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Abstract—We present a parallel implementation of an algorithm 
for the detection of colonic polyps from CT data sets. This 
implementation is designed specifically to take advantage of the 
computational power available on modern Graphics Processing 
Units (GPUs), which significantly reduces the execution time to 
streamline the workflow of clinicians examining the data. We 
provide details about the changes which were made to the 
existing algorithm to suit the new target hardware, and perform 
tests which demonstrate that the results are a very close match to 
the reference implementation while being computed in a fraction 
of the time. 

Computer aided diagnosis, GPU computing, Colon screening; 

I.  INTRODUCTION 

The increasing prevalence of Computer Aided Diagnosis 
(CAD) in the modern clinical environment can be attributed to 
the development of new and innovative algorithms for data 
analysis as well as the increasing availability of powerful 
computing hardware on which such algorithms can be run. 
With regards to the second point, the last few years have seen a 
rise in the use of Graphics Processing Units (GPUs) which 
expose a parallel programming model well suited to tasks such 

as image processing, computer vision and medical 
visualization. In this paper we investigate the application of 
such hardware to the process of identifying colonic polyps 
from abdominal CT data sets. 

The identification of such polyps has been an active 
research area for a number of years, due to the difficulty in 
visually identifying colon polyps from 2D image slices (see 
Fig. 1(a)) and also the potential to prevent development of 
colon cancer through early diagnosis and intervention. This 
research has resulted in a number of approaches for 
automatically identifying potential colon polyps [1, 2, 3, 4] and 
visualizations which allow easy confirmation of the findings 
[5, 6]. 

Wide-spread adoption of such techniques is dependent on a 
quick and efficient workflow, which in turn requires fast 
processing of the input data. Existing systems take several 
minutes to perform this processing and this can be a significant 
portion of the time a clinician will typically spend analyzing a 
scan. Ideally, the automatic identification of colon polyps 
would take just a few seconds for a typical workstation and this 
will ease integration into CAD packages. 

GPU hardware is already widely used for the visualization 
of medical data and so its extension to image analysis is a 
natural progression for algorithms which can be effectively 
mapped to its architecture. Not all algorithms fall under this 
category as they need to exhibit a high degree of parallelism to 
effectively utilize the GPU, but in optimal cases a speed–up of 
two or three orders of magnitude can be obtained. Fortunately, 
the polyp detection algorithm which we discuss shortly does 
indeed exhibit these characteristics and so can benefit greatly 
from the available hardware. 

Our system for identifying colon polyps is described by [4] 
and is shown in Fig. 2. This system consists of a preprocessing 
step to remove noise, a number of stages for generating polyp 
candidates, and a Bayesian classifier for determining which 
candidates correspond to true polyps. Performance analysis has 
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(a) (b) 

Figure 1. It is difficult to identify colon polyps from 2D slice data 
because the intersection of slices with the colon wall creates many false 
positives (a). This problem is avoided in 3D where it is easier to identify 
polyps by their distinct shape (b). 



revealed that calculation of shape information is the bottleneck 
which limits the overall speed of the system. It is here that we 
apply the computational power of GPU hardware by accessing 
it through the Open Computing Language (OpenCL) [7] 
programming model. 

The remainder of this paper discusses previous work in the 
areas of computer aided detection of polyps and the application 
of GPU hardware to medical imaging. Section III provides an 
overview of the algorithm we are attempting to accelerate, and 
Section IV discusses how the algorithm was modified in order 
to take advantage of the GPU. Section V provides 
measurements of the performance and accuracy implications of 
this work. Lastly we provide a discussion of our findings and 
ideas for future research. 

II. RELATED WORK 

Detection of colon polyps has long been an area of interest 
for the medical research community, with numerous 
approaches being developed over the years. The distinctive 
shape of colonic polyps provides the criterion which is most 
commonly used to identify them. 

In [1] a two-stage approach is used which begins by 
applying a robust sphere fitting to locations on the surface of 
the colon wall. This is able to immediately identify 
approximately 90% of the colonic wall as being normal, and 
the second stage then uses more precise polyp models based on 
spherical harmonic decompositions to classify the remaining 
10% of the surface. 

An approach based on curvature analysis is presented by 
Summers et al. [2]. The curvature is computed from 
triangulated isosurfaces which are extracted from the data at 
three different threshold levels, and a set of additional filters 
are then used to eliminate false positives. The authors claim a 
sensitivity of 71% for polyps larger than 10mm. 

