Evaluation of autoparallelization toolkits for
commodity graphics hardware

David Williams!, Valeriu Codreanu', Po Yang?, Baoquan Liu?, Feng Dong?,
Burhan Yasar?®, Babak Mahdian*, Alessandro Chiarini®, Xia Zhao®, and
Jos B.T.M. Roerdink!

! University of Groningen, The Netherlands
2 University of Bedfordshire, United Kingdom
3 RotaSoft, Turkey
4 ImageMetry, Czech Republic
5 Super Computing Solutions, Italy
5 AnSmart, United Kingdom

Abstract. In this paper we evaluate the performance of the OpenACC
and Mint toolkits against C and CUDA implementations of the standard
PolyBench test suite. Our analysis reveals that performance is similar in
many cases, but that a certain set of code constructs impede the ability
of Mint to generate optimal code. We then present some small improve-
ments which we integrate into our own GPSME toolkit (which is derived
from Mint) and show that our toolkit now out-performs OpenACC in
the majority of tests.

1 Introduction

The last ten years have seen the widespread adoption of parallel computing hard-
ware in the form of Graphics Processing Units (GPUs). These are commonly
found in all consumer grade systems from high-end desktop machines down to
mobile devices. Although originally designed for accelerating highly paralleliz-
able graphics operations, these GPUs have steadily increased in programmability
and have found widespread application in a number of specialist fields [1].

Writing such general purpose applications on the GPU typically requires a
developer to be experienced with OpenCL or CUDA, and to have a strong un-
derstanding of the GPU’s parallel architecture. This acts as a barrier to adoption
in environments where such specialised knowledge is not readily available, such
as many small and medium sized enterprises (SMEs) which do not have access
to the needed domain experts.

The development of semi-automatic parallelization tools [2, 3] has the po-
tential to shift this balance and encourage more wide-spread adoption of GPU
acceleration. These tools typically work by augmenting the input C/C++ code
with compiler directives which mark regions to be parallelized, and then auto-
matically generating the required OpenCL/CUDA code for device initialization,
memory transfers and kernel implementation. The principle is similar to that

adopted by OpenMP [4] and has proved to be a simple and practical approach
to improving utilisation without requiring a high level of expertise.

In this paper we provide an evaluation of the OpenACC [3] and Mint [2]
tools, with the particular aim of identifying and implementing improvements
to Mint. We perform this evaluation against the PolyBench [7] test suite after
adding OpenACC, Mint, and OpenMP directives. We are then able to identify
the areas in which Mint is not competitive, and in the second half of the paper we
present some changes which we include in our enhanced version of Mint (known
as the GPSME toolkit [5]).

2 Related Work

OpenACC is a relatively new technology, with the first version of the standard
being finalised in 2011 and the latest version expected during 2013. Coupled
with the lack of freely available and mature implementations, this has meant the
technology has not been widely evaluated by the academic community. The small
number of available evaluations have focused primarily on small test cases [15]
though some application to real-world code has also been performed [16] [17].
In all cases significant speedup was observed on sections of parallelizable code,
and it should be noted that the OpenACC compilers are still undergoing rapid
development due to the standard being so new.

To our knowledge, work evaluating Mint has been limited to that undertaken
by its authors. The original Mint paper [2] claimed its performance was twice
that of the PGI Accelerator model when using 3D heat simulation as a test case.
The PGI Accelerator model was the predecessor to PGI's OpenACC compiler, so
it is interesting to see how the performance has changed. A later paper presented
an application of Mint to earthquake simulation and demonstrated an order of
magnitude performance increase over the CPU reference implementation [10].

We have chosen to use an existing benchmark suite rather than to design our
own, in order to minimise the bias which would be implicit in such a process.
The PolyBench polyhedral benchmark suite [7] was designed to test the perfor-
mance of a number of kernels from various application domains, and was recently
extended with GPU implementations of most of the tests [8]. This provides an
ideal basis for evaluating the performance of autoparallelization tools.

3 Methodology

The PolyBench test suite contains 15 test programs in the domains of convolu-
tion, linear algebra, data mining and stencil operations. The original implemen-
tations [7] were in C but GPU implementations in OpenCL and CUDA were
added later [8] by Grauer-Gray et al. We do not consider these GPU implemen-
tations to be optimal as we were able to obtain equal or better results than
most of them using our autoparallelization tools (see Section 4), but they still
provide a useful reference point in the performance analysis. We consider only

the CUDA implementation as there are known differences between OpenCL and
CUDA performance [11,12], and our tools use CUDA as a backend anyway.

