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Abstract

Discriminative vector quantization schemes such as learning vector quantiza-
tion (LVQ) and extensions thereof offer efficient and intuitive classifiers which are
based on the representation of classes by prototypes. The original methods, how-
ever, rely on the Euclidean distance corresponding to the assumption thatthe data
can be represented by isotropic clusters. For this reason, extensions of the methods
to more general metric structures have been proposed such as relevance adaptation
in generalized LVQ (GLVQ) and matrix learning in GLVQ. In these approaches,
metric parameters are learned based on the given classification task such that a data
driven distance measure is found. In this article, we consider full matrixadapta-
tion in advanced LVQ schemes; in particular, we introduce matrix learning toa
recent statistical formalization of LVQ, robust soft LVQ, and we compare the re-
sults on several artificial and real life data sets to matrix learning in GLVQ, which
is a derivation of LVQ-like learning based on a (heuristic) cost function.In all
cases, matrix adaptation allows a significant improvement of the classification ac-
curacy. Interestingly, however, the principled behavior of the models with respect
to prototype locations and extracted matrix dimensions shows several characteris-
tic differences depending on the data sets.

Keywords: learning vector quantization, generalized LVQ, robust soft LVQ, met-
ric adaptation

1 Introduction

Discriminative vector quantization schemes such as learning vector quantization (LVQ)
are very popular classification methods due to their intuitivity and robustness: they
represent the classification by (usually few) prototypes which constitute typical rep-
resentatives of the respective classes and, thus, allow a direct inspection of the given
classifier. Training often takes place by Hebbian learning such that very fast and simple
training algorithms result. Further, unlike the perceptron or the support vector machine,
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LVQ provides an integrated and intuitive classification model for any given number of
classes. Numerous modifications of original LVQ exist whichextend the basic learning
scheme as proposed by Kohonen towards adaptive learning rates, faster convergence,
or better approximation of Bayes optimal classification, toname just a few (Kohonen,
1997). Despite their popularity and efficiency, most LVQ schemes are solely based on
heuristics and a deeper mathematical investigation of the models has just recently been
initiated. On the one hand, their worst case generalizationcapability can be limited in
terms of general margin bounds using techniques from computational learning theory
(Hammer et al., 2005; Crammer et al., 2003). On the other hand, the characteristic
behavior and learning curves of popular models can exactly be investigated in typical
model situations using the theory of online learning (Biehl, Ghosh, & Hammer, 2007).
Many questions, however, remain unsolved such as convergence and typical prototype
locations of heuristic LVQ schemes in concrete, finite training settings.

Against this background, researchers have proposed variants of LVQ which can
directly be derived from an underlying cost function which is optimized during train-
ing e.g. by means of a stochastic gradient ascent/descent. Generalized LVQ (GLVQ)
as proposed by Sato and Yamada is one example (Sato & Yamada, 1996): its intu-
itive (though heuristic) cost function can be related to a minimization of classification
errors and, at the same time, a maximization of the hypothesis margin of the classi-
fier which characterizes its generalization ability (Hammer et al., 2005). The resulting
algorithm is indeed very robust and powerful, however, an exact mathematical anal-
ysis is still lacking. A very elegant and mathematically well-founded alternative has
been proposed by Seo and Obermayer: in Seo & Obermayer (2003), a statistical ap-
proach is introduced which models given classes as mixturesof Gaussians. Prototype
parameters are optimized by maximizing the likelihood ratio of correct versus incor-
rect classification. A learning scheme which closely resembles LVQ2.1 results. This
cost function, however, is unbounded such that numerical instabilities occur which, in
practice, cause the necessity of restricting updates to data from awindowclose to the
decision boundary. The approach of Seo & Obermayer (2003) offers an elegant alter-
native: a robust optimization scheme is derived from a maximization of the likelihood
ratio of the probability of correct classification versus the total probability in a Gaus-
sian mixture model. The resulting learning scheme, robust soft LVQ (RSLVQ), leads
to an alternative discrete LVQ scheme where prototypes are adapted solely based on
misclassifications.

RSLVQ gives a very attractive model due to the fact that all underlying model
assumptions are stated explicitly in the statistical formulation – and, they can easily be
changed if required by the application scenario. Besides, the resulting model shows
superior classification accuracy compared to GLVQ in a variety of settings as we will
demonstrate in this article.

All these methods, however, suffer from the problem that classification is based
on a predefined metric. The use of Euclidean distance, for instance, corresponds to
the implicit assumption of isotropic clusters. Such modelscan only be successful if
the data displays a Euclidean characteristic. This is particularly problematic for high-
dimensional data where noise accumulates and disrupts the classification, or hetero-
geneous data sets where different scaling and correlationsof the dimensions can be
observed. Thus, a more general metric structure would be beneficial in such cases. The
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field of metric adaptation constitutes a very active research topic in various distance
based approaches such as unsupervised or semi-supervised clustering and visualization
(Arnonkijpanich et al., 2008; Kaski, 2001),k-nearest neighbor approaches (Strickert et
al., 2007; Weinberger et al., 2006) and learning vector quantization (Hammer & Vill-
mann, 2002; Schneider, Biehl, & Hammer, 2008). We will focuson matrix learning in
LVQ schemes which accounts for pairwise correlations of features, i.e. a very general
and flexible set of classifiers. On the one hand, we will investigate the behavior of
generalized matrix LVQ (GMLVQ) in detail, a matrix adaptation scheme for GLVQ
which is based on a heuristic, though intuitive cost function. On the other hand, we
will develop matrix adaptation for RSLVQ, a statistical model for LVQ schemes, and
thus we will arrive at a uniform statistical formulation forprototype and metric adap-
tation in discriminative prototype-based classifiers. We will introduce variants which
adapt the matrix parameters globally based on the training set or locally for every given
prototype or mixture component, respectively.

Matrix learning in RSLVQ and GLVQ will be evaluated and compared in a variety
of learning scenarios: first, we consider test scenarios where prior knowledge about
the form of the data is available. Furthermore, we compare the methods on several
benchmarks from the UCI repository (Newman et al., 1998).

Interestingly, depending on the data, the methods show different characteristic be-
havior with respect to prototype locations and learned metrics. Although the classifica-
tion accuracy is in many cases comparable, they display quite different behavior con-
cerning their robustness with respect to parameter choicesand the characteristics of the
solutions. We will point out that these findings have consequences on the interpretabil-
ity of the results. In all cases, however, matrix adaptationleads to an improvement of
the classification accuracy, despite a largely increased number of free parameters.