Wijk et al. [3] also adopt the use of curvature analysis but 
compute parameters directly from the image data rather than 
relying on a surface extraction step for a particular isovalue. By 
performing a large number of iterations, each consisting of 
curvature analysis followed by polyp flattening, they are able 
to develop a system that works across a range of polyp sizes 

rather than being optimized for a single size. The work of Wijk 
et al. forms one component of the system described by Ye et al. 
[4] and is the basis for the work presented here. 

While GPU hardware has not to our knowledge been 
applied to polyp detection in CT images it has been applied in a 
number of other areas related to medical imaging. Schiwietz et 
al. demonstrated how the reconstruction of cone bean CT data 
could be parallelized for implementation on commodity 
graphics hardware [8] and obtained a four times speed up over 
the fastest CPU approaches. This has been followed by work 
on other modalities [9, 10] with significant speedups also being 
reported. 

GPUs have also been used to accelerate medical image 
processing tasks such as segmentation [11, 12], registration 
[13] and image analysis [14]. In all cases the tasks exhibit a 
high degree of parallelism which allows for an effective 
mapping to graphics hardware.  

III.  ALGORITHM DETAILS 

The algorithm which is used for shape analysis is described 
in detail by Wijk et al. [3] and we refer the reader to that paper 
for a full explanation of its operation. However, we provide a 
short overview here to provide the background necessary to 
understand why the algorithm can be effectively mapped to the 
GPU. 

As shown previously by Fig. 2, the input to the algorithm is 
an abdominal CT scan that has been passed through a noise 
removal filter, and also a colon band segmentation volume 
which indicates which voxels of the data set are within a 1cm 
proximity of the colon wall. Shape analysis then consists of 
two main steps which are repeated a large number of times: 

 
Figure 2. Flow diagram of the polyp detection system presented in [4]. Shape analysis has been identified as the performance bottleneck due to its high 
computational complexity. This is the part of the pipeline which has the most potential to benefit from GPU hardware. 

TABLE I.  THE POSITIVE SECOND PRINCIPAL CURVATURE OF 
POLYPS CAN BE USED TO SEPERATE THEM FROM OTHER STRUCTURES. 

Structure First principal 
curvature (k1) 

Second principal 
curvature (k2) 

Colon wall Negative Zero 

Folds in colon Positive Zero 

Polyps Positive Positive 



1) The principal curvatures are calculated for each voxel in 
order to determine the type of structure to which each voxel 
belongs. Table 1 shows that a positive second principal 
curvature indicates that a voxel may correspond to the surface 
of a polyp while a second principal curvature of zero means it 
is more likely to belong to another structure such as the colon 
wall or a fold. 

2) The intensity of each voxel is next reduced by an amount 
proportional to its second principal curvature. This serves to 
gradually erode the polyps such that they are no longer present 
after a number of iterations. 

This process is repeated until all potential polyps have been 
eroded, at which point a difference image can be computed 
between the original and eroded data sets. Regions of high 
difference then correspond to polyp candidates which are 
passed on to the classification stage of the pipeline. 

IV.  GPU VERSION 

Modern GPUs provide a Single Instruction Multiple Data 
(SIMD) architecture which is well suited to calculations 
exhibiting a high degree of parallelism and which have 
minimal dependencies between tasks. Many image processing 
algorithms fall into this category and the curvature analysis 
outlined previously is no exception to this. The algorithm is 
appropriate for implementation on the GPU because: 

1) Within any given iteration the results for a voxel do not 
depend on the results of any other voxels. Note however that 
dependencies do exist between successive iterations as the 
flattening must be performed before the curvature can be 
recalculated. 

2) Memory accesses are highly localized. The curvature 
analysis requires the examination of a voxels' immediate 
neighbors but does not have to look any further than that. This 
property of the algorithm is well aligned with the ideal memory 
access pattern of a GPU, in which limited amounts of data can 
be cached for fast local access but global access is considerably 
slower. 

3) The high computational complexity of curvature analysis 
means that the runtime of a CPU implementation is dominated 
by arithmetic operations rather than memory accesses. By 
contrast, GPUs excel at such number crunching tasks.  

Our GPU implementation makes use of a pair of 3D images 
which are stored on the GPU for the duration of the execution. 
One of these images serves as a source and the other as a 
destination, with all the relevant data being loaded into the 
source image at the start. Curvature analysis and flattening are 
performed in a single OpenCL kernel that is launched by the 
CPU for each iteration of the algorithm. The source and 
destination are then swapped and the procedure is repeated the 
required number of times. 

