
A	  no-‐nonsense	  beginner’s	  tool	  for	  GMLVQ	  	  Version	  2-2 	  
(for	  a	  list	  of	  changes:	  see	  end	  of	  document)	  

	  
	  
	  
	  	  Getting started 
  Start Matlab in the directory containing the unzipped archive. Provide a labelled data set in the form 
 
  fvec:   an array of size (nvf, ndim) containg the set of nvf feature vecturs in ndim dimensions.  
  lbl:  the corresponding vector of nvf class labels. It is required to use  labels 1,2,3,...  
 
  e.g. by loading one of the sample data sets, which are used in the example demos:  
  iris.mat              iris-small.mat                     uci-segmentation-sampled.mat     
  wine-hi-lo.mat   twoclass-difficult.mat         twoclass-simple.mat       twoclass-simple-small.mat      
 
  Most parameters of the training procedure are set in the following function, see commands marked in      
  green, 
   see comments for explanation and recommended settings.  
	  
function [showplots,doztr,mode,rndinit,etam,etap,mu,decfac,incfac,ncop] =  set_parameters(fvec) 
% set general parameters  
% set initial step sizes and control parameters of 
% modified procedure based on [Papari, Bunte, Biehl]  
nfv=size(fvec,1);  ndim = size(fvec,2); 
 
% GMLVQ parameters, explained below 
showplots  = 1;   
doztr          = 1;  
mode         = 1;  
rndinit        = 0;  
mu             = 0; 
 
% showplots (0 or 1): plot learning curves etc?                                         recommended: 1 
% doztr (0 or 1): perform z-score transformation based on training set    recommended:  1 
% mode  
  % 0 for matrix without null-space correction             
  % 1 for matrix with null-space correction                                                  (recommended) 
  % 2 for diagonal matrix (GRLVQ)                                                             (discouraged) 
  % 3 for GLVQ with Euclidean distance (equivalent)                               
% rndinit 
  % 0 for initialization of relevances as identity matrix                               (recommended for first experiments)  
  % 1 for randomized initialization of relevance matrix 
% mu 
  % control parameter of penalty term for singularity of Lambda 
  % mu=0: unmodified GMLVQ                                                                   (recommended for first experiments) 
  % mu>0: prevents singular Lambda 
  % mu very large: Lambda proportional to Identity (Euclidean)  
  
% parameters of stepsize adaptation  
if (mode<2);      % full matrix updates with (0) or w/o (1) null space correction 
      etam   = 2;  etap   = 1;                                        % recommended example values: etam=2, etap=1 
elseif (mode==2)                                                      % diagonal relevances only (discouraged)  
     etam   = 0.2;  etap   = 0.1;                                   % recommended example values: etam=0.2, etap=0.1 
elseif (mode==3)                                                      % GLVQ, equivalent to Euclidean distance 
     etam=0; etap = 1;                        
end;    
    decfac = 1.5;     % step size factor (decrease) for Papari steps           example value:  decfac=1.5 
    incfac = 1.1;      % step size factor (increase) for all steps                     example value:  incfac=1.1  
    ncop = 5;          % number of waypoints stored and averaged              example value:  ncop = 5  
end 

 
	  
If not specified otherwise, in the following, all parameters are set as given above (recommended values)  
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  A) Single runs of GMLVQ, visualization and classification 
     Inspection of the data set, convergence behavior, etc.  
 
[gmlvq_system, training_curves, param_set]= run_single(fvec, lbl, totalsteps, plbl) 
Performs  a  single  training  process  for  the  entire  data  set.  Cost  function (divided by number of 
examples),  error  rates  and  AUROC  as functions  of the number  of batch gradient  training  steps 
are saved in a  structure  training_curves  and the final  LVQ  system  after  totalsteps gradient descent 
steps is  saved  in  structure  gmlvq_system.  The structure param_set contains all system parameters.  

If  showplots==1, training curves (errors, AUROC, cost function, step sizes) are plotted and the LVQ 
system is visualized in terms of prototype vectors and relevance matrix; in addition, the ROC of the 
final system displayed and the data set is visualized in terms of the leading two eigenvectors of the 
relevance matrix.  The vectors of feature means and standard deviations are also returned.   