2 Advanced learning vector quantization schemes

Learning vector quantization has been introduced by Kohonen (Kohonen, 1997), and a
variety of extensions and generalizations exist. Here, we focus on approaches based on
a cost function, i.e. generalized learning vector quantization (GLVQ) and robust soft
learning vector quantization (RSLVQ).

Assume training data{ξi, yi}
l
i=1 ∈ R

N × {1, . . . , C} are given,N denoting the
data dimensionality andC the number of different classes. An LVQ networkW =
{(wj , c(wj)) : R

N ×{1, . . . , C}}m
j=1 consists of a numberm of prototypesw ∈ R

N

which are characterized by their location in feature space and their class labelc(w) ∈
{1 . . . , C}. Classification is based on a winner takes all scheme. A data point ξ ∈ R

N

is mapped to the labelc(ξ) = c(wi) of the prototype, for whichd(ξ,wi) ≤ d(ξ,wj)
holds∀j 6= i, whered is an appropriate distance measure. Hence,ξ is mapped to the
class of the closest prototype, the so-called winner. Often, d is chosen as the squared
Euclidean metric, i.e.d(ξ,w) = (ξ − w)T (ξ − w).

LVQ algorithms aim at an adaptation of the prototypes such that a given data set
is classified as accurately as possible. The first LVQ schemesproposed heuristic adap-
tation rules based on the principle of Hebbian learning, such asLVQ2.1, which, for
a given data pointξ, adapts the closest prototypew+(ξ) with the same class label
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c(w+(ξ)) = c(ξ) into the direction ofξ: ∆w+(ξ) = α · (ξ − w+(ξ)) and the clos-
est incorrect prototypew−(ξ) with a different class labelc(w−(ξ)) 6= c(ξ) is moved
into the opposite direction:∆w− = −α · (ξ − w−(ξ)). Here,α > 0 is the learning
rate. Since, often, LVQ2.1 shows divergent behavior, a window rule is introduced, and
adaptation takes place only ifw+(ξ) andw−(ξ) are the closest two prototypes ofξ.

Generalized LVQderives a similar update rule from the following cost function:

EGLVQ =

l∑

i=1

Φ(µ(ξi)) =

l∑

i=1

Φ

(
d(ξi,w

+(ξi)) − d(ξi,w
−(ξi))

d(ξi,w
+(ξi)) + d(ξi,w

−(ξi))

)

. (1)

Φ is a monotonic function such as the logistic function or the identity which is used
throughout the following. The numerator of a single summandis negative if the clas-
sification ofξ is correct. Further, a small value corresponds to a classification with
large margin, i.e. large difference of the distance to the closest correct and incorrect
prototype. In this sense, GLVQ tries to minimize the number of misclassifications and
to maximize the margin of the classification. The denominator accounts for a scaling
of the terms such that the arguments ofΦ are restricted to the interval(−1, 1) and
numerical problems are avoided. The cost function of GLVQ can be related to a com-
promise of the minimization of the training error and the generalization ability of the
classifier which is determined by the hypothesis margin (seeCrammer et al. (2003);
Hammer et al. (2005)). The connection, however, is not exact. The update formulas
of GLVQ can be derived by means of the gradients ofEGLVQ (see Sato & Yamada
(1996)). Interestingly, the learning rule resembles LVQ2.1 in the sense that the closest
correct prototype is moved towards the considered data point and the closest incorrect
prototype is moved away from the data point. The size of this adaptation step is deter-
mined by the magnitude of terms stemming fromEGLVQ; this change accounts for a
better robustness of the algorithm compared to LVQ2.1.

Unlike GLVQ, robust soft learning vector quantizationis based on a statistical
modelling of the situation which makes all assumptions explicit: the probability density
of the underlying data distribution is described by a mixture model. Every component
j of the mixture is assumed to generate data which belongs to only one of theC classes.
The probability density of the full data set is given by

p(ξ|W ) =

C∑

i=1

m∑

j:c(wj)=i

p(ξ|j)P (j), (2)

where the conditional densityp(ξ|j) is a function of prototypewj . For example, the
conditional density can be chosen to have the normalized exponential formp(ξ|j) =
K(j) · exp f(ξ,wj , σ

2
j ), and the priorP (j) can be chosen identical for every prototype

wj . RSLVQ aims at a maximization of the likelihood ratio:

ERSLVQ =

l∑

i=1

log

(
p(ξi, yi|W )

p(ξi|W )

)

, (3)

wherep(ξi, yi|W ) is the probability density thatξi is generated by a mixture compo-
nent of the correct classyi andp(ξi|W ) is the total probability density ofξi. This
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implies

p(ξi, yi|W ) =
∑

j:c(wj)=yi

p(ξi|j)P (j), p(ξi|W ) =
∑

j

p(ξi|j)P (j). (4)

The learning rule of RSLVQ is derived fromERSLVQ by a stochastic gradient ascent.
Since the value ofERSLVQ depends on the position of all prototypes, the complete set
of prototypes is updated in each learning step. The gradientof a summand ofERSLVQ

for data point(ξ, y) with respect to a prototypewj is given by (see the appendix)

∂

∂wj

(

log
p(ξ, y|W )

p(ξ|W )

)

= δy,c(wj) (Py(j|ξ) − P (j|ξ))
∂f(ξ,wj , σ

2
j )

∂wj

− (1 − δy,c(wj))P (j|ξ)
∂f(ξ,wj , σ

2
j )

∂wj
, (5)

where the Kronecker symbolδy,c(wj) tests whether the labelsy andc(wj) coincide.
In the special case of a Gaussian mixture model withσ2

j = σ2 andP (j) = 1/m for all
j, we obtain

f(ξ,w, σ2) =
−d(ξ,w)

2σ2
, (6)

whered(ξ,w) is the distance measure between data pointξ and prototypew. Original
RSLVQ is based on the squared Euclidean distance. This implies

f(ξ,w, σ2) = −
(ξ − w)T (ξ − w)

2σ2
,

∂f

∂w
=

1

σ2
(ξ − w). (7)

Substituting the derivative off in Eq. (5) yields the update rule for the prototypes in
RSLVQ

∆wj =
α1

σ2

{
(Py(j|ξ) − P (j|ξ))(ξ − wj), c(wj) = y,
−P (j|ξ)(ξ − wj), c(wj) 6= y,

(8)

whereα1 > 0 is the learning rate. In the limit of vanishing softnessσ2, the learning
rule reduces to an intuitive crisplearning from mistakes(LFM) scheme, as pointed out
in Seo & Obermayer (2003): in case of erroneous classification, the closest correct
and the closest wrong prototype are adapted along the direction pointing to / from the
considered data point. Thus, a learning scheme very similarto LVQ2.1 results which
reduces adaptation to wrongly classified inputs close to thedecision boundary. While
the soft version as introduced in Seo & Obermayer (2003) leads to a good classification
accuracy as we will see in experiments, the limit rule has some principled deficiencies
as shown in Biehl, Ghosh, & Hammer (2007).