Experimental results have shown that all our data sets 
converge within 50 iterations, and so we use this fixed value to 
avoid pulling data back to the CPU to evaluate the finish 
criterion. Note that it would be possible to evaluate this 
criterion on the GPU such that the CPU would have no work to 
do for the duration of the algorithm, but this prevents the GPU 

handling rendering tasks which can impair responsiveness on 
single GPU systems. 

Execution of the algorithm is split across a number of work 
groups as per the standard OpenCL execution model. In 
general these work groups benefit from being as large as 
possible, but the actual size is limited by the capabilities of the 
underlying hardware. 

Although it was generally straightforward to implement the 
shape analysis on the GPU there are a few specifics which 
needed more careful consideration.  These are discussed in the 
following subsections. 

A. Memory Management 

The large size of CT data sets is one of the primary 
challenges to implementing processing algorithms on the GPU. 
Our test datasets are all at a resolution of 512x512 pixels per 
slice, with between 395 and 472 slices in the complete dataset. 
A 16-bit integral data type is sufficient for representing the 
possible range of Hounsfield units in the input data but is not 
sufficient for storing intermediate results as the erosion is 
performed. For this we need to represent fractional values 
using the floating point types supported by graphics hardware. 
Full 32-bit floating point values (as defined by IEEE 754 [15]) 
are supported by the GPU and match the type being used by 
our reference CPU implementation. With this type the average 
size of our data sets is 433Mb, and storing two of these (source 
and destination) will limit the range of hardware on which the 
algorithm can be run. 

There are a number of approaches which can be used to 
combat this, with one popular choice being the use of tiling by 
breaking the volume into pieces which are each small enough 
to fit in GPU memory. This solution is certainly applicable to 
our scenario but has drawbacks in terms of the additional 
complexity of managing the tiles as well as the overhead of 
accessing the neighbors of a voxel (needed for curvature 
analysis) which may actually lie in a different tile. Duplication 
of voxels along a tile border can help here but at the expense of 
further increased memory usage.  

In our case it was possible to use the much simpler 
approach of cropping the extents of the volume data according 
to the size of the colon defined by the colon band segmentation 
computed previously. On average this reduced the memory 
consumption of the volume data to about 40% of its previous 
value (see Fig. 3). In addition to this, we allow the user to 
specify the precision at which data should be stored on the 

 
Figure 3. The bounds of the colon are computed and used to crop the 
extents of the volume. This allows the data to be reduced to 40% of its 
previous size. 



GPU. Full 32-bit floating point precision is desirable to match 
the CPU reference implementation where possible, but a 16-bit 
floating point implementation is also available for 
environments in which memory is constrained.  

The OpenCL API provides two approaches to storing 
volume data in compute device memory. The first approach is 
via buffer objects which, from a behavioral point of view, are 
analogous to arrays in traditional CPU programming. When set 
up appropriately these buffer objects can be read and written by 
both the CPU and the GPU and so provide an ideal basis for 
implementation of our algorithm. 

The second storage approach provided by OpenCL is image 
objects. These provide similar functionality to buffer objects 
but are tailored specifically to take advantage of GPU texture 
hardware. Such hardware is widely used in the graphics 
pipeline, and OpenCL exposes this functionality to allow 
applications to benefit from texture caching, hardware 
interpolation of samples, and simplified handling of image 
boundary conditions. 

Unfortunately, while OpenCL allows full read and write 
access to 1D and 2D image objects, the standard limits access 
to 3D image objects to read only which makes it impossible to 
implement the exact approach we described earlier. The 
‘cl_khr_3d_image_writes’ extension to the standard can be 
used to overcome this limitation but is not supported on all 
hardware [7]. We make use of this extension where available 
and otherwise fall back on using buffer objects for our volume 
data. 

B. Effective usage of the colon segmentation band 

Our CPU reference implementation makes use of a colon 
segmentation band derived from the input dataset. This 
specifies which voxels in the dataset are actually part of the 
colon wall, and therefore allows the expensive curvature and 
flattening calculations to be limited to these voxels. This is 
done by a simple conditional test at the start of the curvature 
calculation code. 

However, conditional logic has a somewhat different 
behavior on GPU hardware due to its highly parallel 
architecture. The main constraint is that all work items which 

comprise a particular work group should follow the same 
execution path, and in the case of divergent behavior the 
execution time for the work group is dominated by the slowest 
work item. 

