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Abstract
Cardiac valves simulation is one of the most complex tasks in cardiovascular modeling. Fluid–structure interaction is not 
only highly computationally demanding but also requires knowledge of the mechanical properties of the tissue. Therefore, 
an alternative is to include valves as resistive flow obstacles, prescribing the geometry (and its possible changes) in a simple 
way, but, at the same time, with a geometry complex enough to reproduce both healthy and pathological configurations. 
In this work, we present a generalized parametric model of the aortic valve to obtain patient-specific geometries that can 
be included into blood flow simulations using a resistive immersed implicit surface (RIIS) approach. Numerical tests are 
presented for geometry generation and flow simulations in aortic stenosis patients whose parameters are extracted from 
ECG-gated CT images.
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1 Introduction

Aortic stenosis is the most common valvular disease (Coffey 
et al. 2016). It consists in a thickening (inflammation) and 
a progressive stiffening (calcification) of the aortic valve 
leaflets, limiting their mobility, narrowing the valve opening 
and hence obstructing the blood flow from the heart to the 
systemic circulation.

Constitutive relations of the valve tissue are complex and 
variable per subject, leaflet and valve, in particular related 
to its complex fiber structure (Heyden et al. 2015). Moreo-
ver, experimental testing of valves does not fully reproduce 
the loading conditions in vivo : while ex-vivo setups apply 
a pure traction loading, the valve in-vivo actually bends 
hence entailing both traction and compression. Therefore, 
truly subject-specific fluid-solid interaction (FSI) simula-
tions are not feasible in spite of important advances in the 
numerical solution of the FSI problem (Astorino et al. 2009; 

Annese et al. 2022; Kaiser et al. 2021; Burman et al. 2022; 
Fernández and Gerosa 2021). From the point of view of 
applications, FSI computations have primarily focused on 
the influence of valve shape and properties in the blood flow 
dynamics (Marom et al. 2013; Mohammadi et al. 2017; Xu 
et al. 2018; Kaiser et al. 2022; Viola et al. 2021; Lee et al. 
2021).

Also with the focus on studying the effect of the valve 
shape on hemodynamic quantities, rigid-walls (and mostly 
steady state) simulations of valvular flows at open positions 
have been performed instead of FSI in order to reduce com-
putational complexity (Hellmeier et al. 2018; Weese et al. 
2017; Franke et al. 2020; Hoeijmakers et al. 2019, 2020, 
2021). However, this requires advanced meshing procedures 
since valve geometries must be defined a priori within the 
boundary of the mesh.

When valves need to be incorporated within large cardiac 
(fluid-)mechanics simulations, it was originally proposed in 
Astorino et al. (2012) to include them as resistive immersed 
surfaces (RIS). With this approach, the valve shape needs 
to be still accounted in the computational mesh but now as 
an internal surface within the flow domain. Then, on the 
immersed surface, the velocity is made very small on the 
valve by penalization, and the pressure is let to jump by dou-
bling the degrees of freedom for the pressure on the surface. 
The main advantage over modeling the valve in the mesh 
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itself is that with RIS several valve configurations can be 
included, and they can be turned on and off during the com-
putations, for instance depending on the pressure and flow 
conditions. This approach was recently extended to include 
additional information on the pressure when several valves 
are modeled and isovolumetric phases are computed (This 
et al. 2020).

In order to completely remove the influence of the valve 
shape on the fluid mesh, several authors proposed to include 
valves as resistive immersed implicit surfaces (RIIS), i.e., in 
terms of a resistive volumetric function (Laadhari and Quar-
teroni 2016; Fedele et al. 2017; Fumagalli et al. 2020; Fuchs-
berger et al. 2022; Fumagalli 2021), which converges to the 
problem with a fixed obstacle when the value of the resist-
ance increases as proven in (Aguayo and Lincopi 2022). The 
position of the valves can be therefore determined without 
defining them in the mesh a priori. To do so, a distance 
function needs to be constructed, which is then thresholded 
to represent the valve with a certain thickness.

In Fuchsberger et al. (2022), the RIIS valve geometry was 
modeled in closed positions as a slab separating all cardiac 
chambers (and just removed when the valves are supposed 
to open). In Laadhari and Quarteroni (2016); Fedele et al. 
(2017); Fumagalli et al. (2020); Fumagalli (2021), the RIIS 
valve geometry was modeled using a polynomial surface of a 
certain degree to represent the distance function, which then 
needs to be cut using additional surfaces. In Fedele et al. 
(2017), the polynomial coefficients of the valve surface were 
fitted for a single patient by selecting a large amount of con-
trol points in a 3D CT image. To the best of our knowledge, 
the application of RIIS to patient-specific, and in particular 
pathological, shapes has not been reported yet.