3 Matrix learning in advanced LVQ schemes

The squared Euclidean distance corresponds to the implicitassumption of isotropic
clusters, hence the metric is not appropriate if data dimensions show a different scaling
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or correlations. A more general form can be obtained by extending the metric by a full
matrix

dΛ(ξ,w) = (ξ − w)T Λ(ξ − w), (9)

whereΛ is anN × N -matrix which is restricted to positive definite forms to guarantee
metricity. We can achieve this by substitutingΛ = ΩT Ω, whereΩ ∈ R

M×N . Further,
Λ has to be normalized after each learning step to prevent the algorithm from degen-
eration. Two possible approaches are to restrict

∑

i Λii or det(Λ) to a fixed value, i.e.
either the sum of eigenvalues or the product of eigenvalues is constant. Note that nor-
malizingdet(Λ) requiresM ≥ N , since otherwiseΛ would be singular. In this work,
we always setM = N . Since an optimal matrix is not known beforehand for a given
classification task, we adaptΛ or Ω, respectively, during training. For this purpose, we
substitute the distance in the cost functions of LVQ by the new measure

dΛ(ξ,w) =
∑

i,j,k

(ξi − wi)ΩkiΩkj(ξj − wj). (10)

Generalized matrix LVQ(GMLVQ) extends the cost functionEGLVQ by this more
general metric and adapts the matrix parametersΩij together with the prototypes by
means of a stochastic gradient descent, see Schneider, Biehl, & Hammer (2008) for de-
tails of the derivation. Note that the constraints

∑

i Λii = const. or det(Λ) = const.
are simply achieved by means of a normalization of the matrixafter every adaptation
step.
It is possible to introduce one global matrixΩ which corresponds to a global trans-
formation of the data space, or, alternatively, to introduce an individual matrixΩj for
every prototype. The latter corresponds to the possibilityto adapt individual ellipsoidal
clusters around every prototype. In this case, the squared distance is computed by

d(ξ,wj) = (ξ − wj)
T Λj(ξ − wj) (11)

We refer to the extension of GMLVQ with local relevance matrices by the termlocal
GMLVQ(LGMLVQ) (Schneider, Biehl, & Hammer, 2008).

Now, we extend RSLVQ by the more general metric introduced inEq. (9). The
conditional density function obtains the formp(ξ|j) = K(j) · exp f(ξ,w, σ2,Ω) with

f(ξ,w, σ2,Ω) =
−(ξ − w)T ΩT Ω(ξ − w)

2σ2
, (12)

∂f

∂w
=

1

σ2
ΩT Ω(ξ − w) =

1

σ2
Λ (ξ − w), (13)

∂f

∂Ωlm
= −

1

σ2

(
∑

i

(ξi − wi)Ωli(ξm − wm)

)

. (14)

Combining Eq.s (5) and (13) yields the new update rule for theprototypes:

∆wj =
α1

σ2

{
(Py(j|ξ) − P (j|ξ)) Λ (ξ − wj), c(wj) = y,
−P (j|ξ) Λ (ξ − wj), c(wj) 6= y.

(15)
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Taking the derivative of the summandERSLVQ for training sample(ξ, y) with respect
to a matrix elementΩlm leads us to the update rule (see the appendix)

∆Ωlm = −
α2

σ2
·

∑

j

[
(

δy,c(wj) (Py(j|ξ) − P (j|ξ)) − (1 − δy,c(wj))P (j|ξ)
)

·

(

[Ω(ξ − wj)]l (ξm − wj,m)
)
]

, (16)

whereα2 > 0 is the learning rate for the metric parameters. The algorithm based on
the update rules in Eq.s (15) and (16) will be calledmatrix RSLVQ(MRSLVQ) in the
following. Similar to local matrix learning in GMLVQ, it is also possible to train an
individual matrixΛj for every prototype. With individual matrices attached to all pro-
totypes, the modification of (15) which includes the local matricesΛj is accompanied
by (see the appendix)

∆Ωj,lm = −
α2

σ2
·

[
(

δy,c(wj)(Py(j|ξ) − P (j|ξ)) − (1 − δy,c(wj))P (j|ξ)
)

·

(

[Ωj(ξ − wj)]l (ξm − wj,m)
)
]

, (17)

under the constraintK(j) = const. for all j. We term this learning rulelocal MRSLVQ
(LMRSLVQ). Due to the restriction to constant normalization factorsK(j), the nor-
malizationdet(Λj) = const. is assumed for this algorithm.

Note that under the assumption of equal priorsP (j), a classifier using one pro-
totype per class is still given by the standard LVQ classifier: ξ 7→ c(wj) for which
dΛj

(ξ,wj) is minimum. In more general settings, nearest prototype classification
should coincide with the class of maximum likelihood ratio for most inputs since proto-
types are usually distant from each other compared toσ2. Interestingly, the generaliza-
tion ability of this function class has been investigated inSchneider, Biehl, & Hammer
(2008) including the possibility of adaptive local matrices. Worst case generalization
bounds which depend on the number of prototypes and the hypothesis margin, i.e. the
minimum difference between the closest correct and wrong prototype, can be found
which are independent of the input dimensionality (in particular independent of the
matrix dimensionality), such that good generalization capability can be expected from
these classifiers. We will investigate this claim in severalexperiments. In addition, we
will have a look at the robustness of the methods with respectto hyperparameters, the
interpretability of the results, and the uniqueness of the learned matrices.

