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Abstract—We present a parallel implementation of an algoritim
for the detection of colonic polyps from CT data set This
implementation is designed specifically to take acgntage of the
computational power available on modernGraphics Processing
Units (GPUSs), which significantly reduces the executiotime to
streamline the workflow of clinicians examining thedata. We
provide details about the changes which were madeo tthe
existing algorithm to suit the new target hardware,and perform
tests which demonstrate that the results are a verglose match to
the reference implementation while being computechia fraction
of the time.

Computer aided diagnosis, GPU computing, Colon screening;

. INTRODUCTION

as image processing, computer vision and medical
visualization. In this paper we investigate the lapgion of
such hardware to the process of identifying colopatyps
from abdominal CT data sets.

The identification of such polyps has been an activ
research area for a number of years, due to thieud§ in
visually identifying colon polyps from 2D image s (see
Fig. 1(a)) and also the potential to prevent dgumlent of
colon cancer through early diagnosis and intereentiThis
research has resulted in a number of approaches for
automatically identifying potential colon polyps B, 3, 4] and
visualizations which allow easy confirmation of tfiedings
[5, 6].

Wide-spread adoption of such techniques is depé¢rmea

The increasing prevalence of Computer Aided Diagnos quick and efficient workflow, which in turn requefast

(CAD) in the modern clinical environment can beilttted to
the development of new and innovative algorithms data
analysis as well as the increasing availability pawerful
computing hardware on which such algorithms canrure
With regards to the second point, the last fewybave seen a
rise in the use ofGraphics Processing Unit§GPUs) which
expose a parallel programming model well suitethsks such

(b)

Figure 1. It is difficult to identify colon polypsrom 2D slice data
because the intersection of slices with the colafl ereates many false
positives (a). This problem is avoided in 3D whiglis easier to identify
polyps by their distinct shape (b).

The research leading to these results has rectkinelchg from the
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processing of the input data. Existing systems tséeeral
minutes to perform this processing and this caa bignificant
portion of the time a clinician will typically spdranalyzing a
scan. ldeally, the automatic identification of aolgolyps
would take just a few seconds for a typical worlkstaand this
will ease integration into CAD packages.

GPU hardware is already widely used for the vigaiibn
of medical data and so its extension to image sislis a
natural progression for algorithms which can besaffely
mapped to its architecture. Not all algorithms fatider this
category as they need to exhibit a high degrearliglism to
effectively utilize the GPU, but in optimal casespmeed-up of
two or three orders of magnitude can be obtaineduRately,
the polyp detection algorithm which we discuss 8hatoes
indeed exhibit these characteristics and so caefivegreatly
from the available hardware.

Our system for identifying colon polyps is descdli®y [4]
and is shown in Fig. 2. This system consists ofep@cessing
step to remove noise, a number of stages for gémgnaolyp
candidates, and a Bayesian classifier for detenginvhich
candidates correspond to true polyps. Performanalysis has
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Figure 2. Flow diagram of the polyp detection systeresented in [4]. Shape analysis has been id=htifs the performance bottleneck due to its high
computational complexity. This is the part of thiegtine which has the most potential to benefitrfrGPU hardware.
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revealed that calculation of shape informatiorhis bottleneck  rather than being optimized for a single size. Woek of Wijk
which limits the overall speed of the system. Ihége that we et al. forms one component of the system deschilgede et al.
apply the computational power of GPU hardware lpeasing [4] and is the basis for the work presented here.

it through the Open Computing Languag€OpenCL) [7] While GPU hardware has not to our knowledge been