An alternative way to construct the 3D valve geometry 
model is to use a low-dimensional parametric representation 
of the shape (i.e., by quantities like radii, angles, etc.). The 
low parametric dimension in these models allows to extract 
the 3D geometry with a reduced number of control points 
and/or measurements, therefore considerably easing the seg-
mentation process. Moreover, it could have the potential to 
segment the 3D shape from a set of 2D images.

Parametric models have been originally devoted to 
obtaining shape designs for prosthetic valves, hence aiming 
to reproduce healthy valve geometries, see e.g., Swanson 
and Clark (1974); Thubrikar et al. (1981); Labrosse et al. 
(2006). Recently in Haj-Ali et al. (2012), a more general 
model for the boundary curves defining each half-leaflet was 
proposed and assessed in one 3D-TEE measurement of a 
non-pathological valve by assuming inter- and intra-leaflet 
symmetry. Therefore, to the best of the authors’ knowledge, 
parametric models in the context of subject-specific, possi-
bly pathological valve shapes has remained unexplored. In 
particular, in the context of blood flow simulations, paramet-
ric models require to be formulated in terms of parametric 

surfaces in order to compute distance functions to generate 
the RIIS models.

In this work, we propose a generalization of the model 
from Haj-Ali et al. (2012) such that surfaces can be con-
structed in a parametric way and distance functions to the 
valves can be computed for RIIS-based modeling. We also 
propose relaxing the inter-symmetry in the leaflets in order 
to adapt the shape of the valve to a wider range of sub-
jects. Doing so we aim to be capable of generating patho-
logical geometries in a wide range of shapes. We propose 
an approach to generate resistive volume models from the 
valvular geometry to incorporate them into fluid flow simu-
lations. We assessed the capability of the model to gener-
ate a wide variety of shapes on 10 open valve geometries 
coming from CT images before a transcatheter aortic valve 
intervention (TAVI). Examples of transvalvular blood flow 
simulations using resistive volumes are also included. The 
shape parameters extraction protocol from 3D CT images is 
also explained.

2  The 3D parametric aortic valve model

A normal aortic valve consists of three leaflets which can 
open and close to control the blood flow through it. Our 
3D parametric model aims to reproduce the valve shape to 
obtain a geometry that is as realistic as possible. With this 
goal in mind, as mentioned above we based our work on the 
valve model described in Haj-Ali et al. (2012) and we added 
some important improvements to have more control on the 
way the leaflets bend when the valve opens. For the sake 
of completeness, we present here the full model in detail, 
mentioning explicitly when changes are performed.

The native tricuspid aortic valve has a complex 3D struc-
ture that can be represented defining parametric curves 
(enclosing different surfaces) that allow us to shape up the 
leaflets and to obtain a realistic description of these struc-
tures. The reference model we improved describes the valve 
assuming three identical cusps (inter-symmetry assumption) 
with internal symmetry (intra-symmetry assumption, i.e., 
each leaflet is composed by two identical halves), limiting 
the construction effort to half of a single cusp which is then 
replicated identically and rotated to obtain the tricuspid 
structure. With such assumptions it is indeed possible to 
obtain a good general approximation of the aortic valve, but 
they end up to be too strict to properly represent a subject-
specific valve, especially when referring to pathological 
cases. So, in order to have a geometric representation that 
better adapts to human anatomy, the inter-symmetry assump-
tion has been relaxed. Thanks to this choice, we are able to 
describe valves with three completely different leaflets that 
better fit the shape we see from ECG-gated CT images.
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Moreover, since at this stage of our work we are not 
interested in recovering the sinuses and the interleaflet 
triangles (see Fig. 1), we need to replace these structures 
with a completely new curve to enclose the analytical sur-
faces that otherwise would remain open. From now on, 
we refer to such curve as the sinus curve. Another struc-
tural improvement consists in the introduction of a new 
curve, that we called the bending curve, to better describe 
the way the leaflet bends when opening. Such improve-
ments of the reference model forced us to modify the way 
we recover the 3D final surface, dividing the leaflet into 
two parts connecting at the bending curve. This curve, as 
long as the details on the generation of the 3D surface, is 

introduced and explained in full detail in the following 
section.