 
  The obtained system can be applied to 'novel' data in terms of the function  
 

[crisp,score,margin,costf]= classify_gmlvq(gmlvq_system,fvec,doztr,lbl) 
Classifies the feature vectors in fvec using the GMLVQ configuration stored in gmlvq_system (e.g. 
output of run_single, see above). If lbl is specified, performance of the classifier is evaluated in terms 
of margin and the test equivalent of the GLVQ cost function costf. Otherwise, only output variables crisp 
(discrete labels assigned by the classifier) and score (corresponding score between 0 and 1) are 
meaningful.  
_________________________________________________________________________________________	  
	  
Demo I:  a seven class data set, single run with one prototype per class  
(UCI segmentation data set, 1 trivial dimension removed, 800 examples randomly selected)  

  
>> load uci-segmentation-sampled.mat 

   >> [gmlvq_system,curves_single,param_set]=run_single(fvec,lbl,50); 
       
      default: one prototype per class 
      prototype configuration   plbl = 1     2     3     4     5     6     7 
      number of training steps       totalsteps = 50  
      matrix relevances with null-space correction 
      Warning: multi-class problem, ROC analysis is for class 1 (neg.) vs. all others (pos.)  
      minimum standard deviation of features: 0.02525 
	  
	  

Note: Figure 2 (ROC) not shown)  

	  	  	   	  
	  
	  
	  



Demo II:  a simple two-class problems, 186-dim. feature vectors, 110 samples 
>> load twoclass-simple 
>> [gmlvq_system,curves_single,param_set]=run_single(fvec,lbl,50); 
default: one prototype per class 
prototype configuration      plbl =  1     2 
number of training steps     totalsteps =  50 
matrix relevances with null-space correction 
Warning: vector lbl has been transposed  
minimum standard deviation of features: 0.0090926 
	  

Note: Figure 1 (learning curves) not shown 

	  
	  
Demo III:  a difficult two-class problems, 32-dim. feature vectors, 98 samples	  
>> load twoclass-difficult	  
>> [gmlvq_system,curves_single,param_set]=run_single(fvec,lbl,50,[1 1 2]); 
prototype configuration       plbl =   1     1     2 
number of training steps     totalsteps = 50 
matrix relevances with null-space correction 
minimum standard deviation of features: 0.56657 

	  
Note: Figure 1 (learning curves) not shown 

	  
	  
For comparison: singularity control with  mu = 0.2:  

	  
	  
	  



B) Learning curves analysis and validation of the GMLVQ classifier 
    
Repeated random selection of validation samples 

 
[gmlvq_mean, roc_validation, lcurves_mean, lcurves_sdt, param_set ] = ... 

                                                                   run_validation(fvec,  lbl, totalsteps, nruns, prctg, plbl); 
 

Performs	   nruns of	   training	   where	   prctg %	  of	   the	   data	   (randomly	  	  selected)	   are	   used	   for	   testing	   while	   the	  rest	  	  
is	   used	  	  for	   training.	  	  The	  	  LVQ	  	  system	  	  (prototypes,	  	  matrix)	  	  is	   determined	  	   in	   each	  	  run,	   but	   only	  	  the	  mean	  
configuration	  	  (over	   the	   validation	  	  runs)	   and	   the	   corresponding	  	  standard	  	  deviations	  	  are	   saved	   and	  displayed	   (if	  
showplots=1).	  	  Analogously,	  mean	   learning	   curves	   (and	   standard	   deviations)	  	  with	   respect	   to	  training	   and	  
validation	   sets	  are	  computed	   and	  potentially	   displayed.	   The	  threshold	   averaged	   test	  set	  ROC	  as	  well	  as	  the	  
confusion	  matrix	   of	  the	  Nearest	   Prototype	   Classifier	   are	  computed,	   output	   and	  displayed	   for	  the	  final	  GMLVQ	  
configuration.	  
	  
Leave-‐One-‐Out	  	  validation,	   recommended	  	  for	  very	  small	  data	  sets	  only	  
(Note:	  L1O	  can	  seriously	  mis-‐estimate	  performance)	  

	  

	  
[gmlvq_mean, roc_l1O, lcurves_mean, lcurves_sdt, param_set] = run_l1O(fvec, lbl, totalsteps, plbl); 
 
Performs	   a	   Leave-‐One-‐Out	  	   evaluation	   of	   the	   classifier.	   In	   each	   run,	   one	   example	   is	   excluded	   from	   training	   and	  
used	   for	   testing.	   The	   LVQ	   system	   (prototypes,	   	   matrix)	   is	   determined	   	   in	   each	   run,	   but	   only	   the	   mean	  
configuration	   	   (over	   the	   L1O	   runs)	   and	   the	   corresponding	   	   standard	   deviations	   are	   saved	   and	   displayed	   (if	  
showplots=1).	   	  The	   numerical	   and	   graphical	   output	   is	   analogous	   to	   run_validation,	   	   however	   run_L1O	   does	   not	  	  
compute	  	   learning	  	  curves	  	  in	  	  terms	  	  of	   test	  	  error	  	  and	  	  only	  	  a	   single	  	  test	  	  set	  	  ROC	  	  and	  	  NPC	  	  confusion	  matrix	  are	  
determined	   at	  the	  end	  of	  training	   for	  all	  left	  out	  samples.	  

