
A	 no-‐nonsense	 beginner’s	 tool	 for	 GMLVQ	 	 Version	 2-2 	
(for	 a	 list	 of	 changes:	 see	 end	 of	 document)	

	
	
	
	 	 Getting started
 Start Matlab in the directory containing the unzipped archive. Provide a labelled data set in the form

 fvec: an array of size (nvf, ndim) containg the set of nvf feature vecturs in ndim dimensions.
 lbl: the corresponding vector of nvf class labels. It is required to use labels 1,2,3,...

 e.g. by loading one of the sample data sets, which are used in the example demos:
 iris.mat iris-small.mat uci-segmentation-sampled.mat
 wine-hi-lo.mat twoclass-difficult.mat twoclass-simple.mat twoclass-simple-small.mat

 Most parameters of the training procedure are set in the following function, see commands marked in
 green,
 see comments for explanation and recommended settings.
	
function [showplots,doztr,mode,rndinit,etam,etap,mu,decfac,incfac,ncop] = set_parameters(fvec)
% set general parameters
% set initial step sizes and control parameters of
% modified procedure based on [Papari, Bunte, Biehl]
nfv=size(fvec,1); ndim = size(fvec,2);

% GMLVQ parameters, explained below
showplots = 1;
doztr = 1;
mode = 1;
rndinit = 0;
mu = 0;

% showplots (0 or 1): plot learning curves etc? recommended: 1
% doztr (0 or 1): perform z-score transformation based on training set recommended: 1
% mode
 % 0 for matrix without null-space correction
 % 1 for matrix with null-space correction (recommended)
 % 2 for diagonal matrix (GRLVQ) (discouraged)
 % 3 for GLVQ with Euclidean distance (equivalent)
% rndinit
 % 0 for initialization of relevances as identity matrix (recommended for first experiments)
 % 1 for randomized initialization of relevance matrix
% mu
 % control parameter of penalty term for singularity of Lambda
 % mu=0: unmodified GMLVQ (recommended for first experiments)
 % mu>0: prevents singular Lambda
 % mu very large: Lambda proportional to Identity (Euclidean)

% parameters of stepsize adaptation
if (mode<2); % full matrix updates with (0) or w/o (1) null space correction
 etam = 2; etap = 1; % recommended example values: etam=2, etap=1
elseif (mode==2) % diagonal relevances only (discouraged)
 etam = 0.2; etap = 0.1; % recommended example values: etam=0.2, etap=0.1
elseif (mode==3) % GLVQ, equivalent to Euclidean distance
 etam=0; etap = 1;
end;
 decfac = 1.5; % step size factor (decrease) for Papari steps example value: decfac=1.5
 incfac = 1.1; % step size factor (increase) for all steps example value: incfac=1.1
 ncop = 5; % number of waypoints stored and averaged example value: ncop = 5
end

	
If not specified otherwise, in the following, all parameters are set as given above (recommended values)

michael
Typewritten Text

michael
Typewritten Text

 A) Single runs of GMLVQ, visualization and classification
 Inspection of the data set, convergence behavior, etc.

[gmlvq_system, training_curves, param_set]= run_single(fvec, lbl, totalsteps, plbl)
Performs a single training process for the entire data set. Cost function (divided by number of
examples), error rates and AUROC as functions of the number of batch gradient training steps
are saved in a structure training_curves and the final LVQ system after totalsteps gradient descent
steps is saved in structure gmlvq_system. The structure param_set contains all system parameters.

If showplots==1, training curves (errors, AUROC, cost function, step sizes) are plotted and the LVQ
system is visualized in terms of prototype vectors and relevance matrix; in addition, the ROC of the
final system displayed and the data set is visualized in terms of the leading two eigenvectors of the
relevance matrix. The vectors of feature means and standard deviations are also returned.

 The obtained system can be applied to 'novel' data in terms of the function

[crisp,score,margin,costf]= classify_gmlvq(gmlvq_system,fvec,doztr,lbl)
Classifies the feature vectors in fvec using the GMLVQ configuration stored in gmlvq_system (e.g.
output of run_single, see above). If lbl is specified, performance of the classifier is evaluated in terms
of margin and the test equivalent of the GLVQ cost function costf. Otherwise, only output variables crisp
(discrete labels assigned by the classifier) and score (corresponding score between 0 and 1) are
meaningful.