2.1  Curves definition

We here define the 4 curves we need to create the 3D 
surface of the leaflet, namely the leaflet curve, the bend-
ing curve, the symmetry curve, and the sinus curve. We 
assume the valve is included in a cylinder within a (x, y, z) 
coordinate system, with z the axial coordinate. As men-
tioned above, we relaxed the inter-symmetry hypothesis 
but we kept considering each leaflet as a symmetric sur-
face with respect to its own axis. So, likewise Haj-Ali et al. 
(2012), the parametric description is limited to one sixth 
of the entire geometry, thus in the 0 ≤ � ≤ la region, where 
la is what we refer to as the leaflet angle (see Fig. 2d). 
Since we relaxed the inter-symmetry assumption, the leaf-
let angle value is not fixed, allowing us to generate a final 
model with three different leaflets. The region of interest 
is shown in Fig. 2e.

Fig. 1  Basic 3D example of the aortic valve geometry we want to 
obtain for our simulations in open (1a) and closed (1b) position. Here, 
inter- and intra-leaflet symmetry are enforced

Fig. 2  The outer circle’s radius, l
ro

 , represents the size of the aorta 
and the inner circle’s radius, l

ri
 , determines the valve’s state (the big-

ger the measurement, the more open the valve). The leaflet angle l
a
 

determines the half leaflet region of interest highlighted in the last 
picture
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2.1.1  Leaflet curve

Consider the 2D coordinate system (x, y) crossing the axis 
of the valve structure at z = lh , where lh stands for the leaflet 
height. Looking at the valve from this perspective, it is pos-
sible to identify the physical parameters we need to give the 
analytical description of the leaflet curve, i.e., the free edge 
of the leaflet: the radius of the aorta at z = lh ( lro , Fig. 2a), the 
radius of the inner circle touching the leaflet at the symmetry 
line, and describing the state of the valve ( lri , Fig. 2b, c) and 
the leaflet angle ( la , Fig. 2d).

We can now define the leaflet curve as in Haj-Ali et al. 
(2012). Let the leaflet curve be defined as a x = f (y) type 
equation. The curve is connected to the inner circle at (lri, 0) , 
at the symmetry line. Since the curve will be reflected to 
complete the leaflet, we impose the derivative at y = 0 to be 
equal to zero, in order to have a smooth transition. Finally, 
the curve intersects the outer circle in a point that can be 
represented using the parameters defined above. All these 
statements result in the following conditions:

Solving for these three conditions, we obtain the following 
formula for f, as given in Haj-Ali et al. (2012):

with

In this expression, we use a new parameter, the leaflet power 
(lp) , which describes the form of the leaflet curve.

Finally, if we consider another 2D local coordinate sys-
tem (x, y) at z = 0 , we are able to identify the lowest point 
where the cusps are connected to the valve structure, which 
we refer to as the aortic annulus, and to extract its radius, rr.

2.1.2  Bending curve

After describing the valve geometry at the top and bot-
tom level, we are now going to define other three curves to 
enclose the 3D surface of the leaflet. As mentioned above, 
we added the bending curve to the model in Haj-Ali et al. 
(2012). The definition is equal to the leaflet curve’s one 
but the parameters involved are defined at z = bh , where bh 
stands for the bending height, which is generally located 
halfway between the annulus and the top of the valve. Let the 
bending curve be defined as a x = f (y) type equation, then

f (0) = lri ,

f � (0) = 0 ,

f (lro ⋅ sin la) = lro ⋅ cos la .

(1)f (y) = lri + �ylp ,

� =
lro ⋅ cos la − lri

(lro ⋅ sin la)
lp

.

where

The parameters involved are analogous to the leaflet ones: 
the radius of the aorta at z = bh ( bro ), the radius of the inner 
circle touching the leaflet at the symmetry line ( bri ) and the 
bending angle ( ba ). Again, a bending power bp is introduced 
to control the shape of the curve.

2.1.3  Sinus and symmetry curve

The second curve we are adding to the reference model is the 
sinus curve connecting the leaflet, the bending and the annulus 
planes without defining the sinus structure and the interleaflet 
triangle. We define this curve from a numerical point of view 
using a quadratic Bézier curve connecting the three endpoints. 
The final formula for the sinus curve is the following:

where t ∈ [0, 1] and P0 , P1 and P2 are the control points (see 
Fig. 3). P0 and P2 are the start and end point of the curve, 
respectively, both of them defined using the parameters we 
introduced before. On the other hand, P1 requires additional 
information to be defined: we want the sinus curve to inter-
sect the bending curve at the outer circle. With this in mind, 
we assume that the following equality is valid for t = ssin , 
where ssin =

bh

lh
:

(2)g(y) = bri + �ybp ,

� =
bro ⋅ cos ba − bri

(bro ⋅ sin ba)
bp

.