programming model. applied to polyp detection in CT images it has bagplied in a
The remainder of this paper discusses previous wothke  number of other areas related to medical imagicbivBetz et
areas of computer aided detection of polyps anépipdication  al. demonstrated how the reconstruction of cone 6k data
of GPU hardware to medical imaging. Section lllypdes an could be parallelized for implementation on comndi
overview of the algorithm we are attempting to d&@de, and graphics hardware [8] and obtained a four timeedpg over
Section 1V discusses how the algorithm was modiftedrder  the fastest CPU approaches. This has been folldwedork
to take advantage of the GPU. Section V providesn other modalities [9, 10] with significant spepdalso being
measurements of the performance and accuracy iatiplis of  reported.
itg'esalv?gf 'ful;ﬁrsélsgevsvgaféﬁwde a discussion of outdings and GPUs have also been used to a_ccelerate medicaleimag
' processing tasks such as segmentation [11, 12istr&tipn
[13] and image analysis [14]. In all cases the gaskhibit a
Il.  RELATED WORK high degree of parallelism which allows for an efiiee
Detection of colon polyps has long been an ardatefest mapping to graphics hardware.
for the medical research community, with numerous
approaches being developed over the years. Thanatist . ALGORITHM DETAILS
shape of colonic polyps provides the criterion Wwhis most The alaori o I
; . gorithm which is used for shape analysisicdbed
commonly used to identify them. in detail by Wijk et al. [3] and we refer the readie that paper
In [1] a two-stage approach is used which begins byor a full explanation of its operation. Howevere \provide a
applying a robust sphere fitting to locations oa #urface of short overview here to provide the background resogsto
the colon wall. This is able to immediately ideptif understand why the algorithm can be effectively peapto the
approximately 90% of the colonic wall as being naknand GPU.
the second stage then uses more precise polyp snoastd on : . . :
spherical harmonic decompositions to classify teeaining As shown previously by Fig. 2, the input to thecaithm is
10% of the surface. an abdominal CT scan that has been passed througise
removal filter, and also &olon band segmentatiomolume
An approach based on curvature analysis is presdnte which indicates which voxels of the data set aréniwia 1cm
Summers et al. [2]. The curvature is computed fronproximity of the colon wall. Shape analysis themsists of
triangulated isosurfaces which are extracted from data at two main steps which are repeated a large numhbtémes:
three different threshold levels, and a set of tamithl filters
are then used to eliminate false positives. Thaaasatclaim a

e o
SenSItIVIty of 71% for pOIypS larger than 10mm. TABLE I. THE POSITIVE SECOND PRINCIPAL CURVATURE OF
lek et al [3] also adopt the use of Curvaturelw;ia but POLYPS CAN BE USED TO SEPERATE THEM FROM OTHER STRUCTURES
compute parameters directly from the image dataerathan Struct First principal Second principal
relying on a surface extraction step for a paréicidovalue. By ructure curvature (k.) curvature (k2)
performing a large number of iterations, each cstimg of Colon wall Negative Zero
tcur(;llaturle anaIyS|ts foIItcr:w?d b)l/< polyp fIattenlngeylhare _abIe Folds in colon Positive Zer0
o develop a system that works across a range lgp fgizes Polyps Sosifive S osilive




1) The principal curvatures are calculated for eamtel in
order to determine the type of structure to whielchevoxel
belongs. Table 1 shows that a positive second ipahc
curvature indicates that a voxel may corresponthéosurface
of a polyp while a second principal curvature afozmeans it
is more likely to belong to another structure sashthe colon
wall or a fold.

2) The intensity of each voxel is next reduced byamount
proportional to its second principal curvature. sTeerves to
gradually erode the polyps such that they are ngdopresent
after a number of iterations.

This process is repeated until all potential polgpge been
eroded, at which point a difference image can bmapeged
between the original and eroded data sets. Regibriigh
difference then correspond to polyp candidates hvhace
passed on to the classification stage of the pipeli

IV. GPUVERSION

Modern GPUs provide 8ingle Instruction Multiple Data
(SIMD) architecture which is well suited to caldidas
exhibiting a high degree of parallelism and whichvén
minimal dependencies between tasks. Many imageepsirgy
algorithms fall into this category and the curvatamalysis
outlined previously is no exception to this. Thgaaithm is
appropriate for implementation on the GPU because:

1) Within any given iteration the results for a ebdo not
depend on the results of any other voxels. Noteelvewthat
dependencies do exist between successive iteratisnthe
flattening must be performed before the curvatuam be
recalculated.

2) Memory accesses are highly localized. The cureat
analysis requires the examination of a voxels' idiate
neighbors but does not have to look any furthen that. This
property of the algorithm is well aligned with tldeal memory
access pattern of a GPU, in which limited amoufidata can
be cached for fast local access but global acsassnisiderably
slower.

3) The high computational complexity of curvaturalgsis
means that the runtime ofGPU implementation is dominated
by arithmetic operations rather than memory acsesBy
contrastGPUsexcel at such number crunching tasks.

Our GPU implementation makes use of a pair of 3Bges
which are stored on the GPU for the duration ofekecution.
One of these images serves as a source and the asthe
destination, with all the relevant data being |@hdeto the
source image at the start. Curvature analysis latigriing are
performed in a single OpenCL kernel that is laudchg the
CPU for each iteration of the algorithm. The soumrrsd
destination are then swapped and the proceduspé&ated the
required number of times.

