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Abstract

We introduce a modification of batch gradient descent, which aims at better conver-
gence properties and more robust minimization. In the course of the descent, the
procedure compares the performance of the actual configuration with that of a glid-
ing average over the most recent positions. If the latter corresponds to a lower value
of the optimization objective, minimization proceeds from there and the step size of
the descent is decreased.
Here we present the prescription from a practitioner’s point of view and refrain from
a detailed mathematical analysis. First, the method is illustrated in terms of a low di-
mensional example. Moreover, we discuss its application in the context of machine
learning, examples corresponding to multilayered neural networks and a recent ex-
tension of Learning Vector Quantization (LVQ) termed Matrix Relevance LVQ.

1 Introduction

Gradient based minimization is one of the most popular, basic techniques in non-linear
optimization [18]. While many, more sophisticated methods are also gradient based,
plain gradient descent faces a number of significant problems. First of all, the success
of steepest descent depends crucially on the choice of an appropriate magnitude of the
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update step. Too careful updates will cause slow convergence, while large steps may
result in oscillatory or even divergent behavior.

Methods for automated step size control and so-called line-search procedures have
been designed which can overcome this difficulty to a large extent. Similarly, in the
well-known conjugate gradient descent a coefficient is determined which controls the
superposition of two orthogonal descent steps [18]. Higher order methods which em-
ploy second or further derivatives include, among others, Newton and Quasi-Newton
methods. Arguably, the latter play the most important role in practical optimization of
non-convex non-linear cost functions, nowadays. Frequently, these methods are com-
putationally expensive and difficult to implement in high-dimensional search spaces. In
addition, they often require the tuning of algorithm parameters which further compli-
cate their use in practice.

In particular in the specific context of machine learning, plain gradient descent has
played a key role and continues to do so for several reasons. Gradient descent gained
significant importance when multi-layered neural networks were introduced and stud-
ied, initially. The availability of simple and efficient implementations of gradient de-
scent, e.g. the well-known backpropagation of error [19, 12, 17, 13, 5], contributed
immensely to the popularity of neural networks and machine learning in general.

To date, gradient descent is a popular tool in many machine learning tasks that can be
formulated in terms of, frequently non-convex, non-linear optimization problems. Due
to its simplicity and flexibility, gradient descent is often the first choice in initial inves-
tigations of novel learning paradigms. It has been employed in, both, supervised and
unsupervised learning. Examples for the former comprise the already mentioned train-
ing of multi-layered neural networks by means of backpropagation and, more recently,
prototype-based Learning Vector Quantization and variants [11]. Competitive learn-
ing in Vector Quantization [17] and cost function based variants of Neural Gas [15, 3],
constitute important examples for the application of gradient descent in unsupervised
learning.

In the machine learning domain, most frequently, the cost function and, thus, its
gradient can be written as a sum over the available example data. This facilitates the use
of a particularly simple and efficient scheme termed stochastic gradient descent, which
is also known as the Robbins Monro procedure [20, 13] in a more general context. Here,
the actual gradient is approximated by the contribution of a single training example. The
noise introduced by its random selection is believed to be beneficial, for instance with
respect to escaping local minima. For a discussion of various training prescriptions
which are based on the stochastic approximation of gradients, see [7].

On the other hand, batch gradient procedures make use of all examples in every
iteration, which increases the computational effort per step, but may be advantageous
in terms of efficiency.

Generic problems of gradient descent are also present, and sometimes particularly
pronounced, in both variants of gradient descent training. While the effect of local min-
ima on the actual performance of the resulting system is not always clear, their presence
certainly complicates the training process. Local minima result in, for instance, high
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sensitivity to initial conditions of the training process.
Flat regions in the search space, where the gradient of the cost function displays

low magnitude can also constitute a problem in practice. They can result in so-called
quasi-stationary plateau states which can drastically slow down the learning process
and, frequently, dominate the shape of learning curves in gradient based training. For a
mathematical analysis of this phenomenon, borrowing concepts from statistical physics,
see for instance [10, 14, 6, 9, 4].

As a consequence, many modifications of plain gradient descent have been intro-
duced and investigated within the machine learning community. The choice of ap-
propriate learning rates and learning rate schedules plays a key role, obviously. For
stochastic gradient descent, for instance, exact criteria are known for schedules which
realize convergence to a (local) minimum. In practice, one has to compromise between
the desired approach to a potentially global minimum on the one hand and constraints
on the tolerated computational effort on the other.