(3)B(t) = (1 − t)2P0 + 2(1 − t)tP1 + t2P2,

Fig. 3  The sinus curve (dark grey) is a Bézier curve defined by the 
shown control points (black bullets)



A parametric geometry model of the aortic valve for subject‑specific blood flow simulations…

1 3

Using this equality and plugging P0 and P2 into Eq. (3), we 
get the following expression for P1:

To conclude the description of the leaflet, the symmetry 
curve needs to be introduced. Again, we proceed differently 
from Haj-Ali et al. (2012), defining the curve as a cubic Bézier 
curve:

where t ∈ [0, 1] and Q0 , Q1 , Q2 and Q3 are the control points, 
also shown in Fig. 4. Q0 and Q3 are the start and end points of 
the curve and can be defined using the physical parameters 
as we did for P0 and P2 . We set Q1 to capture the tangent 
direction of the symmetry curve at Q0 , so:

where xQ1
sym

 and zQ1
sym

 are assumed to be equal to −0.2 . 
Then Q2 is retrieved analogously to P1 , evaluating Eq. (4) at 
t = ssym =

bh

lh
 and assuming:

B(ssin) =

⎛
⎜⎜⎝

bri ⋅ cos ba
bri ⋅ sin ba

bh

⎞
⎟⎟⎠

P1 =
B(ssin) − (1 − ssin)

2P0 − s2
sin
P2

2(1 − ssin)ssin
.

(4)
C(t) = (1 − t)3Q0 + 3t(1 − t)2Q1

+ 3t2(1 − t)Q2 + t3Q3,

Q1 =

⎛⎜⎜⎜⎝

rr+bri

2
+ xQ1

sym
⋅ (rr − bri)

0
bh

2
+ zQ1

sym
⋅ bh

⎞⎟⎟⎟⎠
,

2.2  Interpolation of the curves and surface 
generation

In order to generate the 3D surface of the half leaflet, we 
divide it into two parts connected smoothly at the bend-
ing curve (see Fig. 5). The two analytical curves introduced 
in the previous section are both approximated with a cubic 
Bézier curve: to avoid redundancy, we only explain how to 
choose the control points for the approximation of the leaflet 
curve, the procedure for the bending one is analogous. We 
need four control points Li , i = 0,… , 3 , to define a cubic 
Bézier curve laying on the plane z = lh . While L0 and L3 are 
simply given by the end points of the analytical curve, L1 and 
L2 have to be placed in such a way we can control the patient 
specific shape of the leaflet curve. One way to place them is 
to use the estimated derivatives of the leaflet curve at L0 and 
L3 . We propose the following expressions:

assuming for both points z = lh and f defined as in Eq. (1). 
The weights t0 and t3 are mostly related to the leaflet power 
and they need to be calibrated in this sense, but in general 

C(ssym) =

⎛
⎜⎜⎝

bri
0

bh

⎞
⎟⎟⎠
.

L1 =

(
L0[0] + t0

f (L0[1]+�)−L0[0]

�

L0[1] + t0

)
,

L2 =

(
L3[0] + t3

f (L3[1]−�)−L3[0]

�

L3[1] − t3

)
,

Fig. 4  The symmetry curve (dark grey) is a cubic Bézier curve 
defined by the shown control points (black bullets)

Fig. 5  Curves enclosing the top (black) and the bottom (grey) part of 
the half leaflet
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t0, t3 ∈ (0, 1) . Moreover, notice that the derivative at L0 is 
equal to zero by construction and the one at L3 changes a 
lot with the parameters, mostly the power: therefore, more 
weight is put on the derivative of L3.

Now that all the curves are represented as parametric 
functions and the symmetry and sinus curves can be easily 
split into two parts (see Fig. 5) using De Casteljau’s algo-
rithm (see Shirley and Marschner (2009)), the Coons bilin-
ear interpolation (see Shirley and Marschner (2009)) can be 
done as follows:

where Qij is the intersection point between curve i and j and

3  Application to blood flow simulations

In this section, we include the valve model into the blood 
flow mathematical model to simulate the flow through sub-
ject-specific valves. In order to completely remove the influ-
ence of the valve structure on the fluid mesh, we include it 
in the model using a RIIS approach.

