
Accelerating Colonic Polyp Detection Using
Commodity Graphics Hardware

David Williams, Valeriu Codreanu and Jos B.T.M.
Roerdink

JBI Institute for Mathematics and Computer Science,
University of Groningen,

Groningen, The Netherlands
{d.p.williams, v.b.codreanu, j.b.t.m.roerdink}@rug.nl

Po Yang, Baoquan Liu and Feng Dong
Department of Computer Science and Technology,

University of Bedfordshire,
Bedfordshire, United Kingdom

{po.yang, baoquan.liu, feng.dong}@beds.ac.uk

Alessandro Chiarini
Super Computing Solutions,

Bologna, Italy
a.chiarini@scsitaly.com

Abstract—We present a parallel implementation of an algorithm
for the detection of colonic polyps from CT data sets. This
implementation is designed specifically to take advantage of the
computational power available on modern Graphics Processing
Units (GPUs), which significantly reduces the execution time to
streamline the workflow of clinicians examining the data. We
provide details about the changes which were made to the
existing algorithm to suit the new target hardware, and perform
tests which demonstrate that the results are a very close match to
the reference implementation while being computed in a fraction
of the time.

Computer aided diagnosis, GPU computing, Colon screening;

I. INTRODUCTION

The increasing prevalence of Computer Aided Diagnosis
(CAD) in the modern clinical environment can be attributed to
the development of new and innovative algorithms for data
analysis as well as the increasing availability of powerful
computing hardware on which such algorithms can be run.
With regards to the second point, the last few years have seen a
rise in the use of Graphics Processing Units (GPUs) which
expose a parallel programming model well suited to tasks such

as image processing, computer vision and medical
visualization. In this paper we investigate the application of
such hardware to the process of identifying colonic polyps
from abdominal CT data sets.

The identification of such polyps has been an active
research area for a number of years, due to the difficulty in
visually identifying colon polyps from 2D image slices (see
Fig. 1(a)) and also the potential to prevent development of
colon cancer through early diagnosis and intervention. This
research has resulted in a number of approaches for
automatically identifying potential colon polyps [1, 2, 3, 4] and
visualizations which allow easy confirmation of the findings
[5, 6].

Wide-spread adoption of such techniques is dependent on a
quick and efficient workflow, which in turn requires fast
processing of the input data. Existing systems take several
minutes to perform this processing and this can be a significant
portion of the time a clinician will typically spend analyzing a
scan. Ideally, the automatic identification of colon polyps
would take just a few seconds for a typical workstation and this
will ease integration into CAD packages.

GPU hardware is already widely used for the visualization
of medical data and so its extension to image analysis is a
natural progression for algorithms which can be effectively
mapped to its architecture. Not all algorithms fall under this
category as they need to exhibit a high degree of parallelism to
effectively utilize the GPU, but in optimal cases a speed–up of
two or three orders of magnitude can be obtained. Fortunately,
the polyp detection algorithm which we discuss shortly does
indeed exhibit these characteristics and so can benefit greatly
from the available hardware.

Our system for identifying colon polyps is described by [4]
and is shown in Fig. 2. This system consists of a preprocessing
step to remove noise, a number of stages for generating polyp
candidates, and a Bayesian classifier for determining which
candidates correspond to true polyps. Performance analysis has

The research leading to these results has received funding from the
European Union’s Seventh Framework Programme managed by REA-
Research Executive Agency http://ec.europa.eu/research/rea (FP7/2007-
2013) under grant agreement no. 286545

(a) (b)

Figure 1. It is difficult to identify colon polyps from 2D slice data
because the intersection of slices with the colon wall creates many false
positives (a). This problem is avoided in 3D where it is easier to identify
polyps by their distinct shape (b).

revealed that calculation of shape information is the bottleneck
which limits the overall speed of the system. It is here that we
apply the computational power of GPU hardware by accessing
it through the Open Computing Language (OpenCL) [7]
programming model.

The remainder of this paper discusses previous work in the
areas of computer aided detection of polyps and the application
of GPU hardware to medical imaging. Section III provides an
overview of the algorithm we are attempting to accelerate, and
Section IV discusses how the algorithm was modified in order
to take advantage of the GPU. Section V provides
measurements of the performance and accuracy implications of
this work. Lastly we provide a discussion of our findings and
ideas for future research.

II. RELATED WORK

Detection of colon polyps has long been an area of interest
for the medical research community, with numerous
approaches being developed over the years. The distinctive
shape of colonic polyps provides the criterion which is most
commonly used to identify them.