Although GLVQ and RSLVQ constitute two of the most promisingtheoretical
derivations of LVQ schemes from global cost functions, theyhave so far not been com-
pared in experiments. Further, matrix learning offers a striking extension of RSLVQ
since it extends the underlying Gaussian mixture model towards the general form of
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arbitrary covariance matrices, which has not been introduced or tested so far. Thus,
we are interested in several aspects and questions which should be highlighted by the
experiments:

• What is the performance of the methods on real life data sets ofdifferent charac-
teristics? Can the theoretically motivated claim of good generalization ability be
substantiated by experiments?

• What is the robustness of the methods with respect to metaparameters such as
σ2?

• Do the methods provide meaningful (representative) prototypes or does the pro-
totype location change due to the specific learning rule in adiscriminativeap-
proach?

• Are the extracted matrices meaningful? In how far do they differ between the
approaches?

• Do there exist systematic differences in the solutions found by RSLVQ and
GLVQ (with / without matrix adaptation)?

We first test the methods on two artificial data sets where the underlying density is
known exactly, which are designed for the evaluation of matrix adaptation. Afterwards,
we compare the algorithms on benchmarks from UCI (Newman et al., 1998).

4 Experiments

With respect to parameter initialization and learning rateannealing, we use the same
strategies in all experiments. The mean values of random subsets of training samples
selected from each class are chosen as initial states of the prototypes. The hyper-
parameterσ2 is held constant in all experiments with RSLVQ, MRSLVQ and Local
MRSLVQ. The learning rates are continuously reduced in the course of learning. We
implement a schedule of the form

αi(t) =
αi

1 + c (t − 1)
(18)

(i ∈ {1, 2}), wheret counts the number training epochs. The factorc determines the
speed of annealing and is chosen individually for every application. Special attention
has to be paid to the normalization of the relevance matrices. With respect to the inter-
pretability, it is advantageous to fix the sum of eigenvaluesto a certain value. Besides,
we observe that this approach shows a better performance andlearning behaviour com-
pared to the restriction of the matrices’ determinant. For this reason, the normalization
∑

i Λii = 1 is used for the applications in Sec. 4.1 and the last application in Sec.
4.2, since we do not discuss the adaptation of local matricesthere. We initially set
Λ = 1

N · 1, which results indΛ being equivalent to the squared Euclidean distance.
Note that, in consequence, the distance measure in RSLVQ andGLVQ has to be nor-
malized to one as well to allow for a fair comparison with respect to learning rates.
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Accordingly, the RSLVQ- and GLVQ prototype updates and the functionf in Eq. (7)
have to be weighted by1/N . Training of local MRSLVQ in the first applications of
Sec. 4.2 requires the normalizationdet(Λj) = 1. The local matricesΛj are initialized
by the identity matrix in this case.

4.1 Artificial Data

In the first experiments, the algorithms are applied to the artificial data from Bojer et
al. (2001) to illustrate the training of an LVQ-classifier based on the alternative cost
functions with fixed and adaptive distance measure. The datasets 1 and 2 comprise
three-class classification problems in a two dimensional space. Each class is split into
two clusters with small or large overlap, respectively (seeFig. 1). We randomly select
2/3 of the data samples of each class for training and use the remaining data for testing.
According to the a priori known distributions, the data is represented by two prototypes
per class. Since we observe that the algorithms based on the RSLVQ cost function are
very sensitive with respect to the learning parameter settings, slightly smaller values
are chosen to train a classifier with (M)RSLVQ compared to G(M)LVQ. We use the
settings

G(M)LVQ: α1 = 0.005, α2 = 0.001
(M)RSLVQ: α1 = 5 · 10−4, α2 = 1 · 10−4

c = 0.001 and perform 1000 sweeps through the training set. The results presented in
the following are averaged over 10 independent constellations of training and test set.
We apply several different valuesσ2 from the interval [0.001, 0.015] and present the
simulations giving rise to the best mean performance on the training sets.

The results are summarized in Tab. 1. They are obtained with the hyperparameters
settingsσ2

opt(RSLVQ) = 0.002 andσ2
opt(MRSLVQ) = 0.002, 0.003 for data set 1

and 2, respectively. The use of the advanced distance measure yields only a slight im-
provement compared to the fixed Euclidean distance, since the distributions do not have
favorable directions to classify the data. On data set 1, GLVQ and RSLVQ show nearly
the same performance. However, the prototype configurations identified by the two
algorithms vary significantly (see Fig. 1). During GLVQ-training, the prototypes move

Table 1: Mean rate of misclassification (in %) obtained by the different algorithms on
the artificial data sets 1 and 2 at the end of training. The values in brackets are the
variances.

Data set 1 Data set 2
Algorithm εtrain εtest εtrain εtest

GLVQ 2.0 (0.02) 2.7(0.07) 19.2(0.9) 24.2(1.9)
GMLVQ 2.0 (0.02) 2.7(0.07) 18.6(0.7) 23.0(1.6)

RSLVQ 1.5 (0.01) 3.7(0.04) 12.8(0.07) 19.3(0.3)
MRSLVQ 1.5 (0.01) 3.7(0.02) 12.3(0.04) 19.3(0.3)
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close to the cluster centers in only a few training epochs, resulting in an appropriate
approximation of the data by the prototypes. On the contrary, prototypes are frequently
located outside the clusters, if the classifier is trained with the RSLVQ-algorithm. This
behavior is due to the fact that only data points lying close to the decision boundary
change the prototype constellation in RSLVQ significantly (see Eq. (8)). As depicted
in Fig. 2, only a small number of training samples are lying inthe active region of the
prototypes while the great majority of training samples attains only tiny weight values
in Eq. (8) which are not sufficent to adjust the prototypes to the data in reasonable
training time. This effect does not have negative impact on the classification of the
data set. However, the prototypes do not provide a reasonable approximation of the
data.

The prototype constellation identified by RSLVQ on data set 2represents the classes
clearly better (see Fig. 1). Since the clusters show significant overlap, a sufficiently
large number of training samples contributes to the learning process (see Fig. 2) and
the prototypes quickly adapt to the data. The good approximation of the data is ac-
companied by an improved classification performance compared to GLVQ. Although
GLVQ also places prototypes close to the cluster centers, the use of the RSLVQ-cost
function gives rise to the superior classifier for this data set. This observation is also
confirmed by the experiments with GMLVQ and MRSLVQ.