Given a fixed domain Ω ⊂ ℝ
3 with its boundary defined 

as Γ ⊂ Ω , we enrich standard time-dependent Navier–Stokes 
equations with a penalization term in the momentum conser-
vation equation. This term holds only for the valve surface 
Γvalve ⊂ Ω and acts as if we were imposing u = 0 on the 
valve leaflets. We also call Γin ⊂ Γ and Γout ⊂ Γ the inflow 
and outflow boundary surface, respectively. The continuous 
strong formulation of our problem reads as follows: find the 

(5)

h(u, v) =

⎛
⎜⎜⎝

h1(u, v)

h2(u, v)

h3(u, v)

⎞
⎟⎟⎠
=

= (1 − v) ⋅ bendingCurve(u) +

+ v ⋅ leafletCurve(u) +

+ (1 − u) ⋅ symCurveTop(1 − v) +

+ u ⋅ sinusCurveTop(1 − v) +

−

�
(1 − u) ⋅ (1 − v) ⋅ Qb,sym +

+ u ⋅ v ⋅ Ql,sin +

+ u ⋅ (1 − v) ⋅ Qb,sin +

+ (1 − u) ⋅ v ⋅ Ql,sym

�
,

Ql,sin =

⎛
⎜⎜⎝

lro ⋅ cos la
lro ⋅ sin la

lh

⎞
⎟⎟⎠
, Ql,sym =

⎛
⎜⎜⎝

lri
0

lh

⎞
⎟⎟⎠
,

Qb,sin =

⎛⎜⎜⎝

bro ⋅ cos ba
bro ⋅ sin ba

bh

⎞⎟⎟⎠
, Qb,sym =

⎛⎜⎜⎝

bri
0

bh

⎞⎟⎟⎠
.

velocity u and the pressure p such that for each time unit 
t ∈ (0, Tend) it holds that:

where � is the blood density, � is the blood dynamic viscos-
ity, uin(x, t) is a time dependent parabolic profile and � is a 
scalar function implicitly defining the valve.

3.1  Numerical approximation and resistive volume 
extraction

We focus now on the discretization of the resistive model in 
Eq. (6) and we also detail the pipeline to extract the resistive 
volume to create the function � . The weak formulation of our 
problem discretized with inf-sup stable elements, already 
including the Temam stabilization term, reads as follows: 
find uh(t) ∈ Vh , ph ∈ Qh such that

with uh = uin(t) on Γin and vh = 0 on �Ω , ∀(vh, qh) ∈ Vh × Qh , 
where Vh and Qh are respectively defined as follows:

Such formulation is further stabilized with a suitable back-
flow stabilization term to avoid nonphysical numerical insta-
bilities at the outlet for high Reynolds numbers (see also 
Bertoglio and Caiazzo (2016)). Time discretization has been 
performed using backward Euler method.

Finally, we need to define the function � in the penaliza-
tion term. We decided to create a scalar function defined 
on the nodes of the fluid mesh to implicitly define the valve 
structure after defining all the leaflets of the aortic valve. The 
parametric model we introduced in Sect. 2 can be used to 

(6)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
�u

�t
− �Δu+

+�(u ⋅ ∇)u + ∇p + �u = 0 in Ω

∇ ⋅ u = 0 in Ω

u = uin(x, t) on Γin
�u

�t
= 0 on Γout

u(x, 0) = 0 in Ω

𝜌∫Ω

u̇h⋅vh dΩ + 𝜌∫Ω

(uh ⋅ ∇)uh ⋅ vh dΩ+

+
𝜌

2 ∫Ω

(∇ ⋅ uh)uh ⋅ vh dΩ+

+ 𝜇 ∫Ω

∇uh ⋅ ∇vh dΩ+

− ∫Ω

ph∇ ⋅ vh dΩ + ∫Ω

𝛾uh ⋅ vh +

+ ∫Ω

qh∇ ⋅ uh dΩ = 0

Vh ⊂ V = [H1
Γ
(Ω)]3 =

= {v ∈ [H1(Ω)]3 ∶ v = 0 on Γ} ,

Qh ⊂ Q = L2(Ω) .
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Fig. 6  The valve models of the first 5 patients are shown here, one 
in each row: a qualitative comparison between the obtained geometry 
and the CT images (left column), the function � , suitably thresholded 

to show only the nonzero values (central column), and the theoretical 
3D valve structure (right column)
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Fig. 7  The valve models of the last 5 patients are shown here, one in 
each row: a qualitative comparison between the obtained geometry 
and the CT images (left column), the function � , suitably thresholded 

