Simultaneous colour search renders other object

features less salient

Ronald van den Berg a,c , Frans W. Cornelissen b,c , Aave Hannus b,c , Jos B.T.M. Roerdink a,c

^aInstitute for Mathematics and Computing Science
^bLaboratory for Experimental Ophthalmology
^cSchool of Behavioral and Cognitive Neurosciences

University of Groningen, The Netherlands r.van.den.berg@rug.nl

INTRODUCTION

■ BACKGROUND

- ⊳ Common approach to visualise multidimensional data sets:
- -map data dimensions to separate visual features (e.g., [5, 6, 8]).
- assumption: features can be judged independently of each other.
- Colour tends to dominate in visual conjunction search, as found in two of our previous studies [4, 9]:

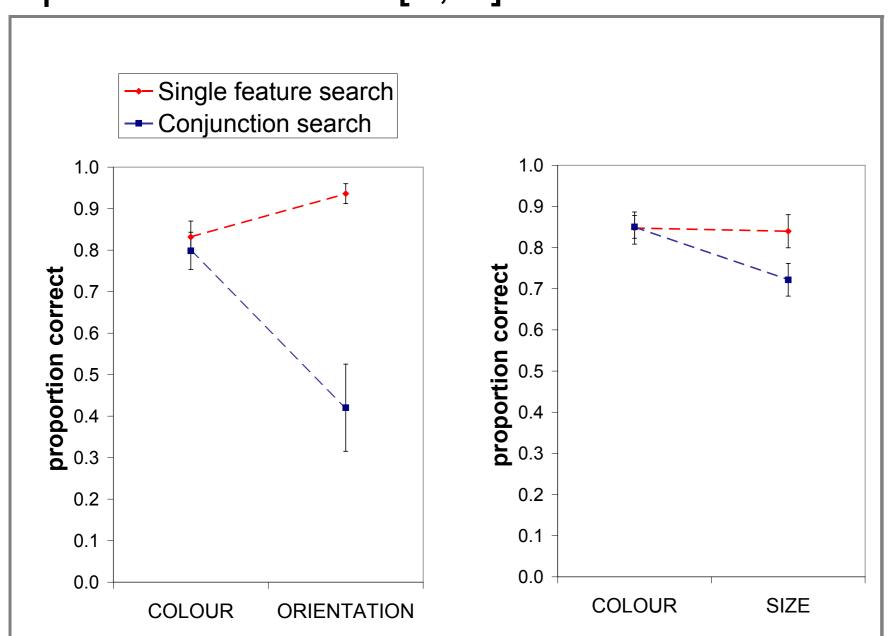
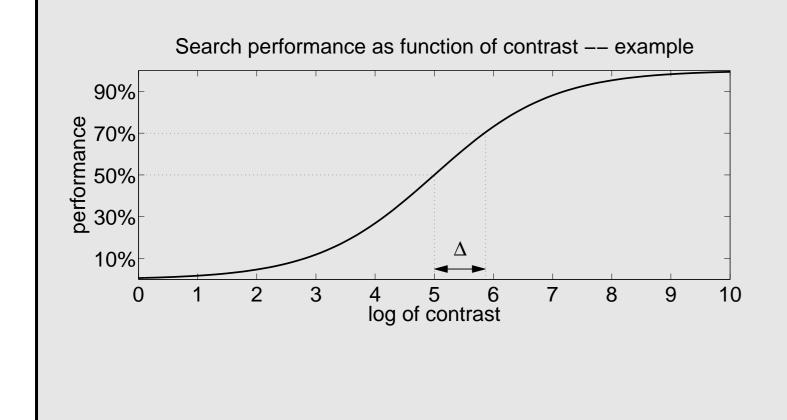


Figure 1: Colour in conjunction search reduces performance for orientation (left) and size (right)

- task: conjunction search with perceptually matched contrasts (Box 1)
- result: simultaneous colour search results in declined performance for orientation and size
- Existence of a feature hierarchy?
- ⊳ If so, is it a *fixed* hierarchy?

Box 1. Contrast matching


Previous studies

Subjects searched for a target among 12 distractors (stimulus time: 200ms). This task was carried out with 10 different target-distractor contrasts for each feature, providing a sigmoidal contrast-performance curve. Using function fits, we determined perceptually matched colour, orientation, and size contrasts.