To demonstrate the influence of metric learning, data set 3 isgenerated by em-
bedding each sampleξ = (ξ1, ξ2) ∈ R

2 of data set 2 inR10 by choosing:ξ3 =
ξ1 + η1, . . . ξ6 = ξ1 + η4, whereηi comprises Gaussian noise with variances 0.05, 0.1,
0.2 and 0.5, respectively. The featuresξ7, . . . , ξ10 contain pure uniformly distributed
noise in [-0.5, 0.5] and [-0.2, 0.2] and Gaussian noise with variances 0.5 and 0.2, re-
spectively. Hence, the first two dimensions are most informative to classify this data
set. The dimensions 3 to 6 still partially represent dimension 1 with increasing noise
added. Finally, we apply a random linear transformation on the samples of data set 3 in
order to construct a test scenario, where the discriminating structure is not in parallel
to the original coordinate axis any more. We refer to this data as data set 4. To train
the classifiers for the high-dimensional data sets we use thesame learning parameter
settings as in the previous experiments.

Table 2: Mean rate of misclassification (in %) obtained by the different algorithms on
the artificial data sets 3 and 4 at the end of training. The values in brackets are the
variances.

Data set 3 Data set 4
Algorithm εtrain εtest εtrain εtest

GLVQ 23.5 (0.1) 38.0(0.2) 31.2(0.1) 41.0(0.2)
GMLVQ 12.1 (0.1) 24.0(0.4) 14.5(0.1) 30.6(0.5)

RSLVQ 4.1 (0.1) 33.2(0.5) 11.7(0.1) 36.8(0.2)
MRSLVQ 3.9 (0.1) 29.5(0.4) 8.0 (0.1) 32.0(0.2)
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(a) Data set 1. Left: GLVQ prototypes. Right: RSLVQ protoypes
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(b) Data set 2. Left: GLVQ prototypes. Right: RSLVQ prototypes
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(c) Data set 3. Left: GMLVQ prototypes. Right: MRSLVQ prototypes. The plots
relate to the first two dimensions after projecting the data and the prototypes with
ΩGMLV Q andΩMRSLV Q, respectively.

Figure 1: Artificial training data sets and prototype constellationsidentified by GLVQ,
RSLVQ, GMLVQ and MRSLVQ in a single run.
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the hyperparameterσ2 = 0.002.
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the hyperparameterσ2 = 0.002.

Figure 2: Visualization of the update factors(Py(j|ξ) − P (j|ξ)) (attractive forces)
andP (j|ξ) (repulsive forces) of the nearest prototype with correct and incorrect class
label on data sets 1 and 2. It is assumed that every data point is classified correctly.
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The obtained mean rates of misclassification are reported inTab. 2. The results
are achieved using the hyperparameter settingsσ2

opt(RSLVQ) = 0.002, 0.003 and
σ2

opt(MRSLVQ) = 0.003 for data set 3 and 4, respectively. The performance of GLVQ
clearly degrades due to the additional noise in the data. However, by adapting the met-
ric to the structure of the data, GMLVQ is able to achieve nearly the same accuracy on
data sets 2 and 3. A visualization of the resulting relevancematrix ΛGMLV Q is pro-
vided in Fig. 4. The diagonal elements turn out that the algorithm totally eliminates the
noisy dimensions 4 to 10, which, in consequence, do not contribute to the computation
of distances any more. As reflected by the off-diagonal elements, the classifier addi-
tionally takes correlations between the informative dimensions 1 to 3 into account to
quantify the similarity of prototypes and feature vectors.Interestingly, the algorithms
based on the statistically motivated cost function show strong overfitting effects on this
data set. Obviously, the number of training examples in thisapplication is not sufficient
to allow for an unbiased estimation of the correlation matrices of the mixture model.
MRSLVQ does not detect the relevant structure in the data sufficiently to reproduce
the classification performance achieved on data set 2. The respective relevance matrix
trained on data set 3 (see Fig. 4) depicts, that the algorithmdoes not totally prune out
the uninformative dimensions. The superiority of GMLVQ in this application is also
reflected by the final position of the prototypes in feature space (see Fig. 1). A compa-
rable result for GMLVQ can even be observed after training the algorithm on data set
4. Hence, the method succeeds to detect the discriminative structure in the data, even
after rotating or scaling the data arbitrarily (see Figl. 4).

4.2 Real life data

Image segmentation data set

In a second experiment, we apply the algorithms to the image segmentation data set
provided by the UCI repository of Machine Learning (Newman et al., 1998). The data
set contains 19-dimensional feature vectors, which encodedifferent attributes of 3×3
pixel regions extracted from outdoor images. Each region isassigned to one of seven
classes (brickface, sky, foliage, cement, window, path, grass). The features 3-5 are
(nearly) constant and are eliminated for these experiments. As a further preprocessing
step, the features are normalized to zero mean and unit variance. The provided data is
split into a training and a test set (30 samples per class for training, 300 samples per
class for testing). In order to find useful values for the hyperparameter in RSLVQ and
related methods, we randomly split the test data in a validation and a test set of equal
size. The validation set is not used for the experiments withGMLVQ. Each class is
approximated by one prototype. We use the parameter settings

(Local) G(M)LVQ: α1 = 0.01, α2 = 0.005, c = 0.001
(Local) (M)RSLVQ:α1 = 0.01, α2 = 0.001, c = 0.01

and test values forσ2 from the interval [0.1, 4.0]. The algorithms are trained fora
few thousand epochs. In the following, we always refer to theexperiments with the
hyperparameter resulting in the best performance on the validation set. The respective
values areσ2

opt(RSLVQ) = 0.2, σ2
opt(MRSLVQ) = 0.75 andσ2

opt(LMRSLVQ) = 1.0.

13



The obtained classification accuracies are summarized in Tab. 3. For both cost
function schemes the performance improves with increasingcomplexity of the dis-
tance measure, except for Local MRSLVQ which shows overfitting effects. Remark-
ably, RSLVQ and MRSLVQ clearly outperform the respective GLVQ methods on this
data set. Regarding GLVQ and RSLVQ, this observation is solely based on different
prototype constellations. The algorithms identify similar w for classes with low rate of
misclassification. Differences can be observed in case of prototypes, which contribute
strongly to the overall test error. For demonstration purposes, we refer to classes 3 and
7. The mean class specific test errors areε3

test = 25.5% andε7
test = 1.2% for the

GLVQ classifiers andε3
test = 10.3% andε7

test = 1.2% for the RSLVQ classifiers. The
respective prototypes obtained in one cross validation runare visualized in Fig. 3. It
depicts that the algorithms identify nearly the same representative for class 7, while
the class 3 prototypes reflect differences for the alternative learning strategies. This
finding holds similarly for the GMLVQ and MRSLVQ prototypes,however, it is less
pronounced (see Fig. 3).

