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Abstract

We propose a new matrix learning scheme to extend relevance learning
vector quantization (RLVQ), an efficient prototype-based classification al-
gorithm, towards a general adaptive metric. By introducing a full matrix
of relevance factors in the distance measure, correlations between different
features and their importance for the classification scheme can be taken
into account and automated, general metric adaptation takes place during
training. In comparison to the weighted Euclidean metric used in RLVQ
and its variations, a full matrix is more powerful to represent the internal
structure of the data appropriately. Large margin generalization bounds
can be transfered to this case leading to bounds which are independent
of the input dimensionality. This also holds for local metrics attached to
each prototype which corresponds to piecewise quadratic decision bound-
aries. The algorithm is tested in comparison to alternative LVQ schemes
using an artificial data set, a benchmark multi-class problem from the UCI
repository, and a problem from bioinformatics, the recognition of splice
sites for C. elegans.

Keywords: learning vector quantization, generalized LVQ, metric adap-
tation, generalization bounds

1 Introduction

Learning vector quantization (LVQ) as introduced by Kohonen is a particu-
larly intuitive and simple though powerful classification scheme (Kohonen, 1997)
which is very appealing for several reasons: the method is easy to implement; the
complexity of the resulting classifier can be controlled by the user; the classifier
can naturally deal with multi-class problems; and, unlike many alternative clas-
sification schemes such as feedforward networks or the support vector machine
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(SVM), the LVQ system is straightforward to interpret because of the intuitive
assignment of data to the class of the closest prototype. For these reasons, LVQ
has been used in a variety of academic and commercial applications such as
image analysis, bioinformatics, telecommunication, robotics, etc. (Bibliography
on the Self-Organizing Map (SOM) and Learning Vector Quantization (LVQ),
2002).

Original LVQ, however, suffers from several drawbacks such as potentially
slow convergence and instable behavior because of which various alternatives
have been proposed, see for instance Kohonen (1997). Still, there are two major
drawbacks of these methods, which have been tackled only recently.

On the one hand, LVQ relies on heuristics and a full mathematical investi-
gation of the algorithm is lacking. This problem relates to unexpected behavior
and instabilities of training. It has been shown that already slight variations of
the basic LVQ learning scheme yield quite different results (Biehl m. fl., 2006,
2007). Variants of LVQ which can be derived from an explicit cost function are
particularly interesting. Several proposals for cost functions can be found in the
literature, one example being generalized LVQ (GLVQ) which forms the basis
for the method we will consider in this article (Sato & Yamada, 1996). Two
alternatives which implement soft relaxations of the original learning rule are
presented in Seo & Obermayer (2003); Seo m. fl. (2003). These two approaches,
however, have the drawback that the original crisp limit case does not exist (for
Seo & Obermayer, 2003) resp. the discrete limit case shows poor results also in
simple settings (see Ghosh m. fl., 2006 for Seo m. fl., 2003). The cost function
as proposed in Sato & Yamada (1996) displays stable behavior and aims at a
good generalization ability already during training as pointed out in Hammer
m. fl. (2005a). On the other hand, LVQ and variants severely rely on the stan-
dard Euclidean metric and they are not appropriate for situations where the
Euclidean metric does not represent the underlying semantic. This is the case,
e.g., for high dimensional data where noise accumulates and likely disrupts the
classification, for heterogeneous data where the importance and nature of the
dimensions differs, and for data which involves correlations of the dimensions.
In these cases, which are quite common in practice, simple LVQ may fail. Re-
cently, a cost function based generalization of LVQ has been proposed which
allows to incorporate general differentiable similarity measures (Hammer m. fl.,
2005b). The specific choice of the similarity measure as a simple weighted diag-
onal metric with adaptive relevance terms has turned out particularly suitable
in many practical applications since it can account for irrelevant or inadequately
scaled dimensions. At the same time, it allows for straightforward interpreta-
tion of the result because the relevance profile can directly be interpreted as
the contribution of the dimensions to the classification (Hammer & Villmann,
2002). For an adaptive diagonal metric, dimensionality independent large mar-
gin generalization bounds can be derived (Hammer m. fl., 2005a). This fact
is remarkable since it accompanies the good experimental classification results
for high dimensional data by a theoretical counterpart. The same bounds also
hold for kernelized versions, but not for arbitrary choices of the metric. Often,
different features are correlated in classification tasks. In unsupervised cluster-
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ing, correlations of data are accounted for, e.g., by the classical Mahalanobis
distance (Duda m. fl., 2000) or fuzzy-covariance matrices as proposed, e.g., in
the approaches Gath & Geva (1989); Gustafson & Kessel (1997). It has been
shown recently that general metric learning based on large margin principles can
greatly improve the results obtained by distance-based schemes such as k-nearest
neighbor classifier (Shalev-Schwartz m. fl., 2004; Weinberger m. fl., 2006). For
supervised LVQ classification tasks, however, an explicit metric which takes into
account correlations has not yet been proposed. Based on the general frame-
work as presented in Hammer m. fl. (2005a), we develop an extension of LVQ to
an adaptive matrix of relevances which parameterizes a general Euclidean met-
ric and accounts for pairwise correlations of features. By means of an implicit
scaling and rotation of the data, the algorithm yields a discriminative distance
measure which is particularly suitable for the given classification task. It can
be parameterized in terms of a single, global matrix or by individual matrices
attached to the prototypes. Interestingly, one can derive generalization bounds
which are similar to the case of a simple diagonal metric for this more complex
case. Apart from this theoretical guarantee, we demonstrate the usefulness of
the novel scheme in the context of several classification problems.

Note that extensions of LVQ schemes towards general kernels exist which
take into account a more general metric than the Euclidean one, see e.g. (Ham-
mer m. fl., 2005c). Learning rules can easily be derived, provided the LVQ
scheme follows a cost function and the kernel is differentiable. However, al-
though this idea equips LVQ schemes with a larger capacity, the kernel has to
be fixed a priori. In this contribution, we consider a specific metric which is
adaptive according to the given classification task and corresponding general-
ization bounds.

2 Review of LVQ

LVQ aims at approximating a classification scheme by prototypes. Assume
training data (ξi, yi) ∈ R

N × {1, . . . , C} are given, N denoting the data dimen-
sionality and C the number of different classes. An LVQ network consists of a
number of prototypes which are characterized by their location in the weight
space wi ∈ R

N and their class label c(wi) ∈ {1, . . . , C}. Classification is imple-
mented as a winner takes all scheme. For this purpose, a possibly parameterized
similarity measure dλ is fixed for R

N , where λ specifies the metric parameters
which can be adapted during training. Often, the standard Euclidean metric
is chosen. A data point ξ ∈ R

N is mapped to the class label c(ξ) = c(wi) of
the prototype i for which dλ(wi, ξ) ≤ dλ(wj , ξ) holds for every j 6= i, breaking
ties arbitrarily. Hence, it is mapped to the class of the closest prototype, the
so-called winner.