In [1] a two-stage approach is used which begins by
applying a robust sphere fitting to locations on the surface of
the colon wall. This is able to immediately identify
approximately 90% of the colonic wall as being normal, and
the second stage then uses more precise polyp models based on
spherical harmonic decompositions to classify the remaining
10% of the surface.

An approach based on curvature analysis is presented by
Summers et al. [2]. The curvature is computed from
triangulated isosurfaces which are extracted from the data at
three different threshold levels, and a set of additional filters
are then used to eliminate false positives. The authors claim a
sensitivity of 71% for polyps larger than 10mm.

Wijk et al. [3] also adopt the use of curvature analysis but
compute parameters directly from the image data rather than
relying on a surface extraction step for a particular isovalue. By
performing a large number of iterations, each consisting of
curvature analysis followed by polyp flattening, they are able
to develop a system that works across a range of polyp sizes

rather than being optimized for a single size. The work of Wijk
et al. forms one component of the system described by Ye et al.
[4] and is the basis for the work presented here.

While GPU hardware has not to our knowledge been
applied to polyp detection in CT images it has been applied in a
number of other areas related to medical imaging. Schiwietz et
al. demonstrated how the reconstruction of cone bean CT data
could be parallelized for implementation on commodity
graphics hardware [8] and obtained a four times speed up over
the fastest CPU approaches. This has been followed by work
on other modalities [9, 10] with significant speedups also being
reported.

GPUs have also been used to accelerate medical image
processing tasks such as segmentation [11, 12], registration
[13] and image analysis [14]. In all cases the tasks exhibit a
high degree of parallelism which allows for an effective
mapping to graphics hardware.

III. ALGORITHM DETAILS

The algorithm which is used for shape analysis is described
in detail by Wijk et al. [3] and we refer the reader to that paper
for a full explanation of its operation. However, we provide a
short overview here to provide the background necessary to
understand why the algorithm can be effectively mapped to the
GPU.

As shown previously by Fig. 2, the input to the algorithm is
an abdominal CT scan that has been passed through a noise
removal filter, and also a colon band segmentation volume
which indicates which voxels of the data set are within a 1cm
proximity of the colon wall. Shape analysis then consists of
two main steps which are repeated a large number of times:

Figure 2. Flow diagram of the polyp detection system presented in [4]. Shape analysis has been identified as the performance bottleneck due to its high
computational complexity. This is the part of the pipeline which has the most potential to benefit from GPU hardware.

TABLE I. THE POSITIVE SECOND PRINCIPAL CURVATURE OF
POLYPS CAN BE USED TO SEPERATE THEM FROM OTHER STRUCTURES.

Structure First principal
curvature (k1)

Second principal
curvature (k2)

Colon wall Negative Zero

Folds in colon Positive Zero

Polyps Positive Positive

1) The principal curvatures are calculated for each voxel in
order to determine the type of structure to which each voxel
belongs. Table 1 shows that a positive second principal
curvature indicates that a voxel may correspond to the surface
of a polyp while a second principal curvature of zero means it
is more likely to belong to another structure such as the colon
wall or a fold.

2) The intensity of each voxel is next reduced by an amount
proportional to its second principal curvature. This serves to
gradually erode the polyps such that they are no longer present
after a number of iterations.

This process is repeated until all potential polyps have been
eroded, at which point a difference image can be computed
between the original and eroded data sets. Regions of high
difference then correspond to polyp candidates which are
passed on to the classification stage of the pipeline.

IV. GPU VERSION

Modern GPUs provide a Single Instruction Multiple Data
(SIMD) architecture which is well suited to calculations
exhibiting a high degree of parallelism and which have
minimal dependencies between tasks. Many image processing
algorithms fall into this category and the curvature analysis
outlined previously is no exception to this. The algorithm is
appropriate for implementation on the GPU because:

1) Within any given iteration the results for a voxel do not
depend on the results of any other voxels. Note however that
dependencies do exist between successive iterations as the
flattening must be performed before the curvature can be
recalculated.

2) Memory accesses are highly localized. The curvature
analysis requires the examination of a voxels' immediate
neighbors but does not have to look any further than that. This
property of the algorithm is well aligned with the ideal memory
access pattern of a GPU, in which limited amounts of data can
be cached for fast local access but global access is considerably
slower.

3) The high computational complexity of curvature analysis
means that the runtime of a CPU implementation is dominated
by arithmetic operations rather than memory accesses. By
contrast, GPUs excel at such number crunching tasks.

