
The Journal of Systems and Software 83 (2010) 352–370
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss
A comparative study of architecture knowledge management tools q

Antony Tang a,*, Paris Avgeriou b, Anton Jansen b, Rafael Capilla c, Muhammad Ali Babar d

a Swinburne University of Technology, Melbourne, Australia
b University of Groningen, Groningen, The Netherlands
c Universidad Rey Juan Carlos, Madrid, Spain
d University of Limerick, Ireland

a r t i c l e i n f o
Article history:
Received 14 July 2008
Received in revised form 24 August 2009
Accepted 24 August 2009
Available online 1 September 2009

Keywords:
Architectural knowledge management tool
Architectural design
Design rationale
0164-1212/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.jss.2009.08.032

q All authors have contributed equally to this work
* Corresponding author. Tel.: +61 3 92145198; fax:

E-mail addresses: atang@swin.edu.au (A. Tang), p
anton@cs.rug.nl (A. Jansen), rafael.capilla@urjc.es (R
bar@lero.ie (M. Ali Babar).
a b s t r a c t

Recent research suggests that architectural knowledge, such as design decisions, is important and should
be recorded alongside the architecture description. Different approaches have emerged to support such
architectural knowledge (AK) management activities. However, there are different notions of and empha-
sis on what and how architectural activities should be supported. This is reflected in the design and
implementation of existing AK tools. To understand the current status of software architecture knowl-
edge engineering and future research trends, this paper compares five architectural knowledge manage-
ment tools and the support they provide in the architecture life-cycle. The comparison is based on an
evaluation framework defined by a set of 10 criteria. The results of the comparison provide insights into
the current focus of architectural knowledge management support, their advantages, deficiencies, and
conformance to the current architectural description standard. Based on the outcome of this comparison
a research agenda is proposed for future work on AK tools.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Software architecture design is considered of paramount impor-
tance to the software development life-cycle (Bass et al., 2003). It is
used to represent and communicate the system structure and
behavior to all of a system’s stakeholders. Additionally, architec-
ture can facilitate stakeholders in understanding architecture de-
sign decisions and design rationale, further promoting a
communication and understanding, reuse and efficient evolution.
In the early ’90s, (Perry and Wolf, 1992) used design rationale
and principles to guide and justify the design of software architec-
tures. More recently, the importance of recording design decisions
is described in Clements et al. (2002), and also Bosch (2004) sug-
gests that any architecture is the result of a set of design decisions
which should be considered as first-class entities. Kruchten et al.
definene architecture knowledge (AK) with this equation: AK = de-
sign decisions + design and they distinguish four types of design
decisions according to the implicit and explicit knowledge that is
documented or undocumented (Kruchten et al., 2006).

However, architecture knowledge (AK) encompasses not only
decisions and rationale, but also other architecturally significant
information. The CORE model suggests that AK is a set of relation-
ll rights reserved.

.
+61 3 98190823.
aris@cs.rug.nl (P. Avgeriou),

. Capilla), Muhammad.AliBa-
ships between decisions, people, architectural design, and pro-
cesses (de Boer et al., 2007). Hence, AK may contain alternative
solutions, significant entities from the problem space (such as
key stakeholders’ concerns), technology constraints, business
information, and general knowledge (such as design patterns)
(Avgeriou et al., 2007). Presently, common architecting practices
do not systematically capture or use AK such as design rationale.
The evaporation of AK thus results in reduced stakeholder commu-
nication, increased system maintenance cost and limited reusabil-
ity of architecturally significant entities.

Recently, modeling and management of AK has attracted much
research interests in this area. A number of methods and models
have been proposed, offering explicit support for managing AK.
We assert that the research on AK management has progressed be-
yond the first stages of experimentation. It is therefore time to re-
flect upon the current state of the practice and draw some
conclusions from past experiences. However, there is little consen-
sus in the research community on what AK is, what processes are
needed, and how these should be supported by existing tools.
Hence, we provide a framework for analyzing these new AK activ-
ities and align current standards and well-known software archi-
tecture processes. More specifically, we provide an overview of
the current tooling support for AK management and possible direc-
tions for future tools. First, we will align AK management activities
with the architecting process, using a producer–consumer model
of AK management in the architecture life-cycle. Second, we map
these AK activities onto an evaluation framework to create a set

http://dx.doi.org/10.1016/j.jss.2009.08.032
mailto:atang@swin.edu.au
mailto:paris@cs.rug.nl
mailto:anton@cs.rug.nl
mailto:rafael.capilla@urjc.es
mailto:Muhammad.AliBabar@lero.ie
mailto:Muhammad.AliBabar@lero.ie
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


A. Tang et al. / The Journal of Systems and Software 83 (2010) 352–370 353
of criteria for comparing AK management tools. Third, we compare
the existing AK tools using the framework. In the comparison, we
use the IEEE 1471-2000 standard, also known as the ISO/IEC
42010:2007 standard1, for architectural description as a guideline.
We also use a case study and a set of usage scenarios to compare
other aspects of the studied AK tools. As a result, we have summa-
rized the current state of the research on AK management tools.
Through this comprehensive study, we have identified the strengths
and limitations of the existing AK tools, thereby setting the agenda
for future research in this area.
2. Managing architectural knowledge

Knowledge management codifies and reuses relevant knowl-
edge that is considered valuable in a particular organization. Sev-
eral techniques and tools have been proposed and used for this
purpose. Recently, in software architecture, a new emerging trend
is to store and document AK for reuse. AK comprises various arte-
facts such as requirements, design, architectural design decisions
and their design rationale.