to show only the nonzero values (central column), and the theoretical 
3D valve structure (right column)
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create a resistive volume of the valve itself to be included in 
blood flow simulations. Starting from the description of half 
a leaflet, the construction of the tricuspid valve is straight-
forward. Consider again the highlighted configuration in 
Fig. 2e. Leaflets are composed by two identical halves, so 
a simple transformation by symmetry with respect to the 
x-axis allows us to recover the complete structure of a single 
cusp. Our algorithm recovers each leaflet in this position and 
then applies a rotation by an angle � extracted from the CT 
images to relocate the cusp in the correct position. In this 
way we obtain a complete geometric subject-specific model 
of the valve that can be included in our simulations.

After recovering the complete valve, the last step of this 
pipeline is the actual creation of a resistive volume consist-
ing in a piecewise linear scalar function � defined on the 
nodes of our mesh. Consider the expression in  Eq. (5). Each 
leaflet is defined by 2 parametrized functions, therefore the 
valve structure is indeed defined by 6 functions, namely:

For each node N = (xN
1
, xN

2
, xN

3
) ∈ Ω , we compute the mini-

mum 3D distance d to the valve structure by solving the 
following minimization problem with a Powell minimiza-
tion method:

h
i(u, v) =

⎛
⎜⎜⎝

h
i

1
(u, v)

h
i

2
(u, v)

h
i

3
(u, v)

⎞
⎟⎟⎠
, i = 1,… , 6 .

and we assign the node a sufficiently large constant value 
C ≠ 0 (in our case, C = 108 ) if it is close to the valve surface, 
hence:

The value of � is chosen accordingly with the mesh size to 
obtain a sufficiently thin structure, in our case we chose it 
to be 75% of the maximum mesh size, hmax . This choice 
is a good compromise to have leaflets with a reasonable 
thickness to ensure a correct recovery of the pressure jump 
through the valve and to avoid undesired holes in the leaflet 
surfaces, since decreasing the value of � increases the pos-
sibility that some nodes in a reasonable proximity of the 
theoretical surface are assigned the value zero. In case of 
further refinement of the mesh, we can fix such value so that 
the thickness of the valve will be not less than the physi-
ological thickness, hphys . In this way, we get the following 
definition of �:

4  Numerical examples and discussion

We performed blood flow simulations on a set of 10 patients 
with a monolithic velocity-pressure coupling, backward 
Euler time discretization and ℙ1

bubble
/ℙ1 velocity/pressure 

finite elements. For each patient, we created a personalized 
valve structure using our model and we solved the fluid-
dynamic problem in a cylindrical mesh with radius r = lro 
and average mesh size h1 = 0.5mm in the valve region and 
h2 = 0.75mm elsewhere. The inflow boundary condition is 
a time dependent parabolic profile defined over the approxi-
mated systolic phase interval T = 0.4 s and we run all the 
simulations up to the peak, hence Tend = 0.2 s . The maxi-
mum Reynolds number at the inlet is fixed to Re = 1200 
for all the examples, independently on the severity of the 
aortic stenosis. We assumed the valve to have a fixed open 
configuration.

These experiments allow us to both validate our model 
by qualitatively comparing it with the images and to 
observe the effects of a patient-specific pathological valve 

min
u ∈ (0, 1)

v ∈ (0, 1)

min
i=1,…,6

(
3∑
j=1

(
hi
j
(u, v) − xN

j

)2
) 1

2

= d

�(N) =

{
C if d ≤ � ;

0 otherwise .

� = max

(
hphys

2
, 0.75 ⋅ hmax

)
.

Fig. 8  The relation between pressure gradient and maximum velocity 
is reported in this picture. The red curve represents the second-order 
polynomial fitting of our data (blue bullets). The yellow curve repre-
sents the theoretical relation obtained using the simplified Bernoulli 
equation
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on the blood flow around the valve region. Figures 6 and 
7 show the valve models we obtained for the patients in 
our data set. Anatomical valves are highly non-symmetric 
and may vary a lot from patient to patient in shape, size 
and severity of the stenosis. For each patient we present 
two different 3D views of the valve structure and a qualita-
tive comparison with the medical images. As described in 
Sect. 3.1, the pipeline to obtain a valve structure ready to 
be included into the numerical simulations consists in two 
separated parts. The first step is to create a personalized 
model, generating all the 3D parametric surfaces defining 

the leaflets, hence obtaining the theoretical model that can 
be observed in the right column of Figs. 6 and 7. Once 
we generate the model, we use it to compute the function 
� : in the central column of Figs. 6 and 7 we reported the 
nonzero values of the functions � we obtained from the 
geometric model. In all the cases, the leaflet is 3/4 ele-
ments thick, so approximately 2 mm at most. In this model 
the leaflet thickness is assumed to be homogeneous but this 
is only an approximation of the actual leaflet distribution, 
which is thicker on the free margins and attachments edges 
and thinner in the belly. We can observe that our model is 