Our GPU implementation makes use of a pair of 3D images
which are stored on the GPU for the duration of the execution.
One of these images serves as a source and the other as a
destination, with all the relevant data being loaded into the
source image at the start. Curvature analysis and flattening are
performed in a single OpenCL kernel that is launched by the
CPU for each iteration of the algorithm. The source and
destination are then swapped and the procedure is repeated the
required number of times.

Experimental results have shown that all our data sets
converge within 50 iterations, and so we use this fixed value to
avoid pulling data back to the CPU to evaluate the finish
criterion. Note that it would be possible to evaluate this
criterion on the GPU such that the CPU would have no work to
do for the duration of the algorithm, but this prevents the GPU

handling rendering tasks which can impair responsiveness on
single GPU systems.

Execution of the algorithm is split across a number of work
groups as per the standard OpenCL execution model. In
general these work groups benefit from being as large as
possible, but the actual size is limited by the capabilities of the
underlying hardware.

Although it was generally straightforward to implement the
shape analysis on the GPU there are a few specifics which
needed more careful consideration. These are discussed in the
following subsections.

A. Memory Management

The large size of CT data sets is one of the primary
challenges to implementing processing algorithms on the GPU.
Our test datasets are all at a resolution of 512x512 pixels per
slice, with between 395 and 472 slices in the complete dataset.
A 16-bit integral data type is sufficient for representing the
possible range of Hounsfield units in the input data but is not
sufficient for storing intermediate results as the erosion is
performed. For this we need to represent fractional values
using the floating point types supported by graphics hardware.
Full 32-bit floating point values (as defined by IEEE 754 [15])
are supported by the GPU and match the type being used by
our reference CPU implementation. With this type the average
size of our data sets is 433Mb, and storing two of these (source
and destination) will limit the range of hardware on which the
algorithm can be run.

There are a number of approaches which can be used to
combat this, with one popular choice being the use of tiling by
breaking the volume into pieces which are each small enough
to fit in GPU memory. This solution is certainly applicable to
our scenario but has drawbacks in terms of the additional
complexity of managing the tiles as well as the overhead of
accessing the neighbors of a voxel (needed for curvature
analysis) which may actually lie in a different tile. Duplication
of voxels along a tile border can help here but at the expense of
further increased memory usage.

In our case it was possible to use the much simpler
approach of cropping the extents of the volume data according
to the size of the colon defined by the colon band segmentation
computed previously. On average this reduced the memory
consumption of the volume data to about 40% of its previous
value (see Fig. 3). In addition to this, we allow the user to
specify the precision at which data should be stored on the

Figure 3. The bounds of the colon are computed and used to crop the
extents of the volume. This allows the data to be reduced to 40% of its
previous size.

GPU. Full 32-bit floating point precision is desirable to match
the CPU reference implementation where possible, but a 16-bit
floating point implementation is also available for
environments in which memory is constrained.

The OpenCL API provides two approaches to storing
volume data in compute device memory. The first approach is
via buffer objects which, from a behavioral point of view, are
analogous to arrays in traditional CPU programming. When set
up appropriately these buffer objects can be read and written by
both the CPU and the GPU and so provide an ideal basis for
implementation of our algorithm.

The second storage approach provided by OpenCL is image
objects. These provide similar functionality to buffer objects
but are tailored specifically to take advantage of GPU texture
hardware. Such hardware is widely used in the graphics
pipeline, and OpenCL exposes this functionality to allow
applications to benefit from texture caching, hardware
interpolation of samples, and simplified handling of image
boundary conditions.

Unfortunately, while OpenCL allows full read and write
access to 1D and 2D image objects, the standard limits access
to 3D image objects to read only which makes it impossible to
implement the exact approach we described earlier. The
‘cl_khr_3d_image_writes’ extension to the standard can be
used to overcome this limitation but is not supported on all
hardware [7]. We make use of this extension where available
and otherwise fall back on using buffer objects for our volume
data.

B. Effective usage of the colon segmentation band

Our CPU reference implementation makes use of a colon
segmentation band derived from the input dataset. This
specifies which voxels in the dataset are actually part of the
colon wall, and therefore allows the expensive curvature and
flattening calculations to be limited to these voxels. This is
done by a simple conditional test at the start of the curvature
calculation code.

However, conditional logic has a somewhat different
behavior on GPU hardware due to its highly parallel
architecture. The main constraint is that all work items which

comprise a particular work group should follow the same
execution path, and in the case of divergent behavior the
execution time for the work group is dominated by the slowest
work item.