Learning aims at determining weight locations for the prototypes such that
the given training data are mapped to their corresponding class labels. This
is usually achieved by a modification of Hebbian learning, which moves proto-
types closer to the data points of their respective class. A very flexible learning
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approach has been introduced in Sato & Yamada (1996): training is derived as
a minimization of the cost function

∑

i

Φ(µi) where µi =
dλ

J(ξi) − dλ
K(ξi)

dλ
J(ξi) + dλ

K(ξi)
(1)

based on the steepest descent method. Φ is a monotonic function, e.g. the
logistic function or the identity Φ(x) = x which we use throughout the following;
dλ

J (ξ) = dλ(wJ , ξ) is the distance of data point ξ from the closest prototype
wJ with the same class label y, and dλ

K(ξ) = dλ(wK , ξ) is the distance from
the closest prototype wK with a different class label than y. Note that the
numerator is smaller than 0 iff the classification of the data point is correct.
The smaller the numerator, the greater the security of classification, i.e. the
difference of the distance from a correct and wrong prototype. The denominator
scales the argument of Φ such that it satisfies −1 < µ(ξ) < 1. A further possibly
nonlinear scaling by Φ might be beneficial for applications. This formulation
can be seen as a kernelized version of so-called generalized LVQ introduced in
Sato & Yamada (1996).

The learning rule can be derived from this cost function by taking derivatives.
We assume that the similarity measure dλ(w, ξ) is differentiable with respect
to the parameters w and λ. As shown in Hammer m. fl. (2005a), for a given
pattern ξ the derivatives yield

∆wJ = −ǫ · Φ′(µ(ξ)) · µ+(ξ) · ∇wJ
dλ

J(ξ), (2)

where ǫ > 0 is the learning rate, the derivative of Φ is taken at position µ(ξ),
and µ+(ξ) = 2 · dλ

K(ξ)/(dλ
J (ξ) + dλ

K(ξ))2. Further,

∆wK = ǫ · Φ′(µ(ξ)) · µ−(ξ) · ∇wK
dλ

K(ξ), (3)

where µ−(ξ) = 2 · dλ
J (ξ)/(dλ

J + dλ
K(ξ))2. The derivative with respect to the

parameters λ yields the update

∆λ = ǫ · Φ′(µ(ξ)) ·
(

µ+(ξ) · ∇λdλ
J(ξ) − µ−(ξ) · ∇λdλ

K(ξ)
)

. (4)

The adaptation of λ is often followed by normalization during training, e.g.
enforcing

∑

i λi = 1 to prevent degeneration of the metric. It has been shown
in Hammer m. fl. (2005a) that these update rules are valid whenever the metric
is differentiable. Using delta-functions, the computation can also be done for
distributions P with continuous support, (Hammer m. fl., 2005a), i.e. a valid
cost function results for every differentiable metric and reasonable distribution
P .

It has been demonstrated in Hammer m. fl. (2005a) that the squared weighted
Euclidean metric dλ(w, ξ) =

∑

i λi(wi − ξi)
2 with λi ≥ 0 and

∑

i λi = 1 is a
simple and powerful choice which allows to use prototype based learning also
in the presence of high dimensional data with features of different, yet a priori
unknown, relevance. This measure has the advantage that the relevance fac-
tors λi can be interpreted directly and provide insight into the classification
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task: dimensions with large λi are most important for the classification while
very small or zero relevances indicate that the corresponding feature could be
omitted. We refer to this method as generalized relevance learning vector quan-
tization (GRLVQ, see Hammer & Villmann (2002)). Very similar schemes have
been motivated heuristically which lack an interpretation of the algorithm as
stochastic gradient descent with respect to a cost function (Bojer m. fl., 2001).
Alternative choices have been introduced in Hammer m. fl. (2005a), including,
for example, metrics which take local windows into account, e.g., for time series
data.

Note that the relevance factors, i.e. the choice of the metric need not be
global, but can be attached to single prototypes, locally. In this case, individual
updates take place for the relevance factors λj for each prototype j, and the
distance of a data point ξ from prototype wj , dλj

(wj , ξ) is computed based on
λj . This allows a local relevance adaptation, taking into account that the rele-
vance might change within the data space. This method has been investigated
e.g. in Schleif & Villmann (2005). We refer to this version as localized GRLVQ
(LGRLVQ).

3 The GMLVQ Algorithm

Here, we introduce an important extension of the above concept, which employs
a full matrix of relevances in the similarity measure. We consider a generalized
distance of the form

dΛ(w, ξ) = (ξ − w)T Λ (ξ − w), (5)

where Λ is a full N ×N matrix which can account for correlations between the
features. For Λ to define a valid metric, symmetry and positive definiteness has
to be enforced (we will discuss in a moment how this property can be guaran-
teed). This way, arbitrary Euclidean metrics can be realized by an appropriate
choice of the parameters. In particular, correlations of dimensions and rota-
tion of the axes can be accounted for. Such choices have already successfully
been introduced in unsupervised clustering methods such as fuzzy clustering
(Gath & Geva, 1989; Gustafson & Kessel, 1997), however, at the expense of
increased computational costs, since these methods require a matrix inversion
at each adaptation step. For the metric as introduced above, a variant which
costs O(N2) can be derived.

Note that, as already stated, the above similarity measure defines a general
squared Euclidean distance in an appropriately transformed space only if Λ is
positive definite and symmetric. We can achieve this by substituting

Λ = ΩT Ω (6)

which yields uT Λu = uT ΩT Ωu =
(

ΩT u
)2 ≥ 0 for all u, where Ω is an arbitrary

real N × N matrix. In addition, det Λ 6= 0 has to be enforced to guarantee
that Λ is positive definite. However, in practice, positive semi-definiteness of
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the matrix is sufficient, since data often only populates a sub-manifold of the
full data space and definiteness has to hold only with regard to the relevant
subspace of data. Therefore, we do not enforce det Λ 6= 0. Using the relation in
Eq. (6), the squared distance reads

dΛ(w, ξ) =
∑

ijk

(ξi − wi)ΩkiΩkj (ξj − wj). (7)

To obtain the adaptation formulas we need to compute the derivatives with
respect to w and Ω. The derivative of dΛ with respect to w yields

∇w dΛ(w, ξ) = −2Λ (ξ − w) = −2ΩT Ω(ξ − w). (8)

Derivatives with respect to a single element Ωlm give

∂dΛ(w, ξ)

∂Ωlm
=
∑

j

(ξm − wm)Ωlj(ξj − wj) +
∑

i

(ξi − wi)Ωli(ξm − wm)

= 2 · (ξm − wm) [Ω(ξ − w)]l ,

(9)

where subscripts l,m specify components of vectors. Thus, we get the update
equations

∆wJ = ǫ · 2 · Φ′(µ(ξ)) · µ+(ξ) · Λ · (ξ − wJ),

∆wK = − ǫ · 2 · Φ′(µ(ξ)) · µ−(ξ) · Λ · (ξ − wK) .
(10)

Note that these updates correspond to the standard Hebb terms of LVQ, pushing
the closest correct prototype towards the considered data point and the closest
wrong prototype away from the considered data point. For the update of the
matrix elements Ωlm we get

∆Ωlm = − ǫ · 2 · Φ′(µ(ξ)) ·
(

µ+(ξ) ·
(

(ξm − wJ,m) [Ω(ξ − wJ )]l

)

−

µ−(ξ) ·
(

(ξm − wK,m) [Ω(ξ − wK)]l

)

)

. (11)

This update also corresponds to a Hebbian term, since the driving force consists
of the derivative of the distance from the closest correct prototype (scaled with
−1) and the closest incorrect prototype. Thus, the parameters of the matrix
are changed in such a way that the distance from the closest correct prototype
becomes smaller, whereas the distance from the closest wrong prototype is in-
creased. Similar to the case of diagonal relevances (Bojer m. fl., 2001), matrix
updates can be formulated on heuristic grounds, as well. Such variants will be
discussed in forthcoming publications.