Fig. 9  Velocity results of the 
blood flow simulations through 
the aortic valve for the first 6 
patients at peak systole: for 
each patient, we show the 
velocity contours on a slice of 
the domain (on the left) and a 
3D representation of the flow 
through the valve (on the the 
right)
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able to cover a wide variety of valves, with very different 
leaflets in both size and shape. The parametrization we 
made allows us to recover also a wide range of stenotic, 
and for this reason very irregular, orifice areas. A further 
qualitative validation of this pipeline has been made by 
overlapping the resulting model to the CT images (Figs. 6 
and 7, left column). As expected, the main consequence 
of our initial assumptions is the over-regularization of the 
intra-symmetric leaflets structure, and for this reason still 
different from the anatomical valve in some cases. Despite 
this fact, the commissures coincide and the variability in 
terms of shape is well recovered even if we relaxed the 
inter-symmetry assumption.

Concerning the fluid-dynamic simulations, we can exploit 
the flexibility of our model to investigate the valve shape 
induced blood flow patterns. Velocity results are reported in 
Figs. 9 and 10. For each patient, we show the velocity mag-
nitude contours on a long-axis slice of the domain at peak 
systole (left) and a 3D representation of the flow through the 
valve (right). Due to the partially obstructed aortic orifice, 
a high-velocity jet forms after the valve and the velocity 
magnitude increases with the severity of the stenosis. As 
expected, the stenotic valve shape influences the direction of 

the blood jet and for some patients it also causes an abnor-
mal impinging jet against the cylinder wall. The stream-
lines view gives also a general idea of how the flow actually 
develops throughout the domain: the correct implementation 
of the resistive term forces the blood to move along the valve 
surface, then contributing to the formation of the previously 
described jet. In some of the more open cases we can also 
notice some recirculation vortices (e.g., case P3 and P8). In 
Fig. 11, we show the pressure results on a slice for the 10 
patients at peak systole. The pressure field is characterized 
by a high gradient across the valve level and it is almost 
homogeneous elsewhere. Such gradient increases in time in 
the first half of the systolic phase reaching their maximum 
at the end time of the simulation and tends to increase as the 
severity of the stenosis increases.

In clinical practice, measuring the pressure gradient 
across the aortic valve is a challenging task and it may also 
require invasive procedures. The standard way to estimate it 
consists in recovering it from the velocity data acquired from 
Doppler imaging using the simplified Bernoulli equation 

Fig. 10  Velocity results of 
the blood flow simulations 
through the aortic valve for the 
last 4 patients at peak systole: 
for each patient, we show the 
velocity contours on a slice of 
the domain (on the left) and a 
3D representation of the flow 
through the valve (on the the 
right)
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ΔP = 4 v2
max

 (see Donati et al. (2017)). Such relation can 
be investigated using the results of the numerical simula-
tions. We computed the maximum velocity magnitude and 
the maximum pressure gradient for the patients in the data 

set and we reported them in Fig. 8. The result of the fitting 
of our datapoints is a quadratic polynomial (reported in red 
in the picture) which is always greater than the Bernoulli 
equation approximation (yellow curve in the picture). This 

Fig. 11  Pressure results of the 
blood flow simulations through 
the aortic valve at peak systole 
for all the 10 patients in the 
dataset
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may be an indicator that the simplified Bernoulli equation 
tends to underestimate the severity of the stenosis, but this 
claim needs further investigation on a much larger sample 
to be adequately proved.

5  Conclusions

This work represents a first approach to the use of personal-
ized parametric valve models in pathological cases to study 
the fluid-dynamic induced by the valve in the aorta. In this 
paper we presented an improved parametric model of the 
aortic valve, suitable for both healthy and stenotic valves, 
generalizing the model presented in Haj-Ali et al. (2012) 
and relaxing the inter-symmetry assumption. Moreover we 
also proposed a short pipeline to include the aortic valve into 
blood-dynamics simulations using a RIIS approach and we 
discussed application examples on a sample of 10 patients.