Given this behavior it is no longer beneficial to store a
colon segmentation band at the same resolution as the
underlying data, and the resolution can instead be reduced such
that there is only one sample for each work group. This has the
additional benefit of decreasing the storage requirement for the
segmentation data which is desirable in our memory
constrained scenario.

The original segmentation is a binary image, and each
voxel of the low resolution version is computed by finding the
maximum of all corresponding voxels in the high resolution
image. This ensures that the low resolution segmentation
covers at least the voxels which are set in the original mask.
This is illustrated by Fig. 4.

C. Precision

Our CPU reference implementation of the shape analysis
algorithm makes use of 32-bit floating point values for storage
of both the CT volume data and intermediate images, and 64-
bit floating point values for some intermediate calculations. It
is desirable to match the output of our GPU implementation to
this reference but some practical considerations make this
difficult.

Firstly, the high memory usage described previously means
that it is not always possible to store the data at full precision.
Most recent graphics cards will indeed have the required
memory for this, but we have also implemented a fallback
which allows lower-end systems to store the data as 16-bit half
precision values instead. This is typically slower, as the GPU
performs calculations only on 32-bit floats and so data has to
be converted as it is loaded to and from memory.

Another consideration is that most graphics hardware does
not support operations on 64-bit floating point types, and even
when these types are supported the performance is typically
several times lower. This situation is expected to improve in
the future through the availability of the OpenCL ‘cl_khr_fp64’
extension [7], but for now our implementation is limited to 32-
bits for intermediate values.

The impact of these precision concessions is measured in
our tests in the following section.

V. RESULTS

Performance and accuracy of our implementations have
been tested on two separate machines to analyze the benefits on
both high-end and low-end hardware. Our high-end hardware
is a desktop PC containing an Intel Quad-Core i7-2600 CPU
running at 3.40GHz and equipped with an Nvidia GeForce
GTX 590. Note that the GTX 590 is a dual GPU board but we
are only making use of a single GPU for our tests. Our low-end
hardware is a small laptop containing an AMD Dual-Core C-60
processor and an integrated Radeon HD 6290 graphics card.

We have two implementations of our algorithm to test. The
first is the existing CPU implementation which runs on a single

Figure 4. The resolution of the mask image is reduced in this case by a
factor of 16. Note that for visualization purposes the image on the right
has then been scaled up by a factor of 16, but a significant reduction in
memory is obtained.

CPU core and produces results which have been verified across
a large number of data sets. This provides our reference
implementation, and we expect our new GPU implementation
to exceed this in performance whilst giving an output that is as
close as possible to the reference.

The second is our new OpenCL implementation as
described in Section IV. OpenCL is a programming model for
general parallel computing hardware and so our test can be run
on both the GPU and the multi-core CPU present in each
machine.

We also have some additional variations on the algorithm.
Section IV discussed the merits of utilizing image objects
instead of buffer objects when the required OpenCL extension
is available. The NVidia GPU does not support this extension,
but curiously our low-end AMD GPU does support it despite
being inferior to the NVidia GPU in almost every other way.
This provides us with an opportunity to test the impact of this
particular feature.

Lastly, we also test our algorithm using both full precision
(32-bit) floating point storage and half-precision (16-bit)
floating point storage. In both cases we compute the root mean
square and maximum error metrics from our reference
implementation. The results of all these tests are given in
Tables 2 and 3.

Execution times for all variations of the algorithm are given
in Tables 2 and 3 for both high-end and low-end test
configurations. Note that times are inclusive of OpenCL data
transfer where applicable. Timings for ‘GPU+Images’ are not
provided for the NVidia hardware because it did not support
the required OpenCL extension, and timings for full precision
‘GPU+buffers’ are not provided for AMD hardware as
memory limitations prevented the algorithm from running.

VI. DISCUSSION

There are a number of properties of these results which are
worth discussing further.

Firstly, it can be observed that the reference
implementation produces consistent results across both test
configurations. This is the expected behavior but worth
verifying as it helps validate the results of the other
comparisons. The full-precision calculations can be seen to
execute slightly faster than the half-precision calculations
which is due to the lack of native half-precision support in
modern CPUs. In both cases the desktop configuration
outperformed the laptop by a factor of about five.