The problem of flat regions of the cost function, in which steepest descent without
normalization of the gradient is slow, has attracted considerable interest in the machine
learning community. One the most popular extensions of gradient based training intro-
duces a memory term which is supposed to facilitate persistent moves along previously
found directions of descent. The term momentum has been coined for this popular
concept [19, 12, 17]. Other modifications of gradient descent concern the design of
so-called well-behaved cost functions which modify the original objective, aiming at
fast initial training and better convergence properties, see for instance [17].

The use of higher order methods has been explored also in the context of machine
learning. For reviews, concrete examples, and further references we suggest to consult,
for instance, [7, 17, 12]. Obviously, the evaluation or estimation of higher order deriva-
tives poses a practical problem in high-dimensional spaces and limits the usefulness of
the approach in many learning problems.

In the context of stochastic gradient descent, an averaging procedure has been sug-
gested which does not modify the descent itself, but interprets the mean over all per-
formed descent steps as the actual outcome of training [16, 1]. Obviously, this will
reduce the influence of random fluctuations while keeping the presumed advantages of
stochastic descent. Indeed, the approach has been shown to yield favorable convergence
properties in [1].

In the following we suggest an approach which combines the basic idea of waypoint
averages, here over a limited history, with an appropriate step size adaption. It provides
a conceptually simple and computationally efficient extension of steepest descent. It is
easy to implement and bears the promise to yield robust performance in, for instance,
practical learning problems or more general optimization tasks.

In this report we focus on a heuristic motivation and present the algorithm from a
practitioner’s point of view, with particular emphasis on machine learning applications.
More mathematical aspects of the method will be presented elsewhere. We illustrate
the approach in terms of low-dimensional optimization problems as well as an example
machine learning problem.
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2 The Algorithm

First we consider the case of an objective function E which depends on a d-dim. vector
x ∈ IRd. A gradient descent procedure, initialized in xo, generates a sequence of
positions xt by an iteration of the form

xt+1 = xt − αt
∇Et
|∇Et|

. (1)

Here and in the following we use the shorthands ∇Et = ∇E|x=xt
. Note that the

gradient is normalized in Eq. (1). Hence, αt controls explicitly the step length in terms
of Euclidean distance in IRd: |xt+1 − xt| = αt. Accordingly, we will refer to αt as the
step size at iteration step t. The related quantity ηt = αt/ |∇Et| corresponds to the
learning rate in standard machine learning jargon, i.e. a pre-factor of the unnormalized
gradient.

In order to ensure convergence one has to set the learning rate or step size, respec-
tively, small enough. For constant ηt = η it is straightforward to work conditions for
the convergence of gradient descent close to a (local) minimum x∗. Let us assume that
we can expand E as

E(x) ≈ E(x∗) +
1

2
(x− x∗)

>
H∗ (x− x∗) (2)

where the elements of the Hesse-Matrix H∗ are given by H∗ij =
∂2E

∂xi ∂xj

∣∣∣∣
x=x∗

.

The largest eigenvalue λmax of H∗ corresponds to the largest curvature observed in
x∗. One can show that for η < 2/λmax the deviation |xt − x∗| vanishes as t → ∞.
However, in practical situations, the properties of the unknown minimum are not known
and H∗ itself is not available. A variety of schemes exist, which resort to the evaluation
of the local Hesse matrix H for automatic step size adaptation in machine learning, see
[7] for further references. More frequently, simple heuristic annealing schemes are used
which reduce ηt explicitly with time, see [20, 13, 17, 7] for a discussion and examples.
Note that these schemes inevitably introduce a number of algorithm parameters which
have to be fine-tuned to the concrete practical learning problem at hand.

Here we present a simple and robust extension of gradient descent which improves
convergence by considering waypoint averages over the latest iteration steps and im-
plements an efficient step size adaptation at the same time. It does not require the costly
evaluation of higher order derivatives and the number of additional control parameters
is very small compared to some of the other approaches mentioned above.

Waypoint averaging and step size adaptation
The iteration is initialized in xo and the initial step size is αo. First, a number k of
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unmodified gradient steps is performed, i.e.

xj+1 = xj − αj
∇Ej
|∇Ej |

for j = 0, 1, 2, . . . , k − 1 with αj = αo. (3)

Thereafter, the iteration proceeds as described in the following:

1. evaluate the tentative gradient step

x̃t+1 = xt − αt
∇Ej
|∇Ej |

and E(x̃t+1) (4)

2. calculate the waypoint average over the previous k steps:

x̂t+1 =
1

k

k−1∑
i=0

xt−i and E(x̂t) (5)

3. determine new position and new step size as{
xt+1 = x̃t+1 and αt+1 = αt if E(x̃t+1) ≤ E(x̂t+1)
xt+1 = x̂t+1 and αt+1 = r · αt else. (6)

with the parameter r < 1.
As long as the plain gradient descent step yields a position which corresponds to

lower costs than the waypoint average x̂t+1 over the last k steps, the iteration proceeds
unmodified.