Within this work we will sometimes need to refer to individual tests within
PolyBench. We do this by using the name which PolyBench assigns to each
test, written in upper case letters. For example, the ‘ATAX’ test uses matrix
transpose and vector multiplications while the ‘SYRK’ test contains symmetric
rank-k operations. A full list of test names and descriptions is provided with
PolyBench [7].

We are primarily concerned with measuring the performance of Mint and
OpenACC with respect to each other, but a comparison to CPU performance
is also useful as a baseline. In the interests of fairness this CPU implementation
should take advantage of all available cores and threading opportunities. We
have therefore added OpenMP directives to each of the PolyBench tests.

The performance of CUDA programs (and, by extension, the output of our
tools) is often highly dependent on the way in which the problem space is par-
titioned into thread blocks within the application. The optimal size for these
thread blocks depends on a number of factors including the nature of the work
done in the kernel, the need for synchronisation between threads, the data access
pattern, and the target hardware. Prior to performing the evaluation we wrote
an automated system to compile each test in a large number of thread block con-
figurations, and then chose to perform our tests using the configuration which
showed the greatest performance. A similar benchmarking approach is described
in [14].

3.1 Modifications to PolyBench

A few of the benchmarks required minor modifications in order for their com-
putational pattern to be successfully captured by the Mint and OpenACC pro-
gramming models. These modifications affected the ATAX, BICG, and GRAM-
SCHMIDT tests as they contained two or three-level nested loops with inter-
loop dependencies. These were resolved by splitting the loop into two successive
nested loops. The modifications affected all the parallelization tools equally as
each test is only implemented once but with multiple sets of pragmas applied.

Additionally, we adjusted the timing code for the CUDA manual implemen-
tations to be inclusive of the data transfer time as this was previously omitted.
The time taken to transfer data to and from the GPU is often significant and
can dominate algorithm runtime in some cases [13]. By accounting for this we
help ensure a fair comparison.

3.2 Test configuration

The test machine is comprised of a quad-core Intel CPU and an NVidia GPU as
detailed in Table 1. All components are from the same generation hardware to
make the comparison as fair as possible. Table 1 also specifies the operating sys-
tem and compiler setup, with all tests being compiled on maximum optimization
levels.

Test configuration
CPU Setup: Intel Core i7-2600K 3.4 GHz
GPU Setup: NVidia GTX680
Operating System: Ubuntu 12.04 LTS
C/OpenMP Compiler: |GCC 4.6
CUDA Compiler: NVCC (From CUDA 5.0 SDK)
OpenACC Compiler: |PGI Compiler 13.1

Table 1: System details

4 Initial Results

Initial performance measurements for the CUDA, Mint and OpenACC versions
of each of the 15 tests are shown in Figure 1. These measurements are all shown
relative to the baseline set by the OpenMP implementation running on the CPU
and using all cores. Note that the tests are performed using the default dataset
size provided by the PolyBench suite.

Default-size dataset

B CUDA reference

Spped-up relative to the OpenMP
implementation

H OpenACC
Mint
~ N w w o fa) al o) =z % %
0.5 g < Q = e} o o m = =
§ £ 8 = 5 5 5 % = 8 7
0.25)
< < o

LAINHOSAVYD

Fig. 1: Speed-up of GPU implementations compared to OpenMP on the default dataset.
The values are in logarithmic scale.

It can be seen that for many tests the performance of the three implementa-
tions is similar. Among these cases there is usually a small amount of variation
in the exact performance distribution. When the CUDA version is faster it can
be attributed to missed optimization opportunities in the autogenerated code,
and when the CUDA version is slower we found that autogenerated code was
using pitched memory allocations to reduce the memory coalescing penalties.
This penalty is heavily incurred in the case of SYR2K, the manual version be-
ing more than 30% slower than the automatic ones, with the kernel code being
similar.

Furthermore we can observe that the performance of Mint and OpenACC is
generally very similar, but that Mint has a slight edge in the majority of cases.

An analysis of the output code has suggested that this is due to better register
usage in the Mint code, as well as some redundant instructions in the OpenACC
version (probably reflecting its more general-purpose nature).