The learning rate for the metric can be chosen independently of the learn-
ing rate of the prototypes. We set it an order of magnitude smaller in order
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to achieve a slower time-scale of metric learning compared to the weight up-
dates. After each update Λ should be normalized to prevent the algorithm from
degeneration. One possibility is to enforce

∑

i

Λii = 1 (12)

by dividing all elements of Λ by the raw value of
∑

i Λii after each step. In this
way we fix the sum of diagonal elements which coincides with the sum of eigen-
values. This generalizes the normalization of relevances

∑

i λi = 1 for a simple
diagonal metric. One can interpret the eigendirections of Λ as the temporary
coordinate system with the relevances corresponding to the eigenvalues. Since

Λii =
∑

k

ΩkiΩki =
∑

k

(Ωki)
2
, (13)

normalization can be done by dividing all elements of Ω by (
∑

ki(Ωki)
2)1/2 =

(
∑

i[Ω
T Ω]ii

)1/2
after every update step. Note that for one global matrix, nor-

malization of the matrix does not affect the cost function such that this pro-
cedure can still be interpreted as a standard gradient technique. The explicit
normalization of Λ changes the learning dynamics in the general case of indi-
vidual matrices because of the explicit projection of the metric tensor to 1 after
every adaptation step. In this case, for small step size, we observed a reason-
able behavior since the method can be interpreted as an approximate gradient
projection (albeit with non-convex constraints, see (Bertsekas, 1976)).

We term the algorithm specified by Eq.s (10) and (11) generalized matrix
LVQ (GMLVQ). The complexity of one adaptation step is determined by the
computation of the closest correct and incorrect prototypes (O(N2 · Nw), Nw

being the number of prototypes), and the adaptation (O(N2)). Usually, this
procedure is repeated a number of time steps which is linear in the number of
patterns to achieve convergence. Thus, this procedure is faster than unsuper-
vised fuzzy-clustering variants which use a similar form of the metric but which
require a matrix inversion in each step. Apart from this improved efficiency,
the metric is determined in a supervised way in this approach, such that the
parameters are optimized with respect to the given classification task.

We can work with one full matrix which accounts for a transformation of
the whole input space, or, alternatively, with local matrices attached to the
individual prototypes. In the latter case, the squared distance of data point ξ

from a prototype wj is computed as dΛ
j

(wj , ξ) = (ξ − wj)
T Λj(ξ − wj). Each

matrix is adapted individually in the following way: given ξ with closest correct
prototype wJ and closest incorrect prototype wK , we get the update equations

∆ΩJ
lm = − ǫ · 2 · Φ′(µ(ξ)) ·

µ+(ξ) ·
(

(ξm − wJ,m)[ΩJ (ξ − wJ )]l

)

,

∆ΩK
lm = + ǫ · 2 · Φ′(µ(ξ)) ·

µ−(ξ) ·
(

(ξm − wK,m)[ΩK(ξ − wK)]l

)

.

(14)
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Localized matrices have the potential to take into account correlations which
can vary between different classes or regions in feature space. For instance,
clusters with ellipsoidal shape and different orientation could be present in the
data. We refer to this general version as localized GMLVQ (LGMLVQ).

Note that LGMLVQ leads to nonlinear decision boundaries which are com-
posed of quadratic pieces, unlike GMLVQ which is characterized by piecewise
linear decision boundaries. This way, the receptive fields of the prototypes need
no longer be convex or even connected for LGMLVQ, as we will see in the ex-
periments. Depending on the data at hand, this effect can largely increase the
capacity of the system.

4 Generalization ability

One of the benefits of prototype-based learning algorithms consists in the fact
that they show very good generalization ability also for high dimensional data.
This observation can be accompanied by theoretical guarantees. It has been
proved in Crammer m. fl. (2003) that basic LVQ networks equipped with the
Euclidean metric possess dimensionality independent large-margin generaliza-
tion bounds, whereby the margin refers to the security of the classification, i.e.
the distance of a given data point to the classification boundary. A similar re-
sult has been derived in Hammer m. fl. (2005b) for LVQ networks as considered
above which possess an adaptive diagonal metric. Remarkably, the margin is di-
rectly correlated to the numerator of the cost function as introduced above, i.e.
these learning algorithms inherently aim at margin optimization during training.
As pointed out in Hammer m. fl. (2005a), these results transfer immediately to
kernelized versions of the algorithm where the similarity measure can be inter-
preted as the composition of the standard scaled Euclidean metric and a fixed
kernel map. In the case of an adaptive full matrix, however, these results are
not applicable, because the matrix is changed during training. Hence a large
number of additional free parameters is introduced since the kernel is optimized
according to the given classification task.

Here, we directly derive a large margin generalization bound for LGMLVQ
networks with a full adaptive matrix attached to every prototype, whereby we
use the ideas of Hammer m. fl. (2005b). It turns out that the so-called hypothesis
margin dominates generalization bounds, while the input dimensionality and
thus, the number of free parameters of the GMLVQ network does not occur
explicitly in the bounds. Thus a good generalization ability of trained networks
can be expected independent of the input dimensionality provided a large margin
can be achieved. Since the function class implemented by GMLVQ networks
is contained in the class of LGMLVQ networks, the bounds also hold for the
simpler case.

We consider a LGMLVQ network given by Nw prototypes wi. We assume
that all inputs ξ fulfill the condition |ξ| ≤ B for some B > 0, and we assume
that weights are also restricted by |wi| ≤ B. As beforehand, we assume that Λi

is a symmetric positive semidefinite matrix such that the trace is normalized to
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1. We consider the case of a binary classification, i.e. only two classes, −1 and
1, are present. We refer to prototypes labeled with S ∈ {+,−} by wS

i .
Classification takes place by a winner takes all rule, i.e.

ξ 7→ sgn

(

min
w−

i

{dΛ
i

(w−

i , ξ)} − min
w+

j

{dΛ
j

(w+
j , ξ)}

)

, (15)

where dΛ
i

(wi, ξ) = (ξ −wi)
T Λi(ξ −wi) as beforehand and sgn selects the sign

±1 of the real number. A trainable LGMLVQ network corresponds to a function
in the class

F := {f : R
N → {−1, 1} | ∃|wi| ≤ B,∃Λi such that Λi is

symmetric and positive semidefinite with trace 1,
such that f is given by (15)}.

(16)

Assume some unknown underlying probability measure P is given on R
N ×

{−1, 1} according to which training examples are drawn. The goal of learning
is to find a function f ∈ F such that the generalization error

EP (f) := P (y 6= f(ξ)) (17)

is as small as possible. However, P is not known during training; instead,
examples for the distribution (ξi, yi), i = 1, . . . ,m are available, which are inde-
pendent and identically distributed according to P . Training aims at minimizing
the empirical error on the given training data

Êm(f) :=

m
∑

i=1

|{yi 6= f(ξi)}|/m . (18)

Thus, the learning algorithm generalizes to unseen data if Êm(f) becomes rep-
resentative for EP (f) for an increasing number of examples m with high proba-
bility, i.e. if we can automatically guarantee a small error on any possible input
to the learned function, given the trained inputs are correct. This bound should
hold simultaneously for any function f of the class, in particular for the network
trained according to the given sample set.