Experimental results have shown that all our das s
converge within 50 iterations, and so we use ikidfvalue to
avoid pulling data back to the CPU to evaluate finésh
criterion. Note that it would be possible to eva#duahis
criterion on the GPU such that the CPU would havevark to
do for the duration of the algorithm, but this prets the GPU

Figure 3. The bounds of the colon are computeduaed to crop the
extents of the volume. This allows the data toduiced to 40% of its
previous size.

handling rendering tasks which can impair resparsgs on
single GPU systems.

Execution of the algorithm is split across a nundfervork
groups as per the standard OpenCL execution mddel.
general these work groups benefit from being agelaas
possible, but the actual size is limited by theatsifiies of the
underlying hardware.

Although it was generally straightforward to implkem the
shape analysis on the GPU there are a few spegifiish
needed more careful consideration. These arestisduin the
following subsections.

A. Memory Management

The large size of CT data sets is one of the psimar
challenges to implementing processing algorithmshenGPU.
Our test datasets are all at a resolution of 512xtitels per
slice, with between 395 and 472 slices in the cetepliataset.
A 16-bit integral data type is sufficient for repeating the
possible range of Hounsfield units in the inputadatit is not
sufficient for storing intermediate results as thB®sion is
performed. For this we need to represent fractiorsdles
using the floating point types supported by grapiiardware.
Full 32-bit floating point values (as defined byEIE 754 [15])
are supported by the GPU and match the type beied by
our reference CPU implementation. With this type éverage
size of our data sets is 433Mb, and storing twthe$e (source
and destination) will limit the range of hardwane which the
algorithm can be run.

There are a number of approaches which can be tosed
combat this, with one popular choice being theafdding by
breaking the volume into pieces which are each Isemaiugh
to fit in GPU memory. This solution is certainlypdigable to
our scenario but has drawbacks in terms of thetiaddi
complexity of managing the tiles as well as therbgad of
accessing the neighbors of a voxel (needed for ature
analysis) which may actually lie in a differenetiDuplication
of voxels along a tile border can help here bihatexpense of
further increased memory usage.

In our case it was possible to use the much simpler
approach of cropping the extents of the volume datarding
to the size of the colon defined by the colon bsegimentation
computed previously. On average this reduced theange
consumption of the volume data to about 40% opitsious
value (see Fig. 3). In addition to this, we alloke tuser to
specify the precision at which data should be staye the



GPU. Full 32-bit floating point precision is dedila to match
the CPU reference implementation where possiblealdib-bit
floating point implementation is also available
environments in which memory is constrained.

comprise a particulawork group should follow the same
execution path, and in the case of divergent behathe

for execution time for the work group is dominated g slowest

work item.

The OpenCL API provides two approaches to storing Given this behavior it is no longer beneficial timre a

volume data in compute device memory. The firstraggh is
via buffer objectawvhich, from a behavioral point of view, are
analogous to arrays in traditional CPU programmifipen set
up appropriately these buffer objects can be reddaitten by
both the CPU and the GPU and so provide an idess$ bar
implementation of our algorithm.

The second storage approach provided by Open®hage
objects These provide similar functionality to buffer ebjs
but are tailored specifically to take advantageGefU texture
hardware. Such hardware is widely used in the deaph
pipeline, and OpenCL exposes this functionality aitow
applications to benefit from texture caching, haacsv
interpolation of samples, and simplified handlinfy image
boundary conditions.

Unfortunately, while OpenCL allows full read anditer
access to 1D and 2D image objects, the standait$ lancess
to 3D image objects tread onlywhich makes it impossible to
implement the exact approach we described earlitie

colon segmentation band at the same resolution has t
underlying data, and the resolution can insteaktiaced such
that there is only one sample for each work grdins has the
additional benefit of decreasing the storage reguémt for the
segmentation data which is desirable in our memory
constrained scenario.

The original segmentation is a binary image, andhea
voxel of the low resolution version is computedfioging the
maximum of all corresponding voxels in the highotatson
image. This ensures that the low resolution segatient
covers at least the voxels which are set in thgiral mask.
This is illustrated by Fig. 4.

