly judge the importance of a dimension
in a projected space.

We also want to show the confidence level of a displayed top-rank
dimension. We compute this confidence by analyzing the top-ranks
of points in a 2D neighborhood ν

P
c centered at qi, and defined sim-

ilarly to ν
P but using a smaller radius ρc < ρ. In detail, we sum the

top-ranks of all points in ν
P
c and the value of the top-rank dimen-

sion of point i to create a new ranking vector that stores the total
weights of the top-rank dimensions of ν

P
c . We define the confidence

of the top-rank dimension of i as the ratio of the top-rank value in
the summed ranking vector and the sum of all its rank values. In-
tuitively, this process acts as a smoothing filter with kernel radius
ρc that assigns high confidence to homogeneous (same top-rank)
regions and low confidence to mixed regions (having points with
different top ranks). This is also why we set ρc to be lower than ρ:
Larger ρ values allow a more robust ranking process, that is less sen-
sitive to outliers; lower ρc values emphasize the variation of ranking
confidence over finer scales (see also Fig. 1 discussed below).

We display the top ranks and their confidences over the projection
using the dense map technique based on nearest-neighbor (Voronoi)
interpolation in [MCMT14], with top-ranks encoded by color and
confidences by brightness respectively. To illustrate this, we use
a simple synthetic dataset of 3000 points randomly sampled from
three faces of a 3D cube, and additionally perturbed by uniform
spatial random noise of amplitude equal to 5% of the dataset’s ex-
tent. We projected this dataset to 2D using PCA [Jol02] (since PCA
is a very well known technique) and ranked all points by the vari-
ance metric. The radius parameter ρ is set to 10% of the projec-
tion diameter. The resulting explanation (Fig. 1) clearly shows that
the 2D projection consists of three ‘zones’, corresponding to the
cube’s faces, each being very well explained by a single dimension
(as expected). Points close to face intersections are darker, so their
explanation by a single dimension is less confident (as expected).
A global ranking histogram (Fig. 1 top-right) shows which color is
assigned to which dimension, and how many points are explained
best by that dimension. This shows that the point count is divided in
three roughly equal parts, which is correct, given the roughly equal
number of samples on the three cube faces. We provide a brush tool
to interactively inspect ranks for a given point. Fig. 1 shows the
brushed point and its neighborhood ν

P. A second histogram (Fig. 1
bottom-right) shows the rankings µ j

i for the brushed point i. We see
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here that the top-rank dimension (purple), corresponding to dimen-
sion 0, has variance 0, which is indeed correct, as the selected point
is in the middle of a face having same values for dimension 0.
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c

Figure 1: Visual explanation of synthetic cube dataset.
If the top k ranks of a neighborhood are very similar, the ‘win-

ning’ top dimension may be subject to noise. Hence, using a single
dimension to explain the similarity of a neighborhood might lead
to wrong conclusions. As such, we offer the possibility of using a
dimension set for explanations. Given a point i, its dimension-set
(used for explaining the projection around i), contains all the top-
ranked dimensions µ j

i whose rank values sum up to a value equal of
just larger than a user-defined small threshold value τ. Intuitively,
these are all dimensions whose cumulative effect on the distance (or
variance) is lower than τ. If many dimensions have low rank values,
then the dimension-set will be large – meaning that we need many
dimensions to explain the similarity of the neighborhood around
point i. If few dimensions have low rank values, then the dimension-
set will be small – in the limit case, it contains a single element,
and the explanation becomes identical to the single-dimension ex-
planation presented earlier. To visualize dimension-sets, we assign
categorical colors to the C most-frequent dimension sets in the pro-
jection, and map the remaining sets by the reserved color dark blue.

4. Applications

We next use our method to explain projections from three real
datasets. As projection P, we used LAMP [JPC∗11] due to its accu-
racy and computational speed. We tried both Euclidean and variance
ranking, and observed that they give very similar results in terms of
which dimension (or dimension-set) is chosen for a point. The fol-
lowing examples use the variance metric as it is slightly more noise-
resistant and faster to compute than the Euclidean metric. As param-
eter values we used ρ= 10% for the projection diameter (largest dis-
tance between any two points) and τ = 0.05. Dimension labels were
added manually on the projection to help easier indentification.

4.1. Wine quality

This dataset has 6497 samples of Portuguese vinho verde wine
(4898 red wine; 1599 white wine) [CCA∗09]. Each sample has
n = 12 physicochemical measures like acidity, residual sugar, and
alcohol rate. The projection creates a single clump (see shape in
Fig. 2 a). The single-dimension explanation splits this clump into
three regions defined by the top-rank dimensions alcohol rate,
sodium chloride/dm3 and residual sugar, and a smaller group de-
fined by volatile acidity. Zones close to region borders are dark,
intuitively showing that they cannot be explained by a single di-
mension. Using the brush tool, we discover that the first two di-
mensions account for 5% of the total rankings on several areas.
The dimension-set explanation (Fig. 2 b) splits the above regions
into finer detail. First, residual sugar is split into two subregions
A1 and A2. A1 also include the dimensions free sulfur dioxide and
total sulfur dioxide in its explanation, and A2 also includes total
sulfur dioxide. Hence, sulfur dioxide is closely related to residual

sugar to explain these regions. Region A3 appears in the border of
two regions of the previous map, and is defined by the union of
these dimensions. In subregion A4, the dimension wine quality was
added to the explanation, showing samples with similar quality and
alcohol values. Subregion A5 covers the union of the former alcohol
and volatile acidity regions. Other subregions remain best explained
by the same top-ranked dimensions since, over them, the sum of
ranks between the first and second top-rank dimensions is above
the threshold τ. Finally, about 12% of the points are explained by
less-frequent dimension sets, mapped by the color dark blue.