On the contrary, E(x̂t+1) < E(x̃t+1) signals that the procedure has overshot and
displayed oscillatory behavior because the step size has been too large for smooth con-
vergence. As a consequence, one may expect that the positions xt,xt−1, . . . ,xt−k+1

fluctuate about a local minimum and the waypoint average should provide a better esti-
mate than the tentative x̃t+1. In this case, the iteration proceeds from x̂t+1 and the step
size is reduced by a factor r < 1.

In a forthcoming publication we will discuss favorable settings of the parameter r. In
addition, several extensions and modifications of the basic prescription are possible. For
instance, an additional parameter q > 1 could be introduced to increase the step size as
αt+1 = q · αt whenever the tentative step is accepted, thus avoiding slow convergence
due to inappropriately small step sizes. Here we restrict the discussion to the case q = 1
and refer to forthcoming studies for the discussion of the extension.

Figure 5 shows a simple example in d = 2 dimensions and illustrates the method by
comparing updates with constant step size and the procedure with waypoint averaging
and step size control.

3 A machine learning example

Frequently, subsets of variables can be identified which play qualitatively different roles
in the optimization problem with significantly different gradient magnitudes and cur-
vatures of E. In the suggested descent procedure, meaningful groups of variables can
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Figure 5: A simple optimization in d = 2 dimensions. Symbols and connecting lines
mark the trajectories of two gradient based iterations, we display 500 steps for each
procedure. Both trajectories start from the same initial position, marked as "1", and
employ the same initial step size αo. Unmodified gradient descent according to Eq. (1)
with constant α displays strongly oscillating behavior. The modification with waypoint
averaging (here: k = 2) and step size adaptation is identical up to step 4, but then
replaces the tentative position 5̃ by the mean (x3 +x4)/2. The step size is then reduced
by a factor r = 1/4. Also position 6 results from an average over x4 and x5, which is
very close to the tentative x̃6 (not shown). Subsequently the iteration approaches the
minimum with step size αo/16 for a number of steps. Close to the minimum many
waypoint averages are performed and the step size decreases very rapidly.

be taken into account by normalizing the partial gradients separately and assigning dif-
ferent step sizes to them. In the context of machine learning such subsets could be, for
instance, first and second layer weights in a layered neural network. Another example
are prototype vectors and relevance matrices in Matrix Relevance LVQ [2]. We employ
the latter framework to illustrate an appropriate modification of our method.

As an example data set we consider the Segmentation data set as provided by the
UCI repository of Machine Learning [8]. The data set contains (d = 18)-dim. feature
vectors xi which are assigned to one of 7 classes denoted by c(xi) ∈ {1, 2, . . . , 7}.
Note that one of the nominally 19 features does not vary at all and has been omitted
here. The training set contains 210 samples (30 per class), 2100 data points (300 per
class) serve as a test set. For a more detailed description of the data consult [8] or, for
instance, [2].

We consider the simplest setting of GMLVQ with one prototype representing each
class. We denote by W = [w1,w2, . . . ,w7] a (7 · 18)-dim. vector which contains the
concatenated prototypes. Classification is parameterized in terms of a nearest prototype
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scheme which employs the generalized distance measure

d(wk,x) = (wk − x)
>

Ω>Ω (wk − x) . (7)

Here, x ∈ IRd represents a feature vector, wk is one of the prototypes, and Ω ∈ IRd×d
is a matrix of adaptive parameters which define the measure.

The training process is guided by the cost function

E =

210∑
i=1

d(wJ ,xi)− d(wK ,xi)

d(wJ ,xi) + d(wK ,xi)
(8)

where the sum is over the training examples and the vector wJ is the prototype repre-
senting the class c(xi). The vector wK is the closest prototype representing one of the
other classes, as determined according to the distance measure (7).

In GMLVQ the cost function is to be optimized with respect to, both, the prototype
positions and the matrix Ω. When applying stochastic gradient descent, it has proven
useful to update the elements of Ω with a learning rate different from that for the proto-
type components [2]. This reflects the fact that the dependence of E on the wj and the
matrix Ω is expected to be qualitatively different.