Next, we can observe that the GPU implementation is
always faster than both the reference and the multi-core CPU
implementation. This is again expected as the promised
performance gains were the main motivation behind bringing
this algorithm to the GPU. The greatest performance increase
(about 50x) is seen on the NVidia hardware when working with
the half precision data, while the laptop gives a more modest
increase of approximately 6.5x. In both cases the results justify
our efforts to parallelize the algorithm for the GPU.

Results for the OpenCL implementation running on multi-
core CPUs were more mixed. The full precision desktop test
did indeed give the expected 4x performance boost for a quad-
core processor, but when operating at half precision it only
gave a 2x performance increase. As mentioned earlier, half
precision is not natively supported by CPUs and it seems the
OpenCL emulation is not particularly efficient in this regard.
More surprisingly, the multi-core OpenCL implementation was
actually slower than the reference implementation on the low-
end AMD hardware. The reasons for this are not entirely
apparent, but further research has revealed that other
benchmarks [16] have obtained similar results.

There is a general trend for the full-precision
implementations to be faster than their half-precision
counterparts due to native hardware support for the IEEE 754
standard. The exception to this is the NVidia GPU result which
shows a 10% performance increase for the half-precision
version. This is most likely due to the high processing power of
this GPU causing memory access to become a bottleneck rather
than arithmetic operations, at which point the smaller size of

TABLE II. INTEL QUAD-CORE I7-2600 CPU @ 3.40GHZ + NVIDIA GEFORCE GTX 590

Full precision Half precision

Time (s) Error (RMS) Error (max) Time (s) Error (RMS) Error (max)

Reference 58.60 0.0 0.0 60.90 1.710 × 10-4 0. 145

Multi-core 13.82 2.257 × 10-4 0.290 31.45 2.585 × 10-4 0.290

GPU+buffers 1.34 2.298 × 10-4 0.290 1.22 2.563 × 10-4 0.290

GPU+images - - - - - -

TABLE III. AMD DUAL-CORE C-60 CPU + INTEGRATED RADEON HD 6290

Full precision Half precision

Time (s) Error (RMS) Error (max) Time (s) Error (RMS) Error (max)

Reference 295.01 0.0 0.0 325.13 1.710 × 10-4 0.145

Multi-core 352.10 2.313 × 10-4 0.290 517.24 2.592 × 10-4 0.290

GPU+buffers - - - 50.32 2.595 × 10-4 0.290

GPU+images 47.70 2.306 × 10-4 0.290 47.89 4.313 × 10-4 0.290

the half-precision type brings cache benefits which outweigh
the additional processing time.

The benefits of using image objects rather than buffer
objects are visible in the half-precision results on the laptop,
but at only a 6% performance increase, which was not as great
as we had hoped. However, the image objects did bring an
additional surprise benefit for full-precision, as the buffer
objects were not usable in this scenario due to memory
constraints. This limitation appears to arise from the integrated
nature of this GPU, which has only a limited amount of
dedicated memory and relies on memory shared with the CPU
for most of its operations.

Looking at the error metrics we can observe the expected
behavior of RMS error being slightly higher for the half-
precision calculations than for the full-precision calculations.
The maximum error of 0.29 is only 0.028% of the entire 0-
1040 output range, while the RMS error is significantly lower
than this.

VII. FUTURE WORK

The performance benefits demonstrated in this paper open
the door to a number of further opportunities. One avenue of
investigation is to sacrifice some of the newly obtained
performance and spend time improving the behavior of the
algorithm, for example by applying a more robust noise
reduction algorithm [17, 18] prior to processing the data. It is
possible that such improvements will offset the precision
differences seen earlier.

Another opportunity is to improve the curvature analysis by
implementing a larger kernel which looks beyond the
immediate neighbors of a given voxel [19]. It may be possible
to utilize the image interpolation hardware present in GPUs to
reduce the number of image samples which are required for
this [20] and doing so would provide an additional benefit to
using OpenCL image objects for the data storage.

It may also be interesting to investigate executing the
algorithm across multiple GPUs to obtain even greater
speedups. The challenge here is determining the best approach
to splitting the memory and ensuring that results are
synchronized between the GPUs involved.

Lastly, the work presented here will be used for the
evaluation of our research on automatic parallelization of
algorithms for the GPU. This aims to simplify the process of
utilizing GPU hardware and our results so far will serve as a
reference implementation for this.

REFERENCES
[1] G. Kiss, J. van Cleynenbreugel, S. Drisis, D. Bielen, G. Marchal, and P.

Suetens, “Computer-aided detection for low-dose CT colonography,”
Proceeding of MICCAI’05, pp. 859–67, 2005.