C. Precision

Our CPU reference implementation of the shape aisaly
algorithm makes use of 32-bit floating point valdesstorage
of both the CT volume data and intermediate imaged, 64-
bit floating point values for some intermediateccédtions. It

‘cl_khr_3d_image_writesextension to the standard can beis desirable to match the output of our GPU impletaiion to

used to overcome this limitation but is not supgdron all
hardware [7]. We make use of this extension wheeglable
and otherwise fall back on using buffer objectsdor volume
data.

B. Effective usage of the colon segmentation band

Our CPU reference implementation makes use of ancol
segmentation band derived from the input datasdtis T
specifies which voxels in the dataset are actuadist of the
colon wall, and therefore allows the expensive atume and
flattening calculations to be limited to these MexeThis is
done by a simple conditional test at the starthef ¢urvature
calculation code.

this reference but some practical consideration&emthis
difficult.

Firstly, the high memory usage described previoushans
that it is not always possible to store the datalaprecision.
Most recent graphics cards will indeed have theuired
memory for this, but we have also implemented tbdak
which allows lower-end systems to store the datbgalsit half
precision values instead. This is typically slowes,the GPU
performs calculations only on 32-bit floats anddsda has to
be converted as it is loaded to and from memory.

Another consideration is that most graphics hardvehres
not support operations on 64-bit floating pointegpand even
when these types are supported the performancgpisally

However, conditional logic has a somewhat differentseveral times lower. This situation is expectedntprove in
behavior on GPU hardware due to its highly parallelthe future through the availability of the OpenCL khr_fp64

architecture. The main constraint is thatvadirk itemswhich

Figure 4. The resolution of the mask image is redun this case by a
factor of 16. Note that for visualization purpo$ies image on the right
has then been scaled up by a factor of 16, bugrafisiant reduction in
memory is obtained.

extension [7], but for now our implementation iwiied to 32-
bits for intermediate values.

The impact of these precision concessions is medsiar
our tests in the following section.

V. RESULTS

Performance and accuracy of our implementationse hav
been tested on two separate machines to analyrettadits on
both high-end and low-end hardware. Our high-erndikare
is a desktop PC containing an Intel Quad-Core J626PU
running at 3.40GHz and equipped with an Nvidia Ge€o
GTX 590. Note that the GTX 590 is a dual GPU bdantiwe
are only making use of a single GPU for our tests. low-end
hardware is a small laptop containing an AMD Dual&€C-60
processor and an integrated Radeon HD 6290 grapids

We have two implementations of our algorithm td.t&se
first is the existing CPU implementation which rwrsa single



TABLE I1.

INTEL QUAD-CORE [7-2600CPU@ 3.40GHz + NVIDIA GEFORCEGTX 590

Full precision Half precision
Time () Error (RMS) Error (max) Time () Error (RMS) Error (max)
Reference 58.60 0.0 0.0 60.90 1.710 x40 0. 145
Multi-core 13.82 2.257 x 18 0.290 31.45 2.585 x 10 0.290
GPU-+buffers 1.34 2.298 x 16 0.290 122 2.563 x 10 0.290
GPU+images
TABLE lII. AMD DUAL-COREC-60CPU+ INTEGRATED RADEON HD 6290
Full precision Half precision
Time () Error (RMS) Error (max) Time () Error (RMS) Error (max)
Reference 295.01 0.0 0.0 325.13 1.710 x40 0.145
Multi-core 352.10 2313 x 10 0.290 517.24 2.592 x 10 0.290
GPU+buffers - - - 50.32 2.595 x 10 0.290
GPU+images 47.70 2.306 x 16 0.290 47.89 4.313 x 10 0.290
CPU core and produces results which have beerietgtross Firstly, it can be observed that the reference

a large number of data sets. This provides ourreate
implementation, and we expect our new GPU impleatent
to exceed this in performance whilst giving an atihat is as
close as possible to the reference.

implementation produces consistent results acragh test
configurations. This is the expected behavior butrtkv
verifying as it helps validate the results of the¢hen
comparisons. The full-precision calculations can deen to
execute slightly faster than the half-precisioncakitions
Which is due to the lack of native half-precisiampgort in
modern CPUs. In both cases the desktop configuratio
outperformed the laptop by a factor of about five.