Given this behavior it is no longer beneficial to store a 
colon segmentation band at the same resolution as the 
underlying data, and the resolution can instead be reduced such 
that there is only one sample for each work group. This has the 
additional benefit of decreasing the storage requirement for the 
segmentation data which is desirable in our memory 
constrained scenario. 

The original segmentation is a binary image, and each 
voxel of the low resolution version is computed by finding the 
maximum of all corresponding voxels in the high resolution 
image. This ensures that the low resolution segmentation 
covers at least the voxels which are set in the original mask. 
This is illustrated by Fig. 4. 

C. Precision 

Our CPU reference implementation of the shape analysis 
algorithm makes use of 32-bit floating point values for storage 
of both the CT volume data and intermediate images, and 64-
bit floating point values for some intermediate calculations. It 
is desirable to match the output of our GPU implementation to 
this reference but some practical considerations make this 
difficult. 

Firstly, the high memory usage described previously means 
that it is not always possible to store the data at full precision. 
Most recent graphics cards will indeed have the required 
memory for this, but we have also implemented a fallback 
which allows lower-end systems to store the data as 16-bit half 
precision values instead. This is typically slower, as the GPU 
performs calculations only on 32-bit floats and so data has to 
be converted as it is loaded to and from memory. 

Another consideration is that most graphics hardware does 
not support operations on 64-bit floating point types, and even 
when these types are supported the performance is typically 
several times lower. This situation is expected to improve in 
the future through the availability of the OpenCL ‘cl_khr_fp64’ 
extension [7], but for now our implementation is limited to 32-
bits for intermediate values.  

The impact of these precision concessions is measured in 
our tests in the following section. 

V. RESULTS 

Performance and accuracy of our implementations have 
been tested on two separate machines to analyze the benefits on 
both high-end and low-end hardware. Our high-end hardware 
is a desktop PC containing an Intel Quad-Core i7-2600 CPU 
running at 3.40GHz and equipped with an Nvidia GeForce 
GTX 590. Note that the GTX 590 is a dual GPU board but we 
are only making use of a single GPU for our tests. Our low-end 
hardware is a small laptop containing an AMD Dual-Core C-60 
processor and an integrated Radeon HD 6290 graphics card. 

We have two implementations of our algorithm to test. The 
first is the existing CPU implementation which runs on a single 

 
Figure 4. The resolution of the mask image is reduced in this case by a 
factor of 16. Note that for visualization purposes the image on the right 
has then been scaled up by a factor of 16, but a significant reduction in 
memory is obtained. 



CPU core and produces results which have been verified across 
a large number of data sets. This provides our reference 
implementation, and we expect our new GPU implementation 
to exceed this in performance whilst giving an output that is as 
close as possible to the reference. 

The second is our new OpenCL implementation as 
described in Section IV. OpenCL is a programming model for 
general parallel computing hardware and so our test can be run 
on both the GPU and the multi-core CPU present in each 
machine.  

We also have some additional variations on the algorithm. 
Section IV discussed the merits of utilizing image objects 
instead of buffer objects when the required OpenCL extension 
is available. The NVidia GPU does not support this extension, 
but curiously our low-end AMD GPU does support it despite 
being inferior to the NVidia GPU in almost every other way. 
This provides us with an opportunity to test the impact of this 
particular feature.  

Lastly, we also test our algorithm using both full precision 
(32-bit) floating point storage and half-precision (16-bit) 
floating point storage. In both cases we compute the root mean 
square and maximum error metrics from our reference 
implementation. The results of all these tests are given in 
Tables 2 and 3. 

Execution times for all variations of the algorithm are given 
in Tables 2 and 3 for both high-end and low-end test 
configurations. Note that times are inclusive of OpenCL data 
transfer where applicable. Timings for ‘GPU+Images’ are not 
provided for the NVidia hardware because it did not support 
the required OpenCL extension, and timings for full precision 
‘GPU+buffers’ are not provided for AMD hardware as 
memory limitations prevented the algorithm from running. 

VI.  DISCUSSION 

There are a number of properties of these results which are 
worth discussing further. 

Firstly, it can be observed that the reference 
implementation produces consistent results across both test 
configurations. This is the expected behavior but worth 
verifying as it helps validate the results of the other 
comparisons. The full-precision calculations can be seen to 
execute slightly faster than the half-precision calculations 
which is due to the lack of native half-precision support in 
modern CPUs. In both cases the desktop configuration 
outperformed the laptop by a factor of about five. 