[2] R. M. Summers, C. D. Johnson, L. M. Pusanik, J. D. Malley, A. M.
Youssef, and J. E. Reed, “Automated polyp detection at CT

colonography: Feasibility assessment in a human population,”
Radiology, vol. 219, no. 1, pp. 51–9, 2001.

[3] C. van Wijk, V. F. van Ravesteijn, F. M. Vos, and L. J. van Vliet,
“Detection and segmentation of colonic polyps on implicit isosurfaces
by second principal curvature flow”, IEEE Transactions on Medical
Imaging, pp. 688–696, 2010.

[4] Y. Xujiong and G. Slabaugh, “A model-driven Bayesian method for
polyp detection and false positive suppression in CT colonography
Computer–Aided detection”, Machine Learning in Computer-Aided
Diagnosis: Medical Imaging Intelligence and Analysis, pp. 220–237,
2012.

[5] L. Hong, A. Kaufman, Y. Wei, A. Viswambharen, M. Wax and Z.
Liang, "3D virtual colonoscopy", in Proceedings of Biomedical
Visualization, pp. 26-32, 1995.

[6] D. Williams, S. Grimm, E. Coto, A. Roudsari and H. Hatzakis,
"Volumetric Curved Planar Reformation for Virtual Endoscopy", IEEE
Transactions on Visualization and Computer Graphics, Vol. 14, No. 1,
pp. 109–119, 2008.

[7] Khronos OpenCL Working Group, “The OpenCL Specification”, Ver
1.1, Rev. 44.

[8] T. Schiwietz, S. Bose, J. Maltz, R. Westermann, "A Fast And High-
Quality Cone Beam Reconstruction Pipeline Using The GPU", In
Proceedings of SPIE Medical Imaging, Vol. 6510, pp. 1279–1290, 2007.

[9] W. Xu, F. Xu, M. Jones, B. Keszthelyi, J. Sedat, D. Agard and K.
Mueller, "High-Performance Iterative Electron Tomography
Reconstruction with Long-Object Compensation using Graphics
Processing Units (GPUs)", Journal of Structural Biology, pp. 142-153,
2010.

[10] S. S. Stone, J. P. Haldar, S. C. Tsao, W. W. Hwu, B. P. Sutton and Z. P.
Liang, "Accelerating advanced MRI reconstructions on GPUs", Journal
of Parallel and Distributed Computing, pp. 1307–1318, 2008.

[11] M. Rumpf and R. Strzodka, “Level set segmentation in graphics
hardware,” in Proceedings of IEEE International Conference on Image
Processing, Vol. 3, pp. 1103–1106, 2001.

[12] A. Sherbondy, M. Houston, and S. Napel, “Fast volume segmentation
with simultaneous visualization using programmable graphics hardware”
in Proceedings of the IEEE Visualization, pp. 171–176, 2003.

[13] R. Shams, P. Sadeghi, R. Kennedy, and R. Hartley, “A survey of
medical image registration on multicore and the GPU,” IEEE Signal
Processing Magazine 27(2), pp. 50–60, 2010.

[14] S. Kockara, T. Halic and C. Bayrak, "Real-time Minute Change
Detection on GPU for Cellular and Remote Sensor Imaging",
International Conference on Advanced Information Networking and
Applications Workshops, pp. 13–18, 2009.

[15] IEEE Computer Society, "IEEE Standard for Floating-Point Arithmetic",
2008

[16] SiSoftware Limited, “Benchmarking : OpenCL CPU Performance
(OpenCL vs native/Java/.Net)”, accessed 21 October 2012,
http://www.sisoftware.net/?d=qa&f=gpgpu_cpu_perf

[17] S. Manay, A. Yezzi, "Anti-geometric diffusion for adaptive thresholding
and segmentation, in Proceedings of IEEE International conference on
Image Processing, Vol 2, pp 829-832, 2001

[18] M.K. Kalra et al, “Detection and Characterization of Lesions on Low-
Radiation-Dose Abdominal CT Images Postprocessed with Noise
Reduction Filters”, Radiology, Vol. 232, Nr. 3, pp. 791-797, 2004

[19] G. Kindlmann, R. Whitaker, T. Tasdizen and T. Moller, “Curvature-
Based Transfer Functions for Direct Volume Rendering: Methods and
Applications”, in Proceedings of the IEEE Visualization, pp 67-74, 2003

[20] C. Sigg, M. Hadwiger, “Fast third-order texture filtering”, in GPU Gems
2, Chapter 20, pp. 313-329, 2005