The varying classification performance of the two latter methods also goes back to
different metric parameter settings derived during training. Comparing the relevance
matrices (see Fig. 4) shows that GMLVQ and MRSLVQ identify the same dimensions
as being most discriminative to classify the data. The features which achieve the high-
est weight values on the diagonal are the same in both cases. But note, that the feature
selection by MRSLVQ is more pronounced. Interestingly, differences in the prototype
configurations mainly occur in the dimensions evaluated as most important for classi-
fication. Furthermore, based onΛGMLV Q, distances between prototypes and feature
vectors obtain much smaller values compared to the MRSLVQ-matrix. This is depicted
in Fig. 5 which visualizes the distributions of the distances dJ anddK to the closest
correct and incorrect prototype. After normalization, 90%of all test samples attain
distancesdJ < 0.2 by the GMLVQ classifiers. This holds for only 40% of the feature
vectors, if the MRSLVQ classifiers are applied to the data. This observation is also

Table 3: Mean rate of misclassification (in %) obtained by the different algorithms on
the image segmentation and letter data set at the end of training. The values in brackets
constitute the variances.

Image segmentation data Letter data
Algorithm εtrain εtest εtrain εtest

GLVQ 15.2 (0.0) 17.0(0.003) 28.4(0.002) 28.9(0.003)
GMLVQ 9.1 (0.002) 10.2(0.004) 29.3(0.002) 30.2(0.002)

LGMLVQ 4.8 (2 · 10−4) 8.6 (0.004) 14.3(3 · 10−4) 16.0 (0.002)

RSLVQ 1.4 (0.003) 7.5(0.003) 21.9(0.001) 23.2(0.005)
MRSLVQ 1.3 (4 · 10−4) 6.1 (0.002) 21.7(0.001) 22.9(0.004)

LMRSLVQ 1.7 (6 · 10−4) 6.6 (0.004) 1.3(1 · 10−4) 6.2 (8 · 10−4)
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Figure 3: Visualization of the class 3 and class 7 prototypes of the image segmenta-
tion data set. Top: Prototypes identified by GLVQ and RSLVQ. Buttom: Prototypes
identified by GMLVQ and MRSLVQ.

reflected by the distribution of the data points and the prototypes in the transformed
feature spaces (see Fig. 6). After projection withΩGMLV Q the data comprises very
compact clusters with high density, while the samples and prototypes spread wider in
the coordinate system detected by MRSLVQ.

Finally, we discuss how the performance of RSLVQ, MRSLVQ andLocal MRSLVQ
depends on the value of the hyperparameter. Fig. 7 displays the evolution of the mean
final validation errors with varyingσ2. It can be observed that the valueσ2

opt, where
the curves reach their minimum, increases with the complexity of the distance measure.
Furthermore, the range ofσ2 achieving an accuracy close to the performance ofσ2

opt

becomes wider for MRSLVQ and Local MRSLVQ, while the RSLVQ curve shows a
very sharp minimum. Hence, it can be stated that the methods become less sensitive
with respect to the hyperparameter, if an advanced metric isused. Forσ2 close to zero,
all algorithms show instabilities and highly fluctuating learning curves.

Letter data set

The Letter data set from the UCI repository (Newman et al., 1998) consists of 20 000
feature vectors which encode 16 numerical attributes of black-and-white rectangular
pixel displays of the 26 capital letters of the English alphabet. The features are scaled
to fit into a range of integer values between 0 and 15. This dataset is also used in
Seo & Obermayer (2003) to analyse the performance of RSLVQ. We extract one half
of the samples of each class for training the classifiers and one fourth for testing and
validating, respectively. The following results are averaged over 10 independent con-
stellations of the different data sets. We train the classifiers with one prototype per
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(a) Data set 3. Left: GMLVQ matrix. Right: MRSLVQ matrix
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Figure 4: Visualization of the relevance matricesΛ obtained during GMLVQ- and
MRSLVQ-training, when applied to the artificial data set 3, the image segmentation
data set and the tiling micro array data set in a single run. The elementsΛii are set
to zero in the visualization of the off-diagonal elements. The matrices in 4(b) are
normalized to

∑

i Λii = 1 for this visualization after training.
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(a) Image segmentation data set. Left: Application of GMLVQ classifier. Right: Application
of MRSLVQ classifier.
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(b) Letter data set: Left: Application of Local GMLVQ classifier. Right: Application of Local
MRSLVQ classifier.

Figure 5: Distributions of distancesdJ anddK to closest correct and closest incorrect
prototype of the test samples observed with global and localdistance measures on the
image segmentation data set and the letter data set. For thisanalysis, the matrices are
normalized to

∑

i Λii = 1 after training.
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(a) Image segmentation data set. Left: Transformation withΩGMLV Q. Right:
Transformation withΩMRSLV Q.
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(b) Letter data set. Left: Transformation of class 5 data withΩ5

LGMLV Q
.

Right: Transformation of class 5 data withΩ5

LMRSLV Q
.