More interestingly, there are a few tests which are notably different from the
generalizations described above. Most striking is the large performance difference
between OpenACC and Mint in the CORR, COVAR and GRAMSCHMIDT
tests. This can be explained by the triangular nature of the nested loops in these
tests, and is further discussed in Section 5.1 where we address this problem.

Three of the tests (ATAX, BICG, GESUMMYV) actually showed reduced per-
formance when running on the GPU. These tests made use of a one-dimensional
thread block which did not contain enough work to benefit from offloading to
the GPU, and the additional communication overhead caused an overall slow-
down. However, it can be observed that Mint performed significantly better than
OpenACC in these cases, and this is due to its support of the tile and chunksize
parameters. OpenACC could not have the same degree of control with the vec-
tor, worker and gang parameters, and will include a tile parameter in OpenACC
version 2.0.

There are other differences arising from the organization of the parallel loops.
The 3DCONV benchmark is composed of a three-level nested for-loop. In the
manual CUDA version the outer for-loop is iterated on the CPU, and only the
inner two levels of the loop nest are offloaded as a 2D thread block. The automatic
approaches use a 3D thread block, reducing thus the CPU—GPU communication.
The same happens with the CORR, COVAR and GRAMSCHMIDT examples.

Before moving on to make improvements to Mint in the next section, we
first ran the tests again with all the dataset sizes doubled in each dimension. All
other parameters were left the same and the results can be seen in Figure 2.

128
64
32
16
8
4
2
1

~

<

<

0.25
0.125

Increased-size dataset

m CUDA reference
W OpenACC
I D
w %
: 71
<

Speed-up relative to the OpenMP
implementation

H402
NTHA
NYAS

z
S

I\NOJGE.F

ANOOQT |
HYAOD

az-aia4
NNID

LAINHISINVYO

Fig.2: Speed-up of GPU implementations compared to OpenMP on the enlarged
dataset. The values are in logarithmic scale.

In these results for the enlarged dataset we can see that the speed difference
between the GPU approaches and the CPU implementation is increasing when
compared to the default dataset. This happens because most of the benchmarked

problems have a complexity which is quadratic with respect to the dataset size
and this increases the amount of work performed by each thread. Even at this
dataset size, the ATAX, BICG and GESUMMYV tests perform better on the
CPU, but the Mint model continues to provide faster code than OpenACC.

5 Mint Enhancements

As part of our GPSME project [5] we have developed a number of extensions
to Mint to create a new tool known as the ‘GPSME toolkit’. We have added
significant functionality (C++ and multi-file support, preliminary OpenCL out-
put, etc.) but this is not used for the PolyBench tests and is not the focus of
this paper. Instead, we wish to use the insight we have gained in Section 4 to
improve the performance characteristics of our toolkit relative to OpenACC.

5.1 Supporting triangular loops

In Section 4 it was stated that three of the tests (CORR, COVAR and GRAM-
SCHMIDT) suffered from poor performance in Mint due to the usage of trian-
gular loops. A problematic section of code from the COVAR test is shown in
Algorithm 1, complete with the Mint directives which were added.

Algorithm 1 The covariance code from PolyBench with Mint directives added.
#pragma mint copy(data,toDevice, M, N)

#pragma mint copy(mean,toDevice, M)

#pragma mint copy(symmat,toDevice, M, N)

#pragma mint parallel

{

... //Some code omitted for brevity

/* Calculate the m * m covariance matrix. */
#pragma mint for nest(2) tile(16, 16)
for (j1 = 0; j1 < M; ji++)

{
for (j2 = jl; j2 < M; j2++)
{
... //Some code omitted for brevity
}
}

}
#pragma mint copy(symmat,fromDevice, M, N)

The key issue is the dependency of the initial value of j2 in the inner loop on
the current value of j1 in the outer loop. This was enough to prevent Mint from
generating valid CUDA code when attempting to specify that both loop levels

0000000000 0O
0000000060000 O Occupied thread
000000000000

i2(leeeeleeeeeoo O: @ Unoccupied thread

0006006606000 0] Thread block with
000000000000 all threads occupied
©0 0000000000 . Threadblock with
000000 0t0 O O .9. L..i no threads occupied
1®® @® @0 OO0 O0:000O0; - Threadblock with

00 @®0000 O:0 0 O Oi - some threads occupied
'® ® O O:0 O O 00 O O O
1® O O Ot0 O O O:0 O O O

Fig. 3: Iteration space of the two-level covariance loop

should be parallelized. Replacing nest(2)’ with 'nest(1)’ allowed parallelization
of only the outermost loop to proceed as expected, but the performance was
significantly less than that obtained from OpenACC (see Section 4).