We will not derive bounds which are directly based on the empirical error
Êm(f), rather, we incorporate the security of a classification in terms of the
classification margin. For a function f as given by (15), we consider the related
real-valued function

Mf : ξ 7→
(

min
w−

i

{dΛ
i

(w−

i , ξ)} − min
w+

j

{dΛ
j

(w+
j , ξ)}

)

(19)

which is obtained by dropping the function sgn. The sign of this real value
determines the output class and the size of its absolute value indicates the
security of the classification, i.e. the margin of the classifier with respect to input
ξ around the decision boundary. The larger this margin, the more robust is the
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classification of ξ with respect to noise in the input or function parameters. We
refer to the resulting class of real-valued functions implemented by LGMLVQ
networks by MF .

Assume ρ > 0 estimates the minimum security of the classification. For the
moment, we assume that ρ ∈ (0, 1) is a fixed number which is chosen a priori
independent of the training set and the final LGMLVQ function. Following the
approach (Bartlett & Mendelson, 2003), we define the loss function

L : R → R, t 7→







1 if t ≤ 0
1 − t/ρ if 0 < t ≤ ρ
0 otherwise

. (20)

The term

ÊL
m(f) :=

m
∑

i=1

L(yi · Mf (ξi))/m (21)

is the so called empirical risk. It accumulates the number of errors for a given
data set, and, in addition, also punishes all correct classifications if their margin
is smaller than ρ, i.e. it measures the classification accuracy and its robustness
with respect to noise. The empirical risk is small iff the number of misclassifica-
tions is small and almost all correctly classified points have margin larger than
ρ.

It is possible to correlate the generalization error of LGMLVQ networks and
this modified empirical error by a dimensionality independent bound: according
to Bartlett & Mendelson (2003, Theorem 7) the inequality

EP (f) ≤ ÊL
m(f) +

2

ρ
· Rm(MF ) +

√

ln(4/δ)

2m
(22)

holds simultaneously for all functions in MF with probability at least 1 − δ/2,
whereby Rm(MF ) is the so-called Rademacher complexity of the function class
MF . The term 2/ρ · Rm(MF ) +

√

ln(4/δ)/2m specifies the so called structural

risk, denoted by Êm(MF ) in the following.
The Rademacher complexity of a function class measures the complexity of

the class by considering the correlation of outputs of a function of the class on a
given set of points and random variables. The empirical Rademacher complexity
of the function class MF given m samples ξi, is defined as the expectation

R̂m(MF ) = Eσ1,...,σm

(

sup
Mf∈MF

∣

∣

∣

∣

∣

2

m

m
∑

i=1

σi · Mf (ξi)

∣

∣

∣

∣

∣

)

, (23)

where σi are independent {−1, 1}-valued random variables with zero mean. The
Rademacher complexity is defined as the expectation over the samples

Rm(MF ) = Eξ1,...,ξm
R̂m(MF ), (24)

where ξi are independent and identically distributed according to the marginal
distribution of P on the input space.
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Using techniques of Bartlett & Mendelson (2003), we will show in the ap-
pendix, that the Rademacher complexity of functions given by a LGMLVQ
architecture, Rm(MF ), can be limited by the term

O
(

N
3/2
w B3 +

√

ln(1/δ)√
m

)

(25)

with probability at least 1 − δ/2 where Nw denotes the number of prototypes
and B the size restriction of inputs and prototypes. Thus, the overall inequality

EP (f) ≤ ÊL
m(f) +

1√
m
O
(

N
3/2
w B3

ρ
+

√

ln(1/δ)

min{1, ρ}

)

(26)

results which holds simultaneously for all Mf ∈ MF and training data with
probability at least 1 − δ. Since this is valid for all Mf ∈ MF , matrix parame-
ters as well as prototypes can be adaptive. This bound allows to estimate the
deviation of the generalization error of a LGMLVQ network and its result on a
given training set. Obviously, the bound is small for a small number of errors
and a large margin ρ for almost all correctly classified points. Note that the cost
function of LGMLVQ is correlated to the classification error, but it also contains
the margin of a data point as denominator of the summands. Thus, LGMLVQ
aims at an optimization of the margin during training and at a corresponding
simplification of the classifier, such that good generalization can be expected.
Note that the bound is independent of the dimensionality of the data. Thus,
excellent generalization can be expected also for high dimensional settings.

So far, we assumed that the bound ρ for the margin (points with smaller
margin contribute to the error) is fixed a priori. In applications, it is reasonable
to choose ρ based on the outcome of a training algorithm such that almost all
training examples have a margin larger than ρ. For this case, a generalization of
the argumentation is possible which only assumes some prior about a reasonable
range of the margin: Assume the empirical margin can be upper bounded by
C > 0, a naive bound being e.g. the maximum distance of data in the given
training set. We define ρi = C/i for i ≥ 1, and we choose prior probabilities
pi ≥ 0 with

∑

pi = 1 which indicate the confidence in achieving an empirical
margin of size at least ρi for almost all training data. We define the cost function
Li as above associated to margin ρi and the corresponding empirical error as
ÊLi

m (f). We are interested in the probability

P
(

∃i EP (f) ≥ ÊLi
m (f) + ǫ(i)

)

, (27)

where the bound

ǫ(i) =
1√
m
O
(

N
3/2
w B3

ρi
+

√

ln (1/(piδ))

min{1, ρi}

)

(28)
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Figure 1: Empirical risk (a) and structural risk (b) vs. ρ for an LGMLVQ
network as derived for the Splice Site Recognition data set in Sec. 5 with
δ = 0.7.

is chosen according to the inequality (26). We can argue

P
(

∃i EP (f) ≥ ÊLi
m (f) + ǫ(i)

)

≤
∑

i

P
(

EP (f) ≥ ÊLi
m (f) + ǫ(i)

)

≤
∑

i

pi · δ = δ,
(29)

because the bounds ǫ(i) are chosen according to equation (26). Thus, posterior
bounds depending on the empirical margin and the prior confidence in achieving
this margin can be derived.

The theoretical bound as derived in Eq. (22) is illustrated in an example:
Fig. 1 shows the empirical risk and the structural risk of Eq. (22) for different
values of ρ for an LGMLVQ network derived in Sec. 5. One can observe the
characteristic monotonicity of these two risks with respect to ρ such that the
combination of both terms leads to a minimum of the overall bound for an ap-
propriate choice of ρ. However, the constants of the overall bound (Eq. (25)) as
derived in this article are still too weak in the sense that the structural risk is
dominating for relevant domains of the parameters, i.e. EP (f) is monotonically
decreasing with ρ in the relevant domain. This bound shows the qualitative de-
pendencies for large values of m rather than leading to tight bounds for realistic
small-sample settings.