Figure 6: Visualization of the image segmentation data set (class fiveof the letter data
set) with respect to the first two dimensions after projection with the global transfor-
mation matricesΩ obtained during GMLVQ- and MRSLVQ-training, respectively(the
local transformation matricesΩ derived during Local GMLVQ- and Local MRSLVQ-
training). For this visualization the matrices are normalized to

∑

ij Ω2
ij = 1 after

training.
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Figure 7: Mean validation errors obtained on the image segmentation data set by
RSLVQ, MRSLVQ and Local MRSLVQ using different setting of the hyperparame-
tersσ2.
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class respectively and use the learning parameter settings

(Local) G(M)LVQ: α1 = 0.05, α2 = 0.005

(Local) (M)RSLVQ:α1 = 0.01, α2 = 0.001

andc = 0.1. Training is continued for 150 epochs in total with different valuesσ2

lying in the interval [0.75, 4.0]. The accuracy on the validation set is used to select
the best settings for the hyperparameter. With the settingsσ2

opt(RSLVQ) = 1.0 and
σ2

opt(MRSLVQ, Local MRSLVQ) = 1.5, we achieve the performances stated in Tab.
3. The results depict that training of an individual metric for every prototype is partic-
ularly efficient in case of multi-class problems. The adaptation of a global relevance
matrix does not provide significant benefit because of the huge variety of classes in
this application. Similar to the previous application, theRSLVQ-based algorithms out-
perform the methods based on the GLVQ cost function. The experiments also confirm
our preceding observations regarding the distribution of distance values induced by the
different relevance matrices. Since global matrix adaptation does not have significant
impact on the classification performance, we relate to the simulations with Local GM-
LVQ and Local MRLSVQ in Fig. 5. It depicts that the distancesdJ anddK assume
larger values when the training is based on the RSLVQ cost function. Accordingly,
the data distributions show similar characteristics as already described for the image
segmentation data set after projection withΩi,LGMLV Q andΩi,LMRSLV Q (see Fig.
6). Remarkably, the classification accuracy of Local MRSLVQwith one prototype
per class is comparable to the RSLVQ results presented in Seo& Obermayer (2003),
achieved with constant hyperparameterσ2 and 13 prototypes per class. This obser-
vation underlines the crucial importance of an appropriatedistance measure for the
performance of LVQ-classifiers. Despite the large number ofparameters, we do not
observe overfitting effects during training of local relevance matrices on this data set.
The systems show stable behaviour and converge within 100 training epochs.

Tiling microarray data

Finally, we apply the algorithms to the analysis of tiling microarray data. The clas-
sification task consists in separating exonic and intronic regions ofC.elegans, which
are characterized by 24 features obtained from expression measurements. The data set
contains 4120 samples, with 2587 and 1533 data points corresponding to exonic and
intronic regions, respectively. For more detailed information about the data we refer to
Biehl, Breitling, & Li (2007). All features are normalized to zero mean and unit vari-
ance. We extract 50% of the class 1 and class 2 data for training and use 25% of both
classes for testing and validation. One prototype per classis employed to represent the
data. The results presented in the following are avaraged over 10 random compositions
of training, test and validation set. The learning parameters are chosen as follows

G(M)LVQ: α1 = 5 · 10−3, α2 = 5 · 10−4

(M)RSLVQ: α1 = 1 · 10−3, α2 = 5 · 10−4

andc = 0.05. Training is continued for 800 and 500 epochs, respecively.The final
mean rates of misclassification on the test sets for GLVQ and GMLVQ are 14.5%
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Figure 8: Visualization of prototypes and class conditional means (CCM) of class 1
(squares) and class 2 (triangles) identified by G(M)LVQ (left) and (M)RSLVQ (right)
on the tiling microarray data.

± 0.01% and 11.4%±0.01%. Fig. 8 (left) visualizes the optimized prototypes in
comparison with the class conditional means (CCM). We observe that GLVQ pushes
the prototypes away from the cluster centers. The behaviouris due to the fact that
this prototype constellation reduces the mean value of(dJ − dK) compared to the
CCM serving as prototypes (see Fig. 9). On the contrary, the prototypes detected
during GMLVQ-training finally saturate close to the class conditional means and yield
a better approximation of the data set. Nevertheless, the algorithm is able to further
reduce the mean distance(dJ − dK) by means of the additional adaptation of the
distance measure (see Fig. 9). We observe that metric learning based on the GLVQ cost
function clearly simplifies the classifier for this data set.As reflected by the eigenvalue
profile of ΛGMLV Q (see Fig. 4) the system discriminates the data based on only one
linear combination of the original features.

The performance of RSLVQ and MRSLVQ is almost equal in all experiments. The
algorithms achieve 11.06%± 0.005% and 11.1%± 0.003% mean rate of misclassi-
fication on the test sets (withσ2

opt(RSLVQ) = 0.01 andσ2
opt(MRSLVQ) = 0.05).

Even though, in a learning scenario with only two prototypes, the performance of the
different RSLVQ variants depends only weakly on the value ofσ2 (Biehl, Ghosh, &
Hammer, 2007). In RSLVQ, the hyperparameter only controls the prototypes distance
to the decision boundary. Sinceσ2

opt is very small in our experiments, the prototypes
converge close the decision boundary (see Fig. 8, right). The distance becomes larger
with increasing valueσ2, but the location of the decision boundary remains almost
unchanged. Withσ2 = σ2

opt, the MRSLVQ prototypes saturate close to the class con-
ditional means (see Fig. 8, right). Due to the additional adaptation of the metric,
the prototypes distance to the decision boundary increasesonly mildly with increasing
σ2. Instead, we observe that the eigenvalue profile ofΛ becomes more distinct for large
values of the hyperparameter. However, in comparison to GMLVQ, MRSLVQ still per-
forms only a mild feature selection on this data set (see Fig.4). The matrixΛ obtained
with the optimal hyperparameter in MRSLVQ shows a clear preference for the same
feature as the GMLVQ matrix, but it exhibits a large number ofnonzero eigenvalues.
Further, the overall structure of the off-diagonal elements of the matrices seems very
similar for GMLVQ and MRSLVQ. This observations indicates that, by introducing
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(c) GMLVQ prototypes

Figure 9: Distrubutions of the difference (dJ −dK) observed for the tiling microarray
data set based on different prototype settings. The distributions for the CCM and the
GLVQ prototypes rely on the Euclidean distance. The distribution for the GMLVQ
prototypes is based on the adapted distance measure.

matrix adaptation into this setting, an inspection of the classifier becomes possible by
looking at the most relevant feature and correlations foundby the methods. We would
like to point out that matrix learning provides valuable insight into the problem. A
comparison with the results presented in (Biehl, Breitling, & Li, 2007) shows that ma-
trix learning emphasizes essentially the same single features as found in the training of
diagonal relevances. For instance, the so-calledmelting temperaturesof the probe and
its neighbors (features 19–23) are eliminated by GMLVQ which parallels the findings
in (Biehl, Breitling, & Li, 2007). Matrix learning, however, yields additional insight:
for instance, relatively large (absolute) values of off-diagonal elementsΛij , cf. Fig. 6,
indicate that correlations between the so–calledperfect match intensitesandmismatch
intensitiesare taken into account.