An extension in our GPSME toolkit has allowed this situation to be handled
naturally. A rectangular iteration space is defined by the full range of values
which 51 and j2 can assume, and just over half of these points fall within the
triangular region processed by the test (see Figure 3). A grid of CUDA thread
blocks is overlaid on the rectangular iteration, and the CUDA kernel contains
a test to determine whether a given set of thread indices actually form part of
the triangular region. With this in mind, a thread block can be categorized as
being in one of three states with respect to the number of threads which need
to execute:

— Full: All threads are part of the triangular iteration space and must be
executed. No processing capability is wasted in this scenario.

— Empty: None of the threads are part of the triangular iteration space. All
threads will fail the membership test implemented in the kernel and return
immediately.

— Half-full: In this case the running time of the thread block is determined by
the threads which do need to run. Threads which do not need to run must
still wait upon those that do, and this represents some wasted processing
capability.

With this new addition, the performance of the output code is greater than
the one generated with OpenACC, and is more than 30 times faster than the
one generated by the base Mint (full results presented later in Section 6).

The number of idle processing elements in the ’half-full’ category is depen-
dant upon the size of the thread block, and so a smaller thread block size results

in better utilization. However, CUDA applications in general benefit from mak-
ing thread blocks rather large (in the absence of synchronization concerns) and
this outweighs the benefits of better utilization for the CORR, COVAR and
GRAMSCHMIDT examples.

5.2 Single-dimensional vs. multi-dimensional arrays

Another advantage to the GPSME model is that it finds more optimization op-
portunities when applied to code that uses multi-dimensional arrays. The opti-
mizations are in terms of better register reuse, as well as better shared memory
usage. We've tested this assumption on some of the tests. For the 2MM and
SYR2K tests, a further 25% performance increase is obtained when using two-
dimensional addressing instead of the default flattened array addressing.

The changes from single-dimensional to multi-dimensional array accesses
were done in a manual manner, as in Polybench all tests are written with
flattened array accesses. However, with extra hints from the programmer the
GPSME toolkit should be able to treat the single dimensional arrays as multi-
dimensional ones.

An interesting observation is that when faced with the same two-dimensional
arrays in the 2MM and SYR2K tests, the OpenACC compiler reports more than
two times worse performance, as can be observed in Table 2. The reasons for
this are not currently clear and will be the subject of some future investigation.

2MM-1D [s][2MM-2D [s][SYR2K-1D [s]|[SYR2K-2D [s]
OpenACC|3.921 8.927 16.671 32.272
GPSME [3.814 2.812 17.01 12.08

Table 2: Timing improvement for the 2MM benchmark

6 Final Results

The results obtained after implementing the proposed enhancements are pre-
sented in Figure 4. The tests which benefited from our enhancements are shown
in strong colours, with other tests faded out to indicated that they have not
changed since the initial results. The improvements of GPSME over Mint is
shown by the hatched bars. These examples rely on triangular loop support, and
our improvement has enhanced their performance dramatically.

Increased-size dataset
2048
1024
512
256

M CUDA reference
8 M OpenACC
GPSME Toolkit

Spped-up relative to the OpenMP
implementation
=
(=2}

WINT
WINE
XYLV
519
Y402
1AN
NCHUAS
NYAS

0.25
0.125

ANODQT
ANODQE
HYAOD
de-dLad
WINID
AANWNSID
LAINHISIAVYO

Fig.4: Speed-up of GPU implementations compared to OpenMP on the enlarged
dataset. The faded bars correspond to tests which have not changed since Figure 2,
and for the three tests which have changed the hatched bars show how GPSME has
improved over Mint.

We note that the improvements observed from multi-dimensional addressing
are not included in this table, as it is not implemented at this point as an
automatic transformation.