_________________________________________________________________________________________	  
	  
Demo	  IV:	  	  reduced	  UCI	  segmentation	   data	  set	  (see	  demo	  III)	  
validation	   by	  repeated	   runs	  with	  10%	  randomly	   selected	   test	  data	  (random	  matrix	   initialization)	  

	  
	  
>> load uci-segmentation-sampled 
>> [gmlvq_mean,roc_val,lcurves_mean,lcurves_std,param_set]=run_validation(fvec,lbl,40,10,10) 
matrix relevances with null-space correction 
default: one prototype per class 
prototype configuration      plbl =  1     2     3     4     5     6     7 
learning curves, averages over 10 validation runs 
with 10 % of examples left out for testing 
Warning: multi-class problem, ROC analysis is for class 1 (neg.) vs. all others (pos.)  
minimum standard deviation of features: 0.025258 
  

(note: legends shifted manually in Figure 1) 

	  
	  

	  
	  



Example output: averaged confusion matrix (Nearest prototype classifier, given as percentages)  
>> roc_val.confmat 
ans = 
   96.2984         0         3.0565         0          0.6451        0            0 
         0      100.0000         0             0             0              0            0 
    4.0174         0         93.5162        0         2.0924     0.3740       0 
    4.1374         0          2.3858   73.5697     8.4987    11.4085     0 
   23.9696        0        22.0283    4.9418     49.0603         0          0 
         0            0                0             0             0        100.0000     0 
         0            0                0             0             0               0       100.0   
  
   row index:                       true class label of test sample 

column index:   class label predicted by GMLVQ system 

	  

	  

	  

	  

	  
Demo V: a difficult two-class data set (see demo III) 
validation by repeated runs with 10% randomly selected test data (random matrix initialization) 

   matrix relevances with null-space correction 

   default: one prototype per class 

   prototype configuration     plbl =  1     2 

  learning curves, averages over 10 validation runs 

  with 10 % of examples left out for testing 

  minimum standard deviation of features: 0.56657 

  …. 

	  

Poor validation performance compared to training set accuracies (III): 

	  
	  

	  

	  

	  

	  

	  

	  

	  

	  

>> load twoclass-difficult.mat  
>>[gmlvq_mean,roc_val,lcurves_mean,lcurves_std,param_set]=run_validation(fvec,lbl,50, 10,10) 



	  

Demo VI:  UCI wine data set, classification according to high/low alcohol content 
   (threshold arbitrarily set at median alcohol content in the data set)  
	  
>> load wine-hi-lo 
>> [gmlvq_mean,roc_val,lcurves_mean,lcurves_std,param_set]=run_validation(fvec,lbl,50,10,10) 
matrix relevances with null-space correction 
default: one prototype per class 
prototype configuration        plbl = 1  2 
learning curves, averages over 10 validation runs 
with 10 % of examples left out for testing 
minimum standard deviation of features: 0.003421 
…. 
	  
mode=0  (no null-space correction)          
 

 
 
mode =1 (with null-space correction)                                                             ratio of diag. relevances with and                                                                
                                                                                                                                     without null-space correction: 

  
 
 
Note: null-space correction yields slightly better generalization (validation) behavior



Demo VII: a small subset of the simple two-class data (see demo II)  
  The last resort: Leave-One-Out validation  
 
>> load twoclass-simple-small 
>> [gmlvq_mean,roc_val,lcurves_mean,lcurves_std,param_set]=run_l1O(fvec,lbl,30) 
default: 1 prototype per class 
prototype configuration  plbl = 1     2 
matrix relevances with null-space correction 
learning curves, averages over 36 l1O runs 
Warning: vector lbl has been transposed  
minimum standard deviation of features: 0.0089232  
leave one out: 1 of 36 
matrix relevances with null-space correction 
…  
 
 



Appendix: List of input arguments and parameters: 
	  

	  
fvec:            array of size (nvf, ndim) containing the set of nvf feature vecturs in ndim dimensions. 

 lbl:  the corresponding vector of nvf class labels. It is required to use  labels 1,2,3,... 