5 Conclusions

We have considered metric learning by matrix adaptation in discriminative vector quan-
tization schemes. In particular, we have introduced this principle into soft robust learn-
ing vector quantization, which is based on an explicit statistical model by means of
mixtures of Gaussians, and we extensively compared this method to an alternative
scheme derived from an intuitive but somewhat heuristic cost function. In general,
it can be observed that matrix adaptation allows to improve the classification accuracy
on the one hand, and it leads to a simplification of the classifier and thus better in-
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terpretability of the results by inspection of the eigenvectors and eigenvalues on the
other hand. Interestingly, the behavior of GMLVQ and MRSLVQshows several prin-
cipled differences. Based on the experimental findings, thefollowing conclusions can
be drawn:

• All discriminative vector quantization schemes show good generalization behav-
ior and yield reasonable classification accuracy on severalbenchmark results
using only few prototypes. RSLVQ seems particularly suitedfor the real-life
data sets considered in this article. In general, matrix learning allows to further
improve the results, whereby, depending on the setting, overfitting can be more
pronounced due to the huge number of free parameters.

• The methods are generally robust against noise in the data ascan be inferred
from different runs of the algorithm on different splits of the data sets. While
GLVQ and variants are rather robust to the choice of hyperparameters, a very
critical hyperparameter of training is the softness parameterσ2 for RSLVQ. Ma-
trix adaptation seems to weaken the sensitivity w.r.t. thisparameter, however, a
correct choice ofσ2 is still crucial for the classification accuracy and efficiency
of the runs. For this reason, automatic adaptation schemes for σ2 should be con-
sidered. In Seo & Obermayer (2006), a simple annealing scheme for σ2 is in-
troduced which yields reasonalbe results. We are currentlyworking on a scheme
which adaptsσ2 in a more principled way according to an optimization of the
likelihood ratio showing first promising results.

• The methods allow for an inspection of the classifier by meansof the prototypes
which are defined in input space. Note that one explicit goal of unsupervised
vector quantization schemes such ask-means or the self-organizing map is to
represent typical data regions be means of prototypes. Since the considered ap-
proaches are discriminative, it is not clear in how far this property is maintained
for GLVQ and RSLVQ variants. The experimental findings demonstrate that
GLVQ schemes place prototypes close to class centres and prototypes can be in-
terpreted as typical class representatives. On the contrary, RSLVQ schemes do
not preserve this property in particular for non-overlapping classes since adap-
tation basically takes place based on misclassifications ofthe data. Therefore,
prototypes can be located outside the class centers while maintaining the same
or a similar classification boundary compared to GLVQ schemes. This prop-
erty has already been observed and proven in typical model situations using the
theory of online learning for the limit learning rule of RSLVQ, learning from
mistakes, in Biehl, Ghosh, & Hammer (2007).

• Despite the fact that matrix learning introduces a huge number of additional free
parameters, the method tends to yield very simple solutionswhich involve only
few relevant eigendirections. This behavior can be substantiated by an exact
mathematical investigation of the LVQ2.1-type limit learning rules which result
for smallσ2 or a steep sigmoidal functionΦ, respectively. For these limits, an
exact mathematical investigation becomes possible, indicating that a unique so-
lution for matrix learning exist, given fixed prototypes, and that the limit matrix
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reduces to a singular matrix which emphasizes one major eigenvalue direction.
The exact mathematical treatment of these simplified limit rules is subject of
ongoing work and will be published in subsequent work.

In conclusion, systematic differences of GLVQ and RSLVQ schemes result from the
different cost functions used in the approaches. This includes a larger sensitivity of
RSLVQ to hyperparanmeters, a different location of prototypes which can be far from
the class centres for RSLVQ, and different classification accuracies in some cases.
Apart from these differences, matrix learning is clearly beneficial for both discrimi-
native vector quantization schemes as demonstrated in the experiments.

A Derivatives

We compute the derivatives of the RSLVQ cost function with respect to the proto-
types, the metric parameters, and the hyperparameters. More generally, we compute
the derivative of the likelihood ratio with respect to any parameterΘi 6= ξ. The con-
ditional densities can be chosen to have the normalized exponential formp(ξ|j) =
K(j) · exp f(ξ,wj , σ

2
j ,Ωj). Note that the normalization factorK(j) depends on the

shape of componentj. If a mixture of N -dimensional Gaussian distributions is as-
sumed,K(j) = (2πσ2

j )(−N/2) is only valid under the constraintdet(Λj) = 1. We
point out that the following derivatives subject to the condition det(Λj) = const. ∀j.
With det(Λj) = const. ∀j, theK(j) as defined above are scaled by a constant fac-
tor which can be disregarded. The condition of equal determinant for allj naturally
includes the adaptation of a global relevance matrixΛ = Λj ,∀j.
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with (a)
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)
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and(b)

∑

c 6=y

∂p(ξ, c|W )

∂Θi
=

∂

∂Θi

( ∑

j:c(wj) 6=y

P (j) p(ξ|j)
)

=
∑

j

(1 − δy,c(wj))P (j)
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=
∑
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(1 − δy,c(wj))P (j) exp f(ξ,wj , σ
2
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(

∂K(j)

∂Θi
+ K(j)
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2
j ,Ωj)
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)

Py(i|ξ) andP (i|ξ) are assignment probabilities,

Py(i|ξ) =
P (i)K(i) exp f(ξ,wi, σ

2
i ,Ωi)

p(ξ, y|W )

=
P (i)K(i) exp f(ξ,wi, σ

2
i ,Ωi)

∑

j:c(wj)=y P (j)K(j) exp f(ξ,wj , σ2
j ,Ωj)

P (i|ξ) =
P (i)K(i) exp f(ξ,wi, σ

2
i ,Ωi)

p(ξ|W )

=
P (i)K(i) exp f(ξ,wi, σ

2
i ,Ωi)

∑

j P (j)K(j) exp f(ξ,wj , σ2
j ,Ωj)

Py(i|ξ) corresponds to the probability that sampleξ is assigned to componenti of the
correct classy andP (i|ξ) depicts the probability theξ is assigned to any componenti
of the mixture.
The derivative with respect to a global parameter, e.g. a global matrixΩ = Ωj for all j
can be derived thereof by summation.
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