5 Experiments

In the following experiments, we study the performance of matrix relevance
adaptation in the context of several learning problems. We compare global and
local matrix schemes with the corresponding schemes for relevance vectors as
used in GRLVQ, for instance. To this end, we restrict our GMLVQ algorithm
to the adaptation of diagonal matrices. Note that we implement gradient steps
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in Ω, while the original GRLVQ scheme corresponds to steepest descent w.r.t.
diagonal elements of Λ = ΩT Ω, directly. This modification was necessary in
order to allow for a fair comparison of vector and matrix adaptation with the
same learning rates.
Note that GMLVQ optimization involves number of hyperparameters, includ-
ing the number of prototypes per class, the learning rates, and their annealing
schedule. As for LVQ itself, the number of prototypes per class is a critical
parameter and it depends on the number of modes of the underlying class dis-
tribution. In our experiments, one prototype per class turned out to be sufficient
to obtain reasonable results; in general, more than one prototype per class can
improve the classification accuracy depending on the underlying data distribu-
tion. To initialize the prototypes, we choose the mean values of random subsets
of data points selected from each class. The learning rates have been optimized
by means of crossvalidation within a reasonable range. Learning rate annealing
is performed according to the following schedule:

ǫp,m(t) =
ǫp,m(0)

1 + τ · (t − 1)
, (30)

where ǫp = 4 · ǫ in Eq. (10) and ǫm = 4 · ǫ in Eq.s (11) and (14), respectively. t
denotes the number of sweeps through the training set. The parameter τ deter-
mines the speed of annealing and is selected for every application individually.
Prior to learning, the matrix Λ is set to be diagonal with Λii = 1/N, ∀i. The
same holds for local relevance matrices, respectively.

Artificial data

In a first illustrative experiment, the algorithms are applied to two-dimensional
artificial data in a binary classification problem. Each class corresponds to
a cigar-shaped cluster with equal prior weights. Raw data is generated ac-
cording to axis-aligned Gaussians with mean µ1 = [1.5, 0.0] for class 1 and
µ2 = [−1.5, 0.0] for class 2 data, respectively. In both classes the standard devi-
ations are σ11 = 0.5 and σ22 = 3.0. These clusters are rotated independently by
the angles ϕ1 = π/4 and ϕ2 = −π/6 so that the two clusters intersect. Training
and test set consist of 600 data points per class, respectively. In order to reduce
the influence of lucky set compositions, the experiments are performed on ten
statistically independent data sets. One of these data sets is visualized in Fig.
2. It will be used for demonstration purposes in the following.

For training, we use one prototype per class and the following settings: we
use the squared Euclidean metric (GLVQ), an adaptive diagonal metric (GR-
LVQ), individual adaptive diagonal metrics for each prototype (LGRLVQ), a
global adaptive matrix (GMLVQ), and individual adaptive matrices for every
prototype (LGMLVQ). Training is done for 1000 epochs in total. In all ex-
periments, the learning rates are chosen differently for prototypes and metric
parameters and are annealed during training. The initial learning rate ǫp(0) for
prototypes is chosen as 0.005, the initial learning rate for the metric parameters
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ǫm(0) is set to 0.0005 and τ = 0.001. The mean classification accuracies on the
training and test sets are summarized in the left panel of Tab. 1. The position
of the resulting prototypes and decision boundaries for the example data set are
shown in Fig. 2 (a)-(e).

The relevance matrix

Λ ≈
(

0.7783 0.4154
0.4154 0.2217

)

which results from GMLVQ training on the example data set has the eigenvalues
one and zero. The same eigenvalue spectrum is obtained in all runs, i.e. for
all independent data sets. It implies that the algorithm determines only one
new feature to discriminate the data. The respective direction in feature space
is defined by the first eigenvector of Λ. The corresponding matrix Ω projects
the data onto this 1-dimensional subspace as depicted in Fig. 2(g). Further-
more, this figure displays that class 2 samples spread only slightly around their
prototype in the new feature space. The opposite holds for class 1 samples,
implying large distances of these data points to their prototype. Accordingly,
the classification performance is much better for class 2 samples. This can also
be seen in the receptive fields in Fig. 2(d). On this data set, almost 98% of the
training error goes back to class 1 data.

For local matrix adaptation, the algorithm also tends towards a state with
eigenvalues one and zero for both matrices Λ1 and Λ2. The resulting local
relevance matrices on the example data set are

Λ1 ≈
(

0.5155 −0.4993
−0.4993 0.4845

)

Λ2 ≈
(

0.7498 0.4331
0.4331 0.2502

)

.

Figures 2(h) and 2(i) denote the projections of the training set to the feature
spaces which are determined for the two prototypes individually. One can clearly
observe the benefit of individual matrix adaptation: it allows each prototype to
shape its distance measure according to the local ellipsoidal form of the class.

Table 1: Percentage of correctly classified patters for the artificial data and the
image segmentation data using different LVQ algorithms.

Artificial data
Algorithm Training Test

GLVQ 74.5 73.4
GRLVQ 74.9 73.7
GMLVQ 79.9 79.0
LGRLVQ 80.0 79.5
LGMLVQ 91.4 92.2

Image data
Algorithm Training Test

GLVQ 84.8 83.0
GRLVQ 89.0 88.9
GMLVQ 90.4 90.2
LGRLVQ 91.4 90.0
LGMLVQ 98.8 94.4
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Figure 2: Artificial data set. (a)-(f) Prototypes and receptive fields, (a) GLVQ,
(b) GRLVQ, (c) LGRLVQ, (d) GMLVQ, (e) LGMLVQ, (f) GLVQ using two pro-
totypes per class, (g) Training set transformed by global matrix Ω, (h) Training
set transformed by local matrix Ω1, (i) Training set transformed by local matrix
Ω2. In (g), (h), (i) the dotted lines correspond to the eigendirections of Λ, Λ1

and Λ2, respectively.

This way, the data points of both ellipsoidal clusters can be classified correctly
except for the tiny region where the classes overlap. A partitioning of the feature
space into four receptive fields could also be realized based on the Euclidean
distance, if two prototypes per class are adapted to the data. However, we

15



observe that GLVQ additionally requires a proper initialization in order to find
the respective prototype constellation. Using the same initialization strategy
as in the previous experiments, GLVQ yields the prototype constellation visible
in Fig. 2(f). The classification performance obtained by this set of prototypes
is nearly the same as in Fig. 2(a). Hence, the crucial factor to influence the
classification performance of LVQ-classifiers on this data set is not the number
of prototypes, but the choice of an appropriate distance measure. Note that,
for local metric parameter adaptation, the receptive fields of the prototypes are
no longer separated by straight lines (Fig. 2(c)) and need no longer be convex
(Fig. 2(e)).

Image Segmentation Data

In a second experiment, we apply the algorithms to the image segmentation data
set provided by the UCI repository of Machine Learning (Newman m. fl., 1998).
The data set contains 19-dimensional feature vectors, which encode different
attributes of 3×3 pixel regions extracted from outdoor images. Each such region
is assigned to one of seven classes (brickface, sky, foliage, cement, window, path,
grass). The features 3-5 are (nearly) constant and are eliminated for these
experiments. As a further preprocessing step, the features are normalized to
zero mean and unit variance. The training set contains 210 data points (30
samples per class), the test data consists of 300 samples per class. We split the
test data into a test and a validation set of equal size in order to optimize the
model settings.