Recently, a number of initiatives have attempted to characterize
and support AK implementation with specific processes, models,
and tools. They assist software architects in their decision-making
activities by capturing and characterizing architectural knowledge.
Such tools have been founded upon their characterization and
interpretation of what they mean by AK. (Tyree and Akerman,
2005) have proposed a template of attributes to represent architec-
tural design decisions (Tyree and Akerman, 2005), which extends
the documentation of design decisions described in Clements
et al. (2002). Instead of providing a list of attributes to describe a
design decision, the approach discussed in Capilla et al. (2007a)
advocates the use of mandatory and optional attributes that can
be tailored according to different needs for making more agile
the efforts of capturing a decision. Moreover, specific attributes
and relationships aimed to support the evolution of design deci-
sions can be found in Capilla et al. (2007b).

Since AK comprises more than design decisions and design
rationale, the general AK approaches also capture design decisions
and their relationships with requirements and architecture design.
An example of this is the Architecture-Centric Concern Analysis
(ACCA) method (Wang et al., 2005). ACCA uses a meta-model for
capturing architectural design decisions and linking them to soft-
ware requirements and architectural concerns. As sharing AK is
considered a key activity to communicate architecture to others,
EAGLE tool (Farenhorst et al., 2008) is an AK sharing portal, which
provides architects with a project specific document repository,
discussion boards, yellow pages of people, and general reusable
documents about software architecture. However, the actual for-
mat of documenting AK depends on several AK management
approaches.

To support the capturing and use of AK, five AK management
approaches and tools have recently been developed and they con-
stitute the subject of comparison in this paper. The first tool is the
Architecture Design Decision Support System (ADDSS), which is a
web-based tool that provides traceability between requirements
and design decisions (Capilla et al., 2006). It stores architectural
design decisions following an iterative approach in the same way
as architectures are developed and visualizes the evolution of the
architecture over time. The second tool is Archium, which models
design decisions and their relationships with resulting components
(Jansen and Bosch, 2005). The third tool is based on the Architec-
ture Rationale and Elements Linkage (AREL) approach, which mod-
els architecture design as causal relationships between design
1 Since both standards are identical, when we refer to IEEE 1471-2000, we also
mean ISO/IEC 40210-2007.
concerns, decisions and outcomes (Tang et al., 2007). Fourth is
the Knowledge architect tool suite, which is based on a common
AK repository that is accessed by different clients (Word and Excel
plug-ins, APIs) and provides a unified visualization and manage-
ment interface for AK. The fifth tool is the Process-centric Architec-
ture Knowledge Management Environment (PAKME), which is also
a web-based tool that uses a data model for characterizing archi-
tectural constructs (such as design decisions, alternatives, ratio-
nale, and quality attributes), their attributes and relationships
(Ali Babar et al., 2006). Each design decision is captured as a case
along with rationale and contextual information using a template.
More information about these tools can be found in Section 5.

Previously other researchers have evaluated other tools for their
support and management of AK. For instance, Jansen and Bosch
(Jansen and Bosch, 2004) analyzed tool support for architecture
evolution. Only one of the tools mentioned in their work (i.e. Com-
pendium) exhibit a limited ability to record design decisions, as all
the aforementioned AK management tools were created after Jan-
sen and Bosch had reported their work. More recently, the work by
Farenhorst et al. (2007) compares five AK management tools from
a knowledge sharing perspective. In this sense, our approach dif-
fers from these two approaches in three distinct points:

� we investigate tools aimed at managing AK while they have tar-
geted general knowledge management tools;

� we look at a wide range of architecting activities that can be
supported by such tools, while the other two focus only on a sin-
gle aspect and;

� we analyze the AK management tool models with respect to the
IEEE 1471/ISO-IEC 42010:2007 standards for software architec-
tural description (IEEE, 2000; ISO/IEC, 2007).

Our approach also attempts to provide a broader perspective by
analyzing and understanding how each tool works and the key
similarities and differences among the studied tools in order to
determine the suitable context of using each of them. Hence, the
challenge for comparing AK management tools lies in the different
perspectives from which they have been developed and used. To
the best of our knowledge, there is no reference framework to eval-
uate AK management tools. We therefore establish a baseline in
terms of the architecture life-cycle and its corresponding knowl-
edge management activities to enable a meaningful comparison
of the studied AK management tools.