Demo I: a seven class data set, single run with one prototype per class
(UCI segmentation data set, 1 trivial dimension removed, 800 examples randomly selected)

>> load uci-segmentation-sampled.mat

 >> [gmlvq_system,curves_single,param_set]=run_single(fvec,lbl,50);

 default: one prototype per class
 prototype configuration plbl = 1 2 3 4 5 6 7
 number of training steps totalsteps = 50
 matrix relevances with null-space correction
 Warning: multi-class problem, ROC analysis is for class 1 (neg.) vs. all others (pos.)
 minimum standard deviation of features: 0.02525
	
	

Note: Figure 2 (ROC) not shown)

	 	 	 	
	
	
	

Demo II: a simple two-class problems, 186-dim. feature vectors, 110 samples
>> load twoclass-simple
>> [gmlvq_system,curves_single,param_set]=run_single(fvec,lbl,50);
default: one prototype per class
prototype configuration plbl = 1 2
number of training steps totalsteps = 50
matrix relevances with null-space correction
Warning: vector lbl has been transposed
minimum standard deviation of features: 0.0090926
	

Note: Figure 1 (learning curves) not shown

	
	
Demo III: a difficult two-class problems, 32-dim. feature vectors, 98 samples	
>> load twoclass-difficult	
>> [gmlvq_system,curves_single,param_set]=run_single(fvec,lbl,50,[1 1 2]);
prototype configuration plbl = 1 1 2
number of training steps totalsteps = 50
matrix relevances with null-space correction
minimum standard deviation of features: 0.56657

	
Note: Figure 1 (learning curves) not shown

	
	
For comparison: singularity control with mu = 0.2:

	
	
	

B) Learning curves analysis and validation of the GMLVQ classifier

Repeated random selection of validation samples

[gmlvq_mean, roc_validation, lcurves_mean, lcurves_sdt, param_set] = ...

 run_validation(fvec, lbl, totalsteps, nruns, prctg, plbl);

Performs	 nruns of	 training	 where	 prctg %	 of	 the	 data	 (randomly	 	 selected)	 are	 used	 for	 testing	 while	 the	 rest	 	
is	 used	 	 for	 training.	 	 The	 	 LVQ	 	 system	 	 (prototypes,	 	 matrix)	 	 is	 determined	 	 in	 each	 	 run,	 but	 only	 	 the	 mean	
configuration	 	 (over	 the	 validation	 	 runs)	 and	 the	 corresponding	 	 standard	 	 deviations	 	 are	 saved	 and	 displayed	 (if	
showplots=1).	 	 Analogously,	 mean	 learning	 curves	 (and	 standard	 deviations)	 	 with	 respect	 to	 training	 and	
validation	 sets	 are	 computed	 and	 potentially	 displayed.	 The	 threshold	 averaged	 test	 set	 ROC	 as	 well	 as	 the	
confusion	 matrix	 of	 the	 Nearest	 Prototype	 Classifier	 are	 computed,	 output	 and	 displayed	 for	 the	 final	 GMLVQ	
configuration.	
	
Leave-‐One-‐Out	 	 validation,	 recommended	 	 for	 very	 small	 data	 sets	 only	
(Note:	 L1O	 can	 seriously	 mis-‐estimate	 performance)	

	

	
[gmlvq_mean, roc_l1O, lcurves_mean, lcurves_sdt, param_set] = run_l1O(fvec, lbl, totalsteps, plbl);

Performs	 a	 Leave-‐One-‐Out	 	 evaluation	 of	 the	 classifier.	 In	 each	 run,	 one	 example	 is	 excluded	 from	 training	 and	
used	 for	 testing.	 The	 LVQ	 system	 (prototypes,	 	 matrix)	 is	 determined	 	 in	 each	 run,	 but	 only	 the	 mean	
configuration	 	 (over	 the	 L1O	 runs)	 and	 the	 corresponding	 	 standard	 deviations	 are	 saved	 and	 displayed	 (if	
showplots=1).	 	 The	 numerical	 and	 graphical	 output	 is	 analogous	 to	 run_validation,	 	 however	 run_L1O	 does	 not	 	
compute	 	 learning	 	 curves	 	 in	 	 terms	 	 of	 test	 	 error	 	 and	 	 only	 	 a	 single	 	 test	 	 set	 	 ROC	 	 and	 	 NPC	 	 confusion	 matrix	 are	
determined	 at	 the	 end	 of	 training	 for	 all	 left	 out	 samples.	