In our first set of experiments, each class is approximated by one prototype,
respectively. We use the parameters settings ǫp(0) = 0.005, ǫm(0) = 0.0001 and
τ = 0.0001 and continue learning until the validation error remains constant or
starts indicating overfitting effects. In order to reduce the influence of random
fluctuations, we average our results over ten runs with varying initializations.

The mean classification accuracies are summarized in the right panel of Tab.
1. The algorithms based on adaptive distance measures show a better perfor-
mance than GLVQ. Remarkably, using different metrics influences the final lo-
cation of the prototypes in feature space only slightly. The prototypes saturate
close the the class conditional means in all experiments. Clear differences affect
only a small number of features in certain classes (see Fig. 3).

Figure 4(a) displays the averaged classification errors on training- and val-
idation sets in the course of GMLVQ-Training. The validation error starts
degrading slightly after approximately 1500 epochs. One of the matrices af-
ter 1500 epochs is visualized in Figure 5. The eigenvalue spectrum shows that
the classifier uses a ten dimensional space to classify the data. The dimension
weighted as most relevant in the original space is feature 16 (hue-mean, see
Newman m. fl., 1998). GRLVQ training with identical initializations and learn-
ing parameters also weights the same dimension as most important. However,
the relevance profile is much more pronounced (λGRLVQ

16 ≈ 0.9). The additional
consideration of correlations for the computation of distance values causes a less
distinct relevance profile.
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Figure 3: Class conditional means (µ) of 2 classes in comparison to the pro-
totypes identified by the different algorithms. GLVQ: circle, GRLVQ: square,
GMLVQ: diamond, LGRLVQ: triangle (down), LGMLVQ: triangle (left).
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Figure 4: Evolution of the mean training and test error in the course of (a)
GMLVQ-Training. (b) LGMLVQ-Training.
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Figure 5: Visualization of the global relevance matrix Λ after 1000 epochs
GMLVQ-Training (a) Diagonal elements and eigenvalues (b) Off-diagonal ele-
ments. The diagonal elements are set to zero for the plot.

In a further sequence of GMLVQ experiments, we analyse the algorithms’
sensitivity with respect to the number of prototypes. We determine the class-
wise rates of misclassification after each experiment and repeat the training
providing one further prototype for the class contributing most to the overall
rate of misclassification. A system consisting of 10 prototypes achieves 90.9%
mean test accuracy, using 13 prototypes reaches 91.2% mean accuracy on the
test sets. The slight improvement in classification performance is accompanied
by an increasing training time until convergence.

The training error during LGMLVQ-training remains constant after approx-
imately 12 000 sweeps through the training set (Fig. 4(b)). The validation error
shows slight over-fitting effects. It reaches a minimum after approximately.
10 000 epochs and increases in the further course of training. In the following
we present the results obtained after 10 000 epochs. At this point, training of
individual matrices per prototype achieves a test accuracy of 94.4%, an improve-
ment of approximately 4.9% compared to GMLVQ and LGRLVQ. We are aware
of only one SVM result in the literature which is applicable for comparing the
performance. In Prudent & Ennaji (2005), the authors achieve 93.95% accuracy
on the test set.

Figure 6 shows the diagonal elements and eigenvalue spectra of all local
matrices we obtain in one run which are also representative for the other exper-
iments. Matrices with a clear preference for certain dimensions on the diagonal
also display a distinct eigenvalue profile (e.g. Λ1, Λ5). Similarly, matrices with
almost balanced relevance values on the diagonal exhibit only a weak decay
from the first to the second eigenvalue (e.g. Λ2, Λ7). This observation for diag-
onal elements and eigenvalues coincides with a similar one for the off-diagonal
elements. Figure 7 visualizes the off-diagonal elements of the local matrices
Λ1,Λ2 and Λ5. Corresponding to the balanced relevance- and eigenvalue profile
of matrix Λ2, the off-diagonal elements are only slightly different from zero.
This may indicate diffuse data without a pronounced, hidden structure. There
are obviously no other directions in feature space which could be used to sig-
nificantly minimize distances within this class. On the contrary, the matrices
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Figure 6: (a) Diagonal elements of local relevance matrices Λ1−7. (b) Eigenvalue
spectra of local relevance matrices Λ1−7.

Λ1 and Λ5 show a clearer structure. The off-diagonal elements cover a much
wider range and there is a clearer emphasis on particular dimensions. This
implies that class-specific correlations between certain features have significant
influence. The most distinct weights for correlations with other dimensions are
obtained for features, which also gain high relevance values on the diagonal.
It is visible that especially relations between the dimensions encoding color in-
formation are emphasized. The dimensions weighted as most important are
features 11: exred-mean (2R - (G + B)) and 13: exgreen-mean (2G - (R + B))
in both classes. Furthermore, the off-diagonal elements highlight correlations
with e.g. feature 8: rawred-mean (average over the regions red values), feature
9: rawblue-mean (average over the regions green values), feature 10: rawgreen-
mean (average over the regions green values). For a description of the features,
see Newman m. fl. (1998).

Splice Site Recognition

As a second benchmark test, we apply the algorithms to the publicly available
C. elegans data set for the detection of splice sites. The data can be downloaded
at http://www2.fml.tuebingen.mpg.de/raetsch/projects/AnuSplice. The
feature vectors encode a sequence of 50 nucleotides with a potential splice site in
the center, in between the characteristic dinucleotide AG. The classification task
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Figure 7: Visualization of the off-diagonal elements of the local matrices Λ1,2,5.
The diagonal elements are set to zero for the plot.

consists in separating sequences containing a splice site from sequences without
a splice site, i.e. a two-class problem is defined accordingly. The 4 nucleotides
are encoded as corners of a tetrahedron in a 3-dimensional vector space. This
realizes equal pairwise distances between the nucleotides. The redundant din-
ucleotide AG in the center of all feature vectors is removed. Accordingly, the
sequence information is represented by a vector in R

N with N = 144. The
data consists of 5 data sets containing 1000 data points for training and 10 000
data points for testing, respectively. The sets are not balanced and their com-
position varies slightly. They contain approximately two times more non-splice
site-samples than examples of splice sites.

We would like to stress that our main interest in this experiment is not
related to the biological aspects of the classification problem. We will put em-
phasis on the analysis of our method and the comparison of the new algorithm
to the adaptation of relevance vectors.

We choose the simplest setting and approximate each class with one proto-
type respectively. The initial learning parameters are chosen as ηp(0) = 1 · 10−3

and ηm(0) = 1 · 10−5. Equation (30) is used for annealing the values during
training with τ = 1 · 10−4.

In all experiments, GMLVQ turns out to be more robust than GRLVQ. The
learning curves of GRLVQ show strong fluctuations until they finally saturate
at a constant level. The mean test set accuracy in this limit is 86.8%± 0.03%. In
earlier states of training the system shows better classification accuracy of above
90%. But GRLVQ performs a very strong feature selection in the further course
of learning and the performance degrades in response to this oversimplification.
Fig. 8(a) displays the evolution of the weight values on one of the five data sets
which is also representative for the other experiments. When the error finally
converges, only three factors remain significantly different from zero. Typical
relevance factors are

λ61,64,72
GRLVQ

≈ (0.04, 0.63, 0.33) .