Next, we can observe that the GPU implementation is 
always faster than both the reference and the multi-core CPU 
implementation. This is again expected as the promised 
performance gains were the main motivation behind bringing 
this algorithm to the GPU. The greatest performance increase 
(about 50x) is seen on the NVidia hardware when working with 
the half precision data, while the laptop gives a more modest 
increase of approximately 6.5x. In both cases the results justify 
our efforts to parallelize the algorithm for the GPU. 

Results for the OpenCL implementation running on multi-
core CPUs were more mixed. The full precision desktop test 
did indeed give the expected 4x performance boost for a quad-
core processor, but when operating at half precision it only 
gave a 2x performance increase. As mentioned earlier, half 
precision is not natively supported by CPUs and it seems the 
OpenCL emulation is not particularly efficient in this regard. 
More surprisingly, the multi-core OpenCL implementation was 
actually slower than the reference implementation on the low-
end AMD hardware. The reasons for this are not entirely 
apparent, but further research has revealed that other 
benchmarks [16] have obtained similar results. 

There is a general trend for the full-precision 
implementations to be faster than their half-precision 
counterparts due to native hardware support for the IEEE 754 
standard. The exception to this is the NVidia GPU result which 
shows a 10% performance increase for the half-precision 
version. This is most likely due to the high processing power of 
this GPU causing memory access to become a bottleneck rather 
than arithmetic operations, at which point the smaller size of 

TABLE II.  INTEL QUAD-CORE I7-2600 CPU @ 3.40GHZ + NVIDIA GEFORCE GTX 590 

 
Full precision Half precision 

Time (s) Error (RMS) Error (max) Time (s) Error (RMS) Error (max) 

Reference 58.60 0.0 0.0 60.90 1.710 × 10-4 0. 145 

Multi-core 13.82 2.257 × 10-4 0.290 31.45 2.585 × 10-4 0.290 

GPU+buffers 1.34 2.298 × 10-4 0.290 1.22 2.563 × 10-4 0.290 

GPU+images - - - - - - 

TABLE III.  AMD  DUAL-CORE C-60 CPU + INTEGRATED RADEON HD 6290 

 
Full precision Half precision 

Time (s) Error (RMS) Error (max) Time (s) Error (RMS) Error (max) 

Reference 295.01 0.0 0.0 325.13 1.710 × 10-4 0.145 

Multi-core 352.10 2.313 × 10-4 0.290 517.24 2.592 × 10-4 0.290 

GPU+buffers - - - 50.32 2.595 × 10-4 0.290 

GPU+images 47.70 2.306 × 10-4 0.290 47.89 4.313 × 10-4 0.290 

 



the half-precision type brings cache benefits which outweigh 
the additional processing time. 

The benefits of using image objects rather than buffer 
objects are visible in the half-precision results on the laptop, 
but at only a 6% performance increase, which was not as great 
as we had hoped. However, the image objects did bring an 
additional surprise benefit for full-precision, as the buffer 
objects were not usable in this scenario due to memory 
constraints. This limitation appears to arise from the integrated 
nature of this GPU, which has only a limited amount of 
dedicated memory and relies on memory shared with the CPU 
for most of its operations.  

Looking at the error metrics we can observe the expected 
behavior of RMS error being slightly higher for the half-
precision calculations than for the full-precision calculations. 
The maximum error of 0.29 is only 0.028% of the entire 0-
1040 output range, while the RMS error is significantly lower 
than this. 

VII.  FUTURE WORK 

The performance benefits demonstrated in this paper open 
the door to a number of further opportunities. One avenue of 
investigation is to sacrifice some of the newly obtained 
performance and spend time improving the behavior of the 
algorithm, for example by applying a more robust noise 
reduction algorithm [17, 18] prior to processing the data. It is 
possible that such improvements will offset the precision 
differences seen earlier. 

Another opportunity is to improve the curvature analysis by 
implementing a larger kernel which looks beyond the 
immediate neighbors of a given voxel [19]. It may be possible 
to utilize the image interpolation hardware present in GPUs to 
reduce the number of image samples which are required for 
this [20] and doing so would provide an additional benefit to 
using OpenCL image objects for the data storage. 

It may also be interesting to investigate executing the 
algorithm across multiple GPUs to obtain even greater 
speedups. The challenge here is determining the best approach 
to splitting the memory and ensuring that results are 
synchronized between the GPUs involved. 

Lastly, the work presented here will be used for the 
evaluation of our research on automatic parallelization of 
algorithms for the GPU. This aims to simplify the process of 
utilizing GPU hardware and our results so far will serve as a 
reference implementation for this.  
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