Demo	 IV:	 	 reduced	 UCI	 segmentation	 data	 set	 (see	 demo	 III)	
validation	 by	 repeated	 runs	 with	 10%	 randomly	 selected	 test	 data	 (random	 matrix	 initialization)	

	
	
>> load uci-segmentation-sampled
>> [gmlvq_mean,roc_val,lcurves_mean,lcurves_std,param_set]=run_validation(fvec,lbl,40,10,10)
matrix relevances with null-space correction
default: one prototype per class
prototype configuration plbl = 1 2 3 4 5 6 7
learning curves, averages over 10 validation runs
with 10 % of examples left out for testing
Warning: multi-class problem, ROC analysis is for class 1 (neg.) vs. all others (pos.)
minimum standard deviation of features: 0.025258

(note: legends shifted manually in Figure 1)

	
	

	
	

Example output: averaged confusion matrix (Nearest prototype classifier, given as percentages)
>> roc_val.confmat
ans =
 96.2984 0 3.0565 0 0.6451 0 0
 0 100.0000 0 0 0 0 0
 4.0174 0 93.5162 0 2.0924 0.3740 0
 4.1374 0 2.3858 73.5697 8.4987 11.4085 0
 23.9696 0 22.0283 4.9418 49.0603 0 0
 0 0 0 0 0 100.0000 0
 0 0 0 0 0 0 100.0

 row index: true class label of test sample

column index: class label predicted by GMLVQ system

	

	

	

	

	
Demo V: a difficult two-class data set (see demo III)
validation by repeated runs with 10% randomly selected test data (random matrix initialization)

 matrix relevances with null-space correction

 default: one prototype per class

 prototype configuration plbl = 1 2

 learning curves, averages over 10 validation runs

 with 10 % of examples left out for testing

 minimum standard deviation of features: 0.56657

 ….

	

Poor validation performance compared to training set accuracies (III):

	
	

	

	

	

	

	

	

	

	

>> load twoclass-difficult.mat
>>[gmlvq_mean,roc_val,lcurves_mean,lcurves_std,param_set]=run_validation(fvec,lbl,50, 10,10)

	

Demo VI: UCI wine data set, classification according to high/low alcohol content
 (threshold arbitrarily set at median alcohol content in the data set)
	
>> load wine-hi-lo
>> [gmlvq_mean,roc_val,lcurves_mean,lcurves_std,param_set]=run_validation(fvec,lbl,50,10,10)
matrix relevances with null-space correction
default: one prototype per class
prototype configuration plbl = 1 2
learning curves, averages over 10 validation runs
with 10 % of examples left out for testing
minimum standard deviation of features: 0.003421
….
	
mode=0 (no null-space correction)

mode =1 (with null-space correction) ratio of diag. relevances with and
 without null-space correction:

Note: null-space correction yields slightly better generalization (validation) behavior

Demo VII: a small subset of the simple two-class data (see demo II)
 The last resort: Leave-One-Out validation

>> load twoclass-simple-small
>> [gmlvq_mean,roc_val,lcurves_mean,lcurves_std,param_set]=run_l1O(fvec,lbl,30)
default: 1 prototype per class
prototype configuration plbl = 1 2
matrix relevances with null-space correction
learning curves, averages over 36 l1O runs
Warning: vector lbl has been transposed
minimum standard deviation of features: 0.0089232
leave one out: 1 of 36
matrix relevances with null-space correction
…

Appendix: List of input arguments and parameters:
	

	
fvec: array of size (nvf, ndim) containing the set of nvf feature vecturs in ndim dimensions.

 lbl: the corresponding vector of nvf class labels. It is required to use labels 1,2,3,...