GMLVQ shows a larger stability during learning. The error curves display
only small oscillations, but indicate slight over-fitting effects. In the course of
training, we observe an immediate focus on a single linear combination of the
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Figure 8: (a) Evolution of the elements of relevance vector λ in the course of
GRLVQ-Training. (b) Evolution of the eigenvalues of relevance matrix Λ in the
course of GMLVQ training.

original features. Fig. 8(b) displays the eigenvalues of Λ as a function of training
time. Except for the first eigenvalue, all other factors begin to decrease to
zero immediately after starting metric adaptation. After approximately 10 000
epochs, the system finally reaches a state with only one eigenvalue remaining.
At this point, the mean classification accuracy is 93.2%±7 · 10−4% on the test
sets. Due to these extreme configurations of the relevance matrix, the same
accuracy can be achieved in the 1-dimensional subspace defined by the first
eigenvector of Λ. Accordingly, our method allows to reduce the number of
features dramatically, without loosing classification performance.

Fig. 9 visualizes one of the final global matrices Λ. Features in the cen-
ter display the highest relevances on the diagonal. This implies that the region
around the potential splice site is of particular importance and mirrors biological
knowledge. Additionally, the classifier considers correlations between different
features to evaluate the similarity between the prototypes and new feature vec-
tors. Similar to the previous experiment, the most significant off-diagonal Λij

relate to the features with the highest diagonal relevances. These correlations
result in a cross-like structure in the visualization of the off-diagonal elements,
see Fig. 9(b),(c).

The prototypes can be interpreted as a sequence of 48 nontrivial combi-
nations of the four bases. They converge after approximately 4000 epochs,
independent of the additional adaptation of a relevance vector or a relevance
matrix in the distance measure. The representatives detected by GMLVQ ap-
proximate the data more appropriately compared to the GRLVQ-prototypes.
GRLVQ slightly pushes the prototypes away from the data, several components
leave the boundaries of the tetrahedron. This effect is even stronger, if we train
GLVQ with the fixed Euclidean metric. Fig. 10 visualizes the prototypes iden-
tified by GMLVQ on one data set. All subcomponents of the class 1 prototype
are located close to the origin, the tetrahedron’s center of mass. In this posi-
tion they have almost equal distance to the four vertices which represent the
bases. On the contrary, the splice site prototype exhibits a more specific struc-
ture. Especially the components with high relevance values are located close to
one of the corners, i.e. one of the nucleotides, and allow for a better semantic
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Figure 10: Visualization of the resulting prototypes after GMLVQ training. The
plots show the projections of the 3-dimensional elements encoding the separate
components of the sequences, onto the x-y plane. The gray values display the
subcomponent’s position in the sequence, i.e. the distance to the potential splice
site. In the right plot, we labeled the positions relative to the center which are
lying closest to one of the bases.

interpretation.
In accordance with our findings for GMLVQ, localized matrix learning de-

tects one dominating feature per class. As in our GMLVQ experiments, we train
the LGMLVQ system for 12 000 epochs. Note, that both local matrices are up-
dated in each learning step. The resulting matrices Λ1 and Λ2 do not show the
extreme eigenvalue settings like the global relevance matrix Λ. But the error
curves indicate over-fitting and we do not continue training. The largest eigen-
values range from 0.76 to 0.82 (Λ1) and from 0.96 to 0.97 (Λ2) in the different
experiments. The diagonal and the off-diagonal elements of the local matrices
show the same characteristic patterns as the global matrix. However, the values
of matrix Λ2 are more distinct. The mean classification accuracy is slightly
better compared to GMLVQ (93.5%± 5 · 10−4%). When we perform the classi-
fication based on the two features defined by the first eigendirections of Λ1 and
Λ2, we loose almost no performance and still achieve 93.45%± 3 · 10−4% test
accuracy. SVM results reported in the literature even lie above 96% (Hammer
m. fl., 2004; Rätsch & Sonnenburg, 2004) test accuracy. Note, however, that our
classifier is extremely sparse and simple and still achieves a performance which
is only slightly worse.

6 Conclusion

We have proposed a new metric learning scheme for LVQ classifiers which al-
lows to adapt a full matrix according to the given classification task. This
scheme extends the successful relevance learning vector quantization algorithm
such that correlations of dimensions can be accounted for during training. The
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learning scheme can be derived directly as a stochastic gradient of the GLVQ
cost function such that convergence and flexibility of the original GLVQ is pre-
served. Since the resulting classifier is represented by prototype locations and
matrix parameters, the results can be interpreted by humans: prototypes show
typical class representatives and matrix parameters reveal the importance of
input dimensions for the diagonal elements and the importance of correlations
for the off-diagonal elements. Local as well as global parameters can be used,
i.e. relevance terms which contribute to a good description of single classes or
the global classification, respectively, can be identified. The efficiency of the
model has been demonstrated in several application scenarios, demonstrating
impressively the increased capacity of local matrix adaptation schemes. Inter-
estingly, local matrix learning obtains a classification accuracy which is similar
to the performance of the SVM in several cases, while it employs less complex
classification schemes and maintains intuitive interpretability of the results.

The new class of algorithms drastically increases the number of free parame-
ters of training, since full N ×N matrices are updated. For a global metric, this
corresponds to an adaptive linear transformation of the space according to the
given classification task. For local metrics, every prototype uses its own trans-
formation to emphasize characteristics of the respective classes. In this case,
the receptive fields are no longer separated by planes but quadratic surfaces.
Furthermore, they need not be convex, such that more complex settings can
easily be accounted for. Clearly, straightforward modifications can be consid-
ered which employ class-wise relevance matrices or other intermediate schemes.

Interestingly, only very mild over-fitting is observed in our experiments, and
matrix adaptation leads to excellent generalization despite the increased number
of free parameters. This effect can be explained by an inherent regularization
which is present in GLVQ adaptation schemes: the margin of the classifier with
respect to training points, i.e. the difference of their distance to the closest
correct versus the closest wrong prototype is optimized. We have rigorously
shown that generalization bounds which do include the margin, but which are
independent of the dimensionality of the input space and the dimensionality of
the adaptive matrices, can be derived. Thus, the extended classification scheme
provides increased capacity without diminishing the excellent generalization ca-
pability of LVQ classifiers.

Albeit the generalization ability of GMLVQ does not decrease regarding the
largely increased number of free parameters, one drawback of the method con-
sists in computational costs which scale quadratically with the data dimension-
ality. Thus, quadratic instead of linear effort can be observed in every update
step. Obviously, the method becomes computationally infeasible for very high
dimensional data, i.e. 50 or more dimensions. This issue can be avoided using
standard preprocessing such as e.g. a global PCA of the data. As an alternative,
matrix adaptation can directly be adapted to this setting by reducing number of
free parameters of a given matrix by enforcing e.g. a limited rank of the matrix.
Formally, this can be achieved by setting Λj = ΩT

j Ωj with M × N matrices Ωj

where M ≪ N , which leads to positive-semidefinite matrices with limited rank.
This way, the rank M of Λj constitutes another metaparameter which has to be
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determined using e.g. crossvalidation. First promising results using this method
can be found in (Bunte m. fl., 2008).