The second is our new OpenCL implementation a
described in Section IV. OpenCL is a programmingleidor
general parallel computing hardware and so ourcstoe run
on both the GPU and the multi-core CPU presentdohe
machine. Next, we can observe that the GPU implementation is
always faster than both the reference and the jooilé CPU
implementation. This is again expected as the wedi
performance gains were the main motivation behirdging
this algorithm to the GPU. The greatest performancesase
(about 50x) is seen on the NVidia hardware wherkimgrwith
the half precision data, while the laptop gives @ranmodest
increase of approximately 6.5x. In both cases d¢iselts justify
our efforts to parallelize the algorithm for the GP

We also have some additional variations on thergkgo.
Section IV discussed the merits of utilizinghage objects
instead ofbuffer objectsvhen the required OpenCL extension
is available. The NVidia GPU does not support &hitension,
but curiously our low-end AMD GPU does support dsplite
being inferior to the NVidia GPU in almost everyhet way.
This provides us with an opportunity to test thgatt of this
particular feature.

Results for the OpenCL implementation running oritimu
core CPUs were more mixed. The full precision dmskest
did indeed give the expected 4x performance bavst fjuad-
core processor, but when operating at half pretisiconly
ﬁave a 2x performance increase. As mentioned eahaf
precision is not natively supported by CPUs ansegms the
Tables 2 and 3. OpenCL emulation is not particularly efficient ihig regard.

Execution times for all variations of the algorittame given  More surprisingly, the multi-core OpenCL implemditta was
in Tables 2 and 3 for both high-end and low-endt tesactually slower than the reference implementatiortr@ low-
configurations. Note that times are inclusive ofe@pL data end AMD hardware. The reasons for this are notrelti
transfer where applicable. Timings for ‘GPU+Imagas: not apparent, but further research has revealed thaer ot
provided for the NVidia hardware because it did sapport benchmarks [16] have obtained similar results.

the required OpenCL extension, and timings for jfutcision ; C
) ; . There is a general trend for the full-precision
GPU+buffers’ are not provided for AMD hardware as‘implementations to be faster than their half-pieois

memory limitations prevented the algorithm fromring. counterparts due to native hardware support folEieE 754
standard. The exception to this is the NVidia GBkult which
shows a 10% performance increase for the half-giceci
version. This is most likely due to the high praieg power of
this GPU causing memory access to become a batkeather
than arithmetic operations, at which point the $enadize of

Lastly, we also test our algorithm using both fulécision
(32-bit) floating point storage and half-precisidt6-bit)
floating point storage. In both cases we computerdiot mean
square and maximum error metrics from our referenc
implementation. The results of all these tests gik@n in

VI. DISCUSSION

There are a number of properties of these restiishware
worth discussing further.



the half-precision type brings cache benefits wiociweigh
the additional processing time.

The benefits of using image objects rather tharfebuf
objects are visible in the half-precision results the laptop,
but at only a 6% performance increase, which wasas@reat
as we had hoped. However, the image objects diug bain
additional surprise benefit for full-precision, #éise buffer
objects were not usable in this scenario due to ongm
constraints. This limitation appears to arise friw@ integrated
nature of this GPU, which has only a limited amouwft
dedicated memory and relies on memory shared WwahCPU
for most of its operations.

Looking at the error metrics we can observe thecetqul
behavior of RMS error being slightly higher for thelf-
precision calculations than for the full-precisioalculations.
The maximum error of 0.29 is only 0.028% of theiren©-
1040 output range, while the RMS error is signifittya lower
than this.

VIl.  FUTUREWORK

The performance benefits demonstrated in this papen
the door to a number of further opportunities. @renue of
investigation is to sacrifice some of the newly aifed
performance and spend time improving the behaviothe
algorithm, for example by applying a more robustseo
reduction algorithm [17, 18] prior to processing tihata. It is
possible that such improvements will offset the cimien
differences seen earlier.

Another opportunity is to improve the curvature lgsia by
implementing a larger kernel which
immediate neighbors of a given voxel [19]. It may fossible
to utilize the image interpolation hardware presenGPUs to
reduce the number of image samples which are wedjdor
this [20] and doing so would provide an additiobahefit to
using OpenCL image objects for the data storage.

It may also be interesting to investigate executthg

algorithm across multiple GPUs to obtain even g@mat |15

speedups. The challenge here is determining theapgsoach

to splitting the memory and ensuring that result® a [16]

synchronized between the GPUs involved.

Lastly, the work presented here will be used foe th ;7

evaluation of our research ocmutomatic parallelization of
algorithms for the GPU. This aims to simplify theogess of
utilizing GPU hardware and our results so far wékve as a
reference implementation for this.
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