totalsteps: number of batch gradient steps to be performed in each training run 

nruns:  number of validation runs (random splits of the data set) in run_validation  

prctg:  percentage of test examples left out for each run in run_validation  (rounded in practice) 

plbl:  (default: 1 per class label)  labels assigned to the prototypes, this also specifies the number of 
prototypes per class, e.g.  plbl=[1,1,2,2,3] for in total 5 prototypes with class labels 1,2,3 
according to the list. 
It is recommended to use the default first and add prototypes for seemingly difficult classes, 
subsequently, or determine the prototype configuration by (nested) validation 

 
 

showplots: if set to 1,  key results are displayed graphically (see above) 
 
 

doztr:  if set to 1, a standard z-score-transformation based on the respective training set is performed 
and applied  analogously to the validation set data 

 
mode:  control LVQ version 

mode=0  matrix without null space correction  
mode=1  matrix with null--‐space correction     (recommended by default) 
mode=2  diagonal matrix (GRLVQ) 

Note:this choice is not recommended as GRLVQ is more sensitive to the precise 
setting of learning rates and training times, in general. GMLVQ (mode 1 or 2) has 
proven much more robust in practice. 

mode=3  GLVQ with Euclidean distance (relevance matrix proportional to identity) 
 

rndinit:   if set to 1, the relevance matrix is initialized randomly (if applicable), otherwise it is 
proportional to the identity matrix, initially (recommended initially)  

 
mu:             Lagrange parameter of singularity control 
                   mu=0     unmodified GMLVQ algorithm   (recommended for initial experiments) 
                   mu>0     non-singular relevance matrix is enforced, mu controls dominance of   
                                 leading eigenvectors continuously  
 
 
	  
	  
	  
	  
Most of the above and a number of additional parameters concerning the gradient descent 
procedure and 
stepsize adaptation are set in function  “set_parameters”, see above.  

 
 

Pre-defined values should work okay for an initial exploration of the data set.  Performance 
can be optimized by tuning initial step sizes and adapting the number of gradient steps. 
 
 
 
 
 



	  
	  
Key References:   (see www.cs.rug.nl/biehl for pre/re-prints) 

 
Introduction of Generalized Matrix Relevance LVQ (there: stochastic gradient descent) 
P. Schneider, M. Biehl, B. Hammer,  
Adaptive Relevance Matrices in Learning Vector Quantization  
Neural Computation 21: 3532-3561 (2009)  
 
Singularity control by penalty term:  (a slightly misleading use of the term “regularization”) 
P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villmann, M. Biehl  
Regularization in Matrix Relevance Learning  
IEEE Trans. Neural Networks 21: 831-840 (2010) 
 
Null-space projection:  (+extensions not implemented here, more appropriate use of  
“regularization”) 
M. Strickert, B. Hammer, T. Villmann, M. Biehl  
Regularization and improved interpretation of linear data mappings and adaptive 
distance measures, 2013 IEEE Symp. on Computational Intelligence and Data Mining (CIDM)  
In: Proc. IEEE SSCI 2013 
 
Step-size control: (here extended to matrix and prototypes treated separately) 
G. Papari, K. Bunte, M. Biehl  
Waypoint averaging and step size control in learning by gradient descent  
Technical Report, In: MIWOCI 2011, Mittweida Workshop on Computational Intelligence, 
Machine Learning Reports MLR-2011-06: 16-26 (2011)   [attached as pdf] 
	  
	  

	  
Main changes of version 2 compared to version 1  (as of April 2015) 
 
-‐ less explicit input parameters to functions (moved to function set_parameters)  
-‐ improved step size control, really independent for matrix and prototype updates 
-‐ singularity control via penalty term included, parameter mu introduced 
-‐ single_run  also displays temporal evolution of step sizes  
-‐ null-space correction controlled in set_parameters (no dimension-dependent default 

anymore) 
-‐ initial step sizes independent of dimension and/or number of examples 
	  
	  
Main changes of version 2.1 compared to version 2 (as of August 23, 2015) 
 
-     corrected legends in plots showing step size vs. learning time 
-     corrected calculation of mean confusion matrix in run_validation. Now the confusion  
      matrix is determined in each validation run separately (in terms of percentages) and  
      then averaged over validation runs in the end. Resulting matrix is now in line with the 
      averaged class-wise errors.	  
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-  ROC calculation has been modfied, it is now based on differences  d(x,w1)-d(x,w2)  without normalization   by d(x,w1)+d(x,w2). See "compute_roc.m" for comments and details. 
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Change in version 2.2 compared to version 2.1  (April 2016)
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