The improved valve structure has been successfully 
included into fluid-dynamic simulations. However, it still 
presents some limitations. For some sets of parameters we 
noticed a poor recovery of the commissures which leaves 
the leaflets disconnected. This problem may rely in some 
errors in the parameters extraction but also in the fact that 
we decided not to recover the sinuses for these first experi-
ments, affecting negatively the reconstruction of that region. 
Running the simulations in an anatomical domain (includ-
ing the sinuses and the ascending aorta) could almost com-
pletely solve the open commissures issue and also improve 
the fluid-dynamic results. Moreover, even if leaflets often 
present irregularities in their shape, the modeling results 
obtained are overall satisfactory in terms of shaping, siz-
ing and approximating the stenosis and give a coherent 
fluid dynamic pattern for both velocity and pressure fields. 
Finally, the quadratic relation between the transvalvular 
pressure gradient and the peak velocity in our dataset con-
firms the reliability of the implementation and opens up to 
possible further investigation and related clinical studies.

Appendix A: Patients data set 
and parameters extraction

The dataset used in this study has been selected among 
subjects diagnosed with aortic stenosis. As candidates for a 
Transcatheter Aortic Valve Implantation (TAVI), ECG-gated 
pre-surgery CT scans are available for all the subjects. We 
use the biomedical imaging software TeraRecon to analyze 
the images and extract the shape parameters we need for 
the model.

After aligning the visualization panels to our reference 
system (see Fig. 12), we need to fix the axes origin in the 
center of the lowest part of the aortic root. A good placement 
of the origin is crucial to accurately extract the parameters. 
Due to the lack of inter-symmetry in our model, a way to 

Fig. 12  Aligned visualization panels in TeraRecon: xy-plane (a), yz-
plane (b) and xz-plane (c)
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approximate its position consists in drawing the symme-
try line of each cusp in the leaflet plane and then using the 
center of the triangle they form as the center of our reference 
system.

We then proceed with the extraction of the shape 
parameters. Since the aortic annulus has a non-regular 
shape, we use the TeraRecon built-in tool assisted dis-
tance pair to compute the average diameter of the aor-
tic annulus area and so to measure the �������_������ . 
Sliding the xy-plane along the z-axis, we can measure the 
�������_������ , defined as the distance between the top 
part of the valve and the annulus plane, from which we get 
the �������_������ , defined as half the leaflet height. On 
the bending and leaflet plane, all the leaflet-related shape 
parameters can be measured. This process is the same for 
the 3 leaflets in both planes. For both of them, we place 
an oriented grid on the image in such a way that the x-axis 
of the grid splits the leaflet into two halves, so that the 
�������_�����∕�������_����� are immediately given 
(see Fig. 13, left). On the same planes we can also measure 
the �������_������_���∕�������_������_��� , defined 
as the average of the distances between the origin of the 
grid and each of the commissures (Fig. 13, center), and 
the �������_������_��∕�������_������_�� , i.e., the 
distance between the origin of the grid and the leaflet in 
the direction of the x-axis (Fig. 13, right).

The last two parameters, the �������_����� and the 
�������_����� , cannot be extracted directly, since they 
describe to what extent the leaflet bends. As these shape 
parameters are the last unknowns in (1) and (2), they can be 
obtained by finding the optimal fit of a set of points selected 
on the image using a least squares method. The coordi-
nates of a set of 5 points on the leaflet/bending curve are 
extracted from the CT-scan. Since we have an error in both 
the x- and y-coordinate, an orthogonal distance regression 
is chosen to be the best least squares method to approximate 
the powers: an orthogonal distance regression minimizes 
the sum of the square distances perpendicular to the fitted 
line. Figure 14 shows how these coordinates are extracted 
from a CT-scan and how the corresponding optimal curve 
fits the coordinates.

Finally, to correctly relocate each leaflet in the correct 
position, a ��������_�������� angle is measured. This 
angle is nonzero only for 2 of the cusps (right coronary cusp, 
RCC, and non-coronary cusp, NCC) and it is obtained by 
measuring the angle between the corresponding commis-
sures of two leaflets. The complete set of parameters we 
need to reconstruct a non-symmetrical valve consists of 27 
descriptive parameters and 2 additional ones (the relative 

Fig. 13  Example: measurements at the leaflet plane to get the leaflet 
angle (a), the outer radius (b) and the inner radius (c)

▸
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rotation angles for RCC and NCC), and is reported in 
Table 1.
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