4.2. Quality of software projects

This dataset describes 6773 software projects from sourceforge.net
written in C [MSM∗10]. Each project has 12 dimensions (11 soft-
ware quality metrics and the project’s total download count). The
projection shows two large connected regions. Single-dimension ex-
planation (Fig. 2 c) shows that the left region is best explained by
dimension total lines of code. The right region is best explained by
dimensions total lines of code and lack of function cohesion. Several
small groups and a low-confidence border connect the above two
regions. Dimension-set explanation shows that most subregions can
be explained by two dimensions (Fig. 2 d). The left region becomes
now mainly blue, showing that there are too many small-scale expla-
nations, using more than one dimension, to be shown by our limited
colormap. Exceptions are the subregions A1, which adds the quality
metric number of public variables, and A2, which adds the metric
number of source files, which is also related to the neighbor green
region. The right region is split in several compact sub-regions: A3
is a union between lines of code and lack of function cohesion; A5
adds the same dimension of A3 and also the number of function pa-
rameters; A4 also adds the number of function parameters; finally,
A6 adds the metric number of public variables to its explanation.

4.3. US counties

This 12-dimensional dataset describes social, economic, and envi-
ronmental data from 3138 USA cities [oM14]. Its projection yields
a single visual cluster. Single-dimension explanation shows six
main regions, mainly given by dimensions related to social statis-
tics (Fig. 2 e). The dimension-set explanation (Fig. 2 f) splits these
regions, as follows: The former below 18 region gets split into four.
One subregion (A2) remains best explained by the below 18 dimen-
sion. A2 is explained by the unemployed and population density di-
mensions which also defined the two neighbor regions in the single-
dimension explanation. A3 is explained by the same dimensions,
plus the dimension percent of college/higher graduates. Hence, A3
can be seen as a more specific subset of A2. Finally, A1 is defined
by the same dimensions as A3, plus the dimension median of owner-
occupied housing value, being thus an even more specialized sub-
set of A2. The subregion A4 is defined by dimensions percent of
high school graduates age 25+ and population ≥ 65 years old.
Finally, the region defined by median of owner-occupied housing
value stayed the same as the single-dimension explanation map, in-
dicating that this dimension is sufficient to clearly define this region.

5. Discussion and conclusions

We have presented a simple and automatic technique that visually
explains 2D scatterplots (created by multidimensional projections)
by the names of the original dimensions.
Advantages: Our method is intuitive, easy to use, computation-
ally efficient (runs in real-time for datasets up to 10K points on a
typical PC for a C++ CPU single-threaded implementation), and
generic (can use any projection and/or dataset having quantitative
dimensions). The partition of the 2D projection space into same-
explanation regions occurs automatically and implicitly, without the
need to select or set any clustering parameters. Our three parame-
ters are intuitive and simple to control: ρ acts as a scale parameter
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Figure 2: Visual explanations of three datasets using a single dimension (left column) and dimension-sets (right column). See Sec. 4.

– larger values create less regions but thicker fuzzy borders, thus a
coarse scale explanation; small values create more detailed explana-
tions and thinner region borders, but also emphasize outliers more.
ρc acts as a smoothing filter: large values create smooth regions but
thicker borders; small values create more noisy regions but thinner
borders. τ controls the coherence of points in a region: large values
create many strongly-coherent regions; small values create fewer
less-coherent regions. In any case our approach does not need the
precomputation of regions, since they are formed by the same pro-
cedure that calculates attribute ranking.

Limitations: Color-coding explanations are inherently limited to
the maximum number of colors that a categorical colormap can rea-
sonably use. This can often be less than the number of regions we
can detect. Our same-color regions show which dimensions con-
tribute to point proximity, but not their values or ranges. Finally,
better explanation metrics can be envisaged for 2D neighborhoods,
e.g. based on dimension correlations or outlier detection. Any such

metric can be adapted to the application and easily added to the cur-
rent implementation of our method.

We aim to extend our explanatory tools in several directions:
(1) automatically segmenting same-explanation regions (our current
compact same-color areas) and use automatic dimension-labeling;
from that users could alternate from color to labeling for a reason-
able number of dimensions; (2) explaining regions by both dimen-
sions and dimension-values, thereby leading to more refined expla-
nations; (3) using Shepard interpolation instead of nearest-neighbor
to achieve a smoother and easier to perceive plot separation in com-
pact regions. This has interesting connections with methods using
shaded cushions to display various types of quantitative and categor-
ical data [TE10, BT09]; (4) testing our method for datasets having
hundreds of dimensions, and adapting its heuristics and parameters
to compactly and intuitively explain 2D projections of such data.
Acknowledgements: This work is supported by FAPESP re-
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