In batch descent based on normalized gradients, Eq. (1), we can take this idea into
account by performing the normalization for the matrix Ω and the concatenated proto-
type vector W separately and using different step sizes in the tentative gradient update
corresponding to Eq. (4):

W̃t+1 = Wt − α(W )
t

∂E/∂W

|∂E/∂W|
(9)

Ω̃t+1 = Ωt − α(Ω)
t

∂E/∂Ω

|∂E/∂Ω|
. (10)

Here we refrain from providing the gradient terms explicitly and refer the reader to [2]
for details.

In complete analogy to the above described basic formulation, cf. Eq. 6), the cost
function E(W̃t+1, Ω̃t+1) is compared with the corresponding costs achieved by

Ŵt+1 =

k−1∑
i=0

Wt−i and Ω̂t+1 =

k−1∑
i=0

Ωt−i.

In case the latter is lower, the waypoint average is accepted as the new position and both
step sizes are reduced:

α
(W )
t+1 = r · α(W )

t and α
(Ω)
t+1 = r · α(Ω)

t . (11)

As the free parameters of the prescription, one has to set the initial values α(W )
o and

α
(Ω)
o . Note that their ratio remains fixed in the course of the iteration.
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Figure 6: UCI segmentation data set: GMLVQ learning curves for batch gradient de-
scent with constant step sizes (dash–dotted), stochastic gradient descent (dashed), and
waypoint averaging with step size adaptation (solid lines). The left panel displays the
evolution of the GMLVQ cost function vs. the number of steps (batch methods) or
epochs (stochastic descent), respectively. The right panel shows the total classification
error with respect to the test set. Parameter settings of the algorithms are specified in
the text.

Figure 6 displays learning curves for different variants of gradient based GMLVQ
training applied to the UCI segmentation data. We observe only a very weak depen-
dence of the performance on the initial step sizes and on their ratio α(Ω)

o /α
(W )
o . The

example shown corresponds to α(W )
o = 1/18 and α(Ω)

o = α
(W )
o /2; the other parameters

were k = 3 and r = 2/3.
For comparison we display example curves for batch gradient descent with constant

step sizes α(W )
o = 1/180 and α(Ω)

o = α
(W )
o /5. These values were chosen such that the

outcome after 500 steps is comparable to that of the waypoint averaging procedure with
adaptive step size.

Furthermore, display the results of stochastic gradient descent with learning rate
schedules of the form

η(t) = a1 exp

[
− ln

(
a1

a2

)
t

tmax

]
where tmax=500 specifies the maximum number of epochs in the training process.
Note that one epoch presents all training examples once and, hence, is to be com-
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pared with one step of batch descent. The curves displayed were obtained for a(W )
1 =

0.05, a
(W )
2 = 0.001 for the prototype vectors and a(Ω)

1 = 0.01, a
(Ω)
2 = 0.001 for matrix

updates. Note that the stochastic descent displays strong fluctuations which need to be
controlled by proper annealing of the learning rate.

Clearly, the performance could be further optimized by choice of the constant step
sizes in batch training or the learning rate schedules in the stochastic gradient descent.
Potentially, a performance very similar to that of the waypoint averaging procedure
could be achieved. However, the important point is that the latter yields very good
optimization and classification performance without careful tuning of a number of pa-
rameters.

4 Summary and Conclusion

In this Technical Report we present a modification of gradient based optimization which
constitutes a conceptually simple extension of steepest descent. The main ingredient is
the consideration of waypoint averages over the most recent iteration steps in combina-
tion with an adaptive step size control. Here we merely present and illustrate the basic
concept of the method. We discuss its application in the context of an example machine
learning problem: gradient based Matrix Relevance LVQ.

The simple examples considered here already illustrate some of the most attractive
features of the method. First of all, it is easy to implement, computationally cheap, and
– in contrast to many other schemes – does not require the careful tuning of a large
number of algorithm parameters. In particular, the combination of waypoint averages
and step size control makes it unnecessary to define explicit learning rate schedules or
to use higher derivatives for learning rate adaptation. The use of normalized gradients
may appear merely technical at first sight. However, compared to standard steepest
descent based on unnormalized gradients, it helps to overcome plateau states and flat
regions of the cost function very efficiently.

In a forthcoming publication we will address these aspects in greater depth and
demonstrate the flexibility and robustness of the approach in terms of various example
problems. A more systematic comparison with alternative, popular methods will also
be presented. In addition we will study further mathematical aspects of the approach,
including, for instance, the optimal choice of parameters r and k. We will, furthermore,
demonstrate that the method is suitable also in situations in which the cost function is
not differentiable in the minimum.

A number of question deserves particular attention in the context of machine learn-
ing, e.g. the convergence behavior in the presence of extended plateaus or many local
minima.
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