Current study

Perceptually similar colour and size contrasts for the current experiment were determined by taking the difference between the 70% and 50% correct perfomance contrasts from the previous studies:

 $\Delta c = colour_contrast_{70\%} - colour_contrast_{50\%}$ $\Delta s = size_contrast_{70\%} - size_contrast_{50\%}$

■ PRESENT STUDY

- Assess existence of colour/size processing asymmetry in a simplified visualization environment
- Assess relationship between feature contrast and performance
- Approach: track subjects' eye movements during complex conjunction search tasks with varying feature contrasts

METHODS & MATERIALS

- Subjects Five volunteers with normal or corrected-to-normal vision
- Apparatus P4 3.2Ghz PC, LaCie 22", Matlab 6.5, Psychophysics Toolbox [1], Eyelink Toolbox [2], Eyelink II

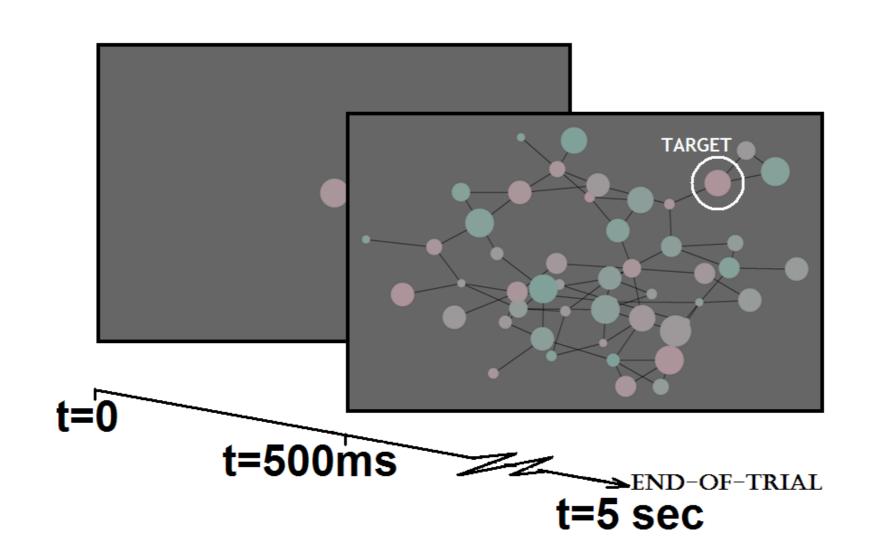


Figure 4: Experiment stimulus

- Stimuli Cue followed by node-link diagram. All items were randomly assigned one of 10 possible colours and sizes.
- Task Find the cued item
- **Colours & sizes** The distance between every two consecutive colours was $\Delta c \times C$ and the distance between every two consecutive sizes was $\Delta s \times S$, where:

 $\Delta c, \, \Delta s$ = default colour and size step C = colour step multiplication factor S = size step multiplication factor

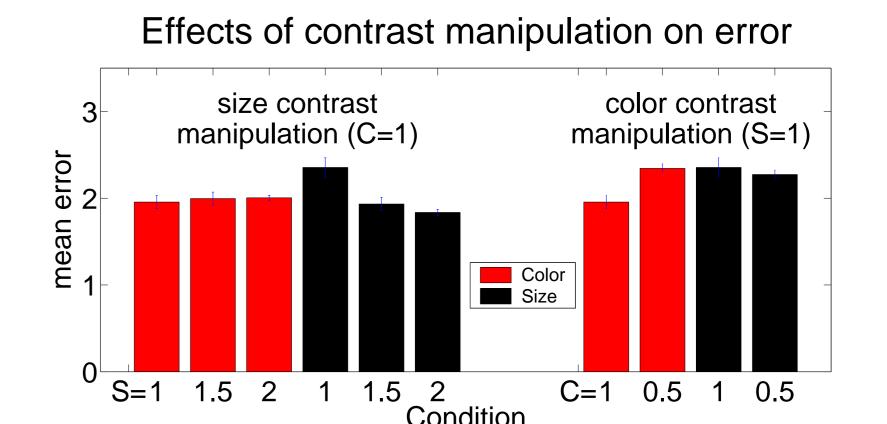
■ Procedure

1. Select perceptually similar Δc and Δs (see Box 1)

Track eye movements during:

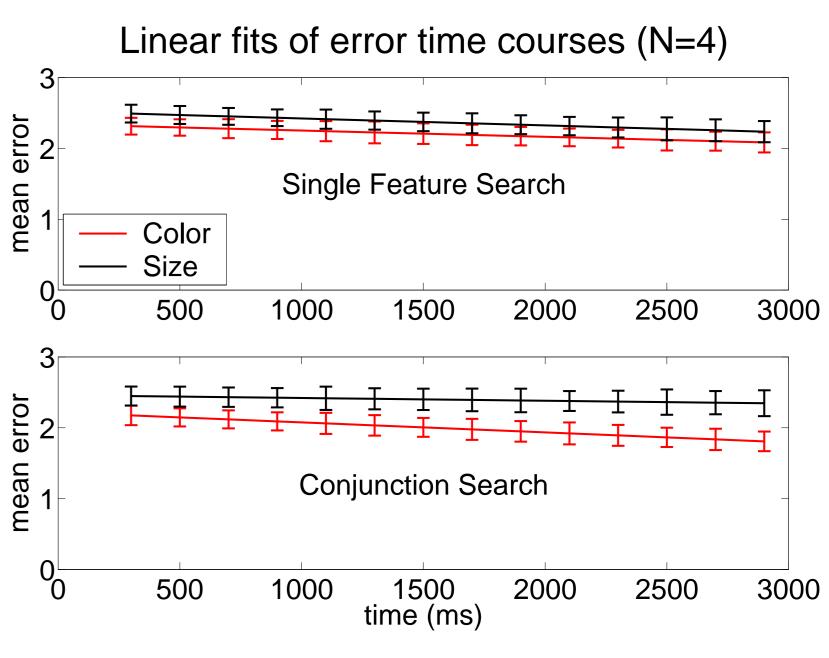
- 2. Single feature search (SFS), with C = S = 1
- 3. Conjunction search (CS) tasks, with

C = 1, S = 1C = 1, S = 1.5


C = 1, S = 2

C 1, C 1

 $C = \frac{1}{2}, S = 1$


RESULTS & DISCUSSION

(Errors are computed as the number of colour/size steps between the colour/size of the target and that of the fixated node)

Figure 5: Mean error for different size (left) and different color (right) contrasts.

- Size contrast affects size error, but not color error
- Color contrast affects color error, but not size error

Figure 6: Time courses of colour and size error in single feature (top) and conjunction search (bottom), with C=S=1. While error is nearly the same in SFS, there is a tendency towards colour in CS.

- ▶ Earlier found tendency towards colour dominance in conjunction search also exists in a more complex search task
- ▷ It can be compensated for by manipulating feature contrasts
- Hence, feature hierarchies are not fixed and may be adapted to the requirements of a particular visualisation

REFERENCES

[1] D.H. Brainard. The Psychophysics Toolbox. Spatial Vision, 10:433–436, 1997.
[2] F.W. Cornelissen, E. Peters, J. Palmer. The eyelink toolbox: Eye tracking with MATLAB and the Psyschophysics toolbox. Behavior Research Methods, Instruments & Computers, 34:613–617, 2000.
[3] K. R. Gegenfurtner. Cortical mechanisms of colour vision. Nat Rev Neurosci, 4(7):562–72, 2003.
[4] A. Hannus, H. Bekkering, E. Drost, R. Bontjer, and F. W. Cornelissen. Feature processing asymmetry in a colour and orientation conjunction-search task. Perception (suppl), 33:13, 2004.
[5] C. G. Healey, R. St. Amant, and J. Chang. Assisted Visualization of E-Commerce Auction Agents. Proceedings Graphics Interface 2001, 201–208, 2001.
[6] C. G. Healey, J.T. Enns, L. G. Tateosian, and M. Remple. Perceptually-Based Brush Strokes for Nonphotorealistic Visualization. ACM Transactions on Graphics, 23(1):64–96
[7] Z. Li. A saliency map in primary visual cortex. TRENDS in Cognitive Sciences, 6(1):9–16, 2002

[8] R.C. Tam, C.G. Healey, B. Flak, and P. Cahoon. Volume Rendering of Abdominal Aortic Aneurysms. Proceedings

[9] Van den Berg, A. Hannus, F. W. Cornelissen, and J. B. T. M. Roerdink, A colour-size processing asymmetry in visual

IEEE Visualization '97, 43-50, 1997.

conjunction search. Perception (suppl), 34, 2005.