totalsteps: number of batch gradient steps to be performed in each training run

nruns: number of validation runs (random splits of the data set) in run_validation

prctg: percentage of test examples left out for each run in run_validation (rounded in practice)

plbl: (default: 1 per class label) labels assigned to the prototypes, this also specifies the number of
prototypes per class, e.g. plbl=[1,1,2,2,3] for in total 5 prototypes with class labels 1,2,3
according to the list.
It is recommended to use the default first and add prototypes for seemingly difficult classes,
subsequently, or determine the prototype configuration by (nested) validation

showplots: if set to 1, key results are displayed graphically (see above)

doztr: if set to 1, a standard z-score-transformation based on the respective training set is performed
and applied analogously to the validation set data

mode: control LVQ version

mode=0 matrix without null space correction
mode=1 matrix with null--‐space correction (recommended by default)
mode=2 diagonal matrix (GRLVQ)

Note:this choice is not recommended as GRLVQ is more sensitive to the precise
setting of learning rates and training times, in general. GMLVQ (mode 1 or 2) has
proven much more robust in practice.

mode=3 GLVQ with Euclidean distance (relevance matrix proportional to identity)

rndinit: if set to 1, the relevance matrix is initialized randomly (if applicable), otherwise it is
proportional to the identity matrix, initially (recommended initially)

mu: Lagrange parameter of singularity control
 mu=0 unmodified GMLVQ algorithm (recommended for initial experiments)
 mu>0 non-singular relevance matrix is enforced, mu controls dominance of
 leading eigenvectors continuously

	
	
	
	
Most of the above and a number of additional parameters concerning the gradient descent
procedure and
stepsize adaptation are set in function “set_parameters”, see above.

Pre-defined values should work okay for an initial exploration of the data set. Performance
can be optimized by tuning initial step sizes and adapting the number of gradient steps.

	
	
Key References: (see www.cs.rug.nl/biehl for pre/re-prints)

Introduction of Generalized Matrix Relevance LVQ (there: stochastic gradient descent)
P. Schneider, M. Biehl, B. Hammer,
Adaptive Relevance Matrices in Learning Vector Quantization
Neural Computation 21: 3532-3561 (2009)

Singularity control by penalty term: (a slightly misleading use of the term “regularization”)
P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villmann, M. Biehl
Regularization in Matrix Relevance Learning
IEEE Trans. Neural Networks 21: 831-840 (2010)

Null-space projection: (+extensions not implemented here, more appropriate use of
“regularization”)
M. Strickert, B. Hammer, T. Villmann, M. Biehl
Regularization and improved interpretation of linear data mappings and adaptive
distance measures, 2013 IEEE Symp. on Computational Intelligence and Data Mining (CIDM)
In: Proc. IEEE SSCI 2013

Step-size control: (here extended to matrix and prototypes treated separately)
G. Papari, K. Bunte, M. Biehl
Waypoint averaging and step size control in learning by gradient descent
Technical Report, In: MIWOCI 2011, Mittweida Workshop on Computational Intelligence,
Machine Learning Reports MLR-2011-06: 16-26 (2011) [attached as pdf]
	
	

	
Main changes of version 2 compared to version 1 (as of April 2015)

-‐ less explicit input parameters to functions (moved to function set_parameters)
-‐ improved step size control, really independent for matrix and prototype updates
-‐ singularity control via penalty term included, parameter mu introduced
-‐ single_run also displays temporal evolution of step sizes
-‐ null-space correction controlled in set_parameters (no dimension-dependent default

anymore)
-‐ initial step sizes independent of dimension and/or number of examples
	
	
Main changes of version 2.1 compared to version 2 (as of August 23, 2015)

- corrected legends in plots showing step size vs. learning time
- corrected calculation of mean confusion matrix in run_validation. Now the confusion
 matrix is determined in each validation run separately (in terms of percentages) and
 then averaged over validation runs in the end. Resulting matrix is now in line with the
 averaged class-wise errors.	

michael
Typewritten Text
- ROC calculation has been modfied, it is now based on differences d(x,w1)-d(x,w2) without normalization by d(x,w1)+d(x,w2). See "compute_roc.m" for comments and details.

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text
Change in version 2.2 compared to version 2.1 (April 2016)

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

michael
Typewritten Text