Appendix

Here we derive upper bounds for the Rademacher complexity of LGMLVQ net-
works. Assume a function class implemented by LGMLVQ networks is given
as above, MF . In analogy to the Rademacher complexity, one can define the
empirical Gaussian complexity, given m samples ξi, as the expectation

Ĝm(MF ) = Eg1,...,gm

(

sup
Mf∈MF

∣

∣

∣

∣

∣

2

m

m
∑

i=1

gi · Mf (ξi)

∣

∣

∣

∣

∣

)

(31)

where gi are independent Gaussian variables with zero mean and unit variance.
The Gaussian complexity is defined as the expectation over the samples

Gm(MF ) = Eξ1,...,ξm
Ĝm(MF ) (32)

where ξi are independent and identically distributed according to the marginal
of P . These quantities are closely related to the Rademacher complexity. Ac-
cording to Bartlett & Mendelson (2003, Lemma 4) and Ledoux & Talagrand
(1991), respectively, the inequality

√

π/2 · Rm(MF ) ≤ Gm(MF ) (33)

holds.
Our aim is to upper bound the Rademacher complexity Rm(MF ) with prob-

ability at least 1 − δ/2 whereby Mf has the form

Mf (ξ) =

(

min
w−

i

{dΛ
i

(w−

i , ξ)} − min
w+

j

{dΛ
j

(w+
j , ξ)}

)

(34)

As beforehand, we assume that |ξ| ≤ B, |wi| ≤ B, Λi is symmetric and posi-
tive semidefinite with trace 1, and we assume that Nw prototypes are present.
Because of equation (33), it holds

Gm(MF ) ≤ C2 ⇒ Rm(MF ) ≤ C1 where C1 = C2 ·
√

2/π (35)

for a bound C2 on the Gaussian complexity. Therefore, we will limit the Gaus-
sian complexity. The empirical Gaussian complexity and the Gaussian com-
plexity differ by more than ǫ with probability at most 2 exp(−ǫ2m/8) according
to Bartlett & Mendelson (2003, Theorem 11), i.e. they differ by no more than
√

8/m · ln(4/δ) with probability at least 1− δ/2. Thus, it is sufficient to upper
bound the empirical Gaussian complexity of LGMLVQ networks, since

Ĝm(MF ) ≤ C3 ⇒ Gm(MF ) ≤ C2 where C2 = C3 +
√

8/m · ln(4/δ) (36)
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for a bound C3 on the empirical Gaussian complexity and where the right hand
side holds with probability at least 1 − δ/2.

Note that

Ĝm

(

∑

i

Fi

)

≤
∑

i

Ĝm(Fi) (37)

holds for all function classes Fi due to the triangle inequality. Further, the
empirical Gaussian complexity does obviously not change when multiplying a
function class by −1. The function class MF constitutes of functions which can
be expressed as the sum of two terms of identical form, one multiplied by −1.
Thus, we can upper bound Ĝm(MF ) by twice the complexity of a function class
of functions of the form

ξ → min
wi

{dΛ
i

(wi, ξ)} (38)

where the minimum is taken over at most Nw terms, where Nw denotes the
number of prototypes.

As next step, we try to obtain a bound resulting from the minimum in this
term. The function which computes the minimum of Nw values,

(a1, . . . , aNw
) 7→ min{a1, . . . , aNw

} (39)

is Lipschitz continuous with constant
√

8Nw, as can be seen as follows: We find

|min{a, 0}−min{a′, 0}| =















|a − a′| if a, a′ ≤ 0
|a| = −a ≤ −a + a′ if a ≤ 0, a′ > 0
|a′| = −a′ ≤ −a′ + a if a′ ≤ 0, a > 0
0 if a, a′ > 0















≤ |a−a′|

(40)
Further,

min{a, b} =

{

a = a − b + b if a ≤ b
b = 0 + b if a > b

}

= min{a − b, 0} + b (41)

Hence, by induction,

|min{a1, . . . , aNw
} − min{a′

1, . . . , a
′
Nw

}|
= |min{min{a1, . . . , aNw−1}, aNw

} − min{min{a′
1, . . . , a

′
Nw−1}, a′

Nw
}|

= |min{min{a1, . . . , aNw−1} − aNw
, 0} + aNw

− min{min{a′
1, . . . , a

′
Nw−1} − a′

Nw
, 0} + a′

Nw
|

≤ |aNw
− a′

Nw
| + |min{a1, . . . , aNw−1} − aNw

− min{a′
1, . . . , a

′
Nw−1} + a′

Nw
|

≤ 2|aNw
− a′

Nw
| + |min{a1, . . . , aNw−1} − min{a′

1, . . . , a
′
Nw−1}|

≤ . . . ≤ 2|a1 − a′
1| + . . . + 2|aNw

− a′
Nw

| (42)
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Thus,

|min{a1, . . . , aNw
} − min{a′

1, . . . , a
′
Nw

}|2 = 4
∑

ij

|ai − a′
i||aj − a′

j |

≤ 4
∑

ij

(|ai − a′
i|2 + |aj − a′

j |2)

≤ 8Nw

∑

i

|ai − a′
i|2. (43)

Therefore, we obtain the Lipschitz constant
√

8Nw.
Because of Bartlett & Mendelson (2003, Theorem 14), we find

Ĝm(Φ ◦ F) ≤ 2L
∑

i

Ĝm(Fi) (44)

for every Lipschitz continuous function Φ on a real vector space with Lipschitz
constant L and a function class F contained in the direct sum of the classes Fi.
Thus, because of the Lipschitz continuity of the function min, it is sufficient to
upper bound the empirical Gaussian complexity of function classes of the form,

ξ 7→ (ξ − w)tΛ(ξ − w) = ξtΛξ − 2ξtΛw + wtΛw . (45)

This decomposes into a linear function

ξ 7→ −2ξtΛw + wtΛw (46)

and a quadratic form

ξ 7→ ξtΛξ =
∑

ij

Λijξiξj . (47)

According to Bartlett & Mendelson (2003, Lemma 22), the empirical Gaus-
sian complexity of linear forms x 7→ atx can be upper bounded by

2K1K2√
m

(48)

where inputs are restricted to |x| ≤ K1 and weights are restricted to |w| ≤ K2.
Note that inputs to the LGMLVQ network and prototypes have length at most
B, further, the sum of eigenvalues of every matrix Λi of the LGMLVQ network
is 1. Thus, functions of the form (46) correspond to linear functions with inputs
restricted to B + 1 and weights restricted to 2B + B2. Functions of the form
(47) can be interpreted as linear functions with enlarged inputs which size is
restricted by B2, and weights restricted by 1, since the Frobenius-norm of the
matrix is given by the sum of squared eigenvalues in this case. Therefore, we
can limit the empirical Gaussian complexity of quadratic forms of this type by
2/
√

m·((B+1)(2B+B2)+B2), hence the empirical Gaussian complexity of MF

can be limited by Ĝm(MF ) ≤ 2 · 2
√

8NwNw · 2/
√

m · ((B + 1)(2B + B2) + B2).
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Collecting all inequalities, we can finally upper bound the Rademacher com-
plexity of LGMLVQ networks by

√

2/π
(

√

8/m · ln(4/δ) + 2 · 2
√

8Nw · Nw · 2/
√

m · ((B + 1)(2B + B2) + B2)
)

=
1√
m

· O
(

√

ln(1/δ) + N3/2
w B3

)

. (49)
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