7 Conclusions

Automatic parallelization through compiler directives is proving to be an effec-
tive method of maximising computing resources, and we expect that the coming
years will see the approaches achieving the kind of widespread adoption that
we currently see with OpenMP. We have shown that both OpenACC and also
Mint/GPSME are capable of delivering code with a performance to meet or ex-
ceed that provided by the hand-written code supplied with PolyBench, and that
the modifications presented in this paper have been enough to push it into the
lead on the PolyBench tests.

Performance between OpenACC and the GPSME toolkit is very close in most
cases, which is to be expected since they perform a similar set of operations and
are running on the same hardware. While we do show slightly greater perfor-
mance for our toolkit it should also be noted that OpenACC is more generic,
and so may perform better on other applications. The triangular loop support
added in this paper is of better quality than the one offered within OpenACC,
with the three tests affected exhibiting the largest performance difference.

Future work will revolve around automating some changes which were made
manually for the purpose of this paper (such as the enhancements in Section
5.2), as well as identifying further opportunities for optimisation. We will also
continue working with a number of small and medium enterprises to apply our
toolkit to some real-world problems.

References

N oUW

10.

11.

12.

13.

14.

15.

16.

17.

. Owens, J.D., Luekbe, D., Govindaraju, N., Harris, M., Krger, J., Lefohn, A.E.,

Purcell, T.J.: A Survey of General-Purpose Computation on Graphics Hardware,
Computer Graphics Forum, Volume 26, Issue 1, pp. 80-113, 2007

Unat, D., Cai, X., Baden, S.B.: Mint: Realizing CUDA Performance in 3D Stencil
Methods with Annotated C Proc. Int’l Conf. Supercomputing, pp. 214-224, 2011
The OpenACC Application Programming Interface, Version 1.0, 2011

OpenMP Application Program Interface, Version 3.1, 2011
http://wuw.gp-sme.eu/

The OpenACC Application Programming Interface, Version 2.0, March 2013
Pouchet, L-N.: PolyBench: The Polyhedral Benchmark suite (2011), Version 3.2,
http://www.cs.ucla.edu/~pouchet/software/polybench/, 2011

Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-tuning
a High-Level Language Targeted to GPU Codes, Proc. Innovative Parallel Com-
puting, pp. 1-10, 2012

Nugteren, C., van den Braak, G., Corporaal, H.: Future of GPGPU Micro-
Architectural Parameters, Design, Automation and Test in Europe (DATE 13),
2013

Zhou, J., Unat, D.,; Choi, D. J., Guest, C. C., Cui, Y.: Hands-on Performance
Tuning of 3D Finite Difference Earthquake Simulation on GPU Fermi Chipset,
Procedia Computer Science, 9, pp. 976-985, 2012

Fang, J., Varbanescu, A.L., Sips, H.: A Comprehensive Performance Comparison
of CUDA and OpenCL, Proc. Parallel Processing, pp. 216—225 2011

Komatsu, K., Sato, K., Arai, Y., Koyama, K., Takizawa, H., Kobayashi, H.: Eval-
uating performance and portability of OpenCL programs, Proc. Automatic Per-
formance tuning, 2010

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, JJW., Skadron, K.: A perfor-
mance study of general-purpose applications on graphics processors using CUDA,
Journal of Parallel and Distributed Computing, Vol 68, Issue 10, pp. 1370-1380,
2008

Magni, A., Grewe, D., Johnson, N.: Input-Aware Auto-Tuning for Directive-based
GPU Programming, Proceedings of the 6th Workshop on General Purpose Proces-
sor Using Graphic Processing Units, pp. 66—75, 2013

Reyes, R. N., Lopez, 1., Fumero, J. J., de Sande, F.: Directive-based Programming
for GPUs: A Comparative Study. IEEE 9th International Conference on Embedded
Software and Systems (HPCC-ICESS), 2012

Wienke, S., Springer, P., Terboven, C., Mey, D.: OpenACC - First Experiences
with Real-World Applications. In Euro-Par 2012 Parallel Processing pp. 859870,
2012

Herdman, J. A., Gaudin, W. P., McIntosh-Smith, S., Boulton, M., Beckingsale,
D. A., Mallinson, A. C., Jarvis, S. A. : Accelerating Hydrocodes with OpenACC,
OpeCL and CUDA. High Performance Computing, Networking, Storage and Anal-
ysis (SCC), pp. 465-471, 2012