3. Managing architectural knowledge in the architecture life-
cycle

Architecting activities span the initial stages of architectural
creation as well as the later stages of architecture evolution and
maintenance in a system’s life-cycle (Ali Babar et al., 2005). Hof-
meister et al. have proposed a general model of software architec-
ture design (Hofmeister et al., 2005). This model has three
activities: architectural analysis, architectural synthesis, and architec-
tural evaluation. Since one of the main goals of capturing AK is to
support architecturally related activities such as implementation
and maintenance of a system and its software, it is necessary to ex-
tend the Hofmeister et al. model to include the later stages of
architectural design, that is: implementation and maintenance (see
Fig. 1).

AK is mainly created during the architectural analysis, synthe-
sis, and evaluation. During the implementation and maintenance
stages, developers and maintainers can make use of the AK created
and captured during the early three activities to support their
work. They may also have to revisit the architectural analysis, syn-
thesis, and evaluation activities if new design issues have to be ad-
dressed. To facilities the understanding of various kinds of AK that



Fig. 1. Extended architecture life-cycle.

354 A. Tang et al. / The Journal of Systems and Software 83 (2010) 352–370
may be created and/or used at each stage of the life-cycle of an
architecting process, we have classified AK into four general
categories:

� Context knowledge is a collection of information about the prob-
lem space, for instance, architectural significant requirements
(ASR) and the context of a project.

� General knowledge is a collection of knowledge that helps archi-
tects to design software and systems, for example, architectural
styles and patterns, and tactics (Buschmann et al., 1996).

� Reasoning knowledge is a collection of reasoning information
about a design, for example design decisions, design rationale,
design alternatives, and trade-offs performed.

� Design knowledge is a collection of designs of a system such as
components and architectural models.

While reasoning knowledge is at the centre of AK (see Fig. 2) con-
text, general and design knowledge lie at the boundary. This is be-
cause some of the artifacts may be generated or consumed by
other software development activities (such as requirements engi-
neering and detailed design) besides the architecting activities.

We assert that these four categories encompass the overall
cases that use AK as the baseline of the architecting processes in
close relationship with other typical software engineering products
like requirements. At each stage of the architecture life-cycle, the
producers and consumers of AK would be involved in different
knowledge management activities (Jackson, 1995), such as storing
and retrieving AK (see Fig. 2). We map the different stages of the
architecture life-cycle to the proposed AK categories to provide a
comparison framework for AK management tools. The framework
Reason
Knowled

Share (C)

Architect (A)

General
Knowledge

Context
Knowledge

Integrate (B)

Distill (H)

Apply (I)

Producer

Trace (D)

Trace
 (D

)

Knowledge 
Type

Actor

Trace
a

Key

Architectural Knowledge

Fig. 2. Architectural kn
can be used to evaluate the level of support provided by different
tools for managing AK in the architecting life-cycle.

The architectural analysis stage serves to define the problems an
architect must solve. An architect examines architectural concerns
and context in order to come up with a set of architecturally signif-
icant requirements. At this stage, an architect acts as a producer
who Integrates (B) general knowledge (e.g. the requirements, sys-
tem context) into AK and as a consumer who Learns (E) and
Searches/Retrieves (J) the existing AK to understand if there is
any other relevant AK that may influence the analysis.

During the architectural synthesis stage, an architect designs
architecture solutions for a set of architecturally significant
requirements. This task requires an architect to take the role of a
producer who Architects (A), thereby creating reasoning knowl-
edge (i.e. the proposed solutions). For this purpose, the architect
can Apply (I) general knowledge using existing solutions (e.g. pat-
terns) to solve the problems at hand. The design is created and Syn-
thesized (G) by the architect to capture the design knowledge. The
architect also produces the necessary Traces (D) between reason-
ing knowledge, design knowledge, General and context knowledge.
At this stage, an architect also consumes AK through Learning (E)
and Searching/Retrieving (J).

Architectural evaluation ensures that the proposed architec-
tural solutions are the right ones. The candidate architectural solu-
tions are evaluated against the architecturally significant
requirements. At this stage, an architect Shares (C) AK with one
or more consumers (i.e. architecture evaluators). This allows the
evaluators in the role of consumers to Learn (E), Search/Retrieve
(J), and Evaluate (F) the reasoning knowledge and design knowl-
edge. In order to perform an architecture evaluation, they often
need to Trace (D) reasoning knowledge to context knowledge
(i.e. the requirements), general knowledge and design knowledge.
When an architecture design is evaluated and approved, architects
and reviewers may Distill (H) the design as a general design pat-
tern in general knowledge for future reuse.

After architecture evaluation, the architecture life-cycle contin-
ues with Architectural implementation. At this stage, the architec-
ture is realized by designers who might add or modify (i.e.
Synthesize (G)) the design knowledge by creating a detailed design.
Designers and developers need to Learn (E), and Search/Retrieve
(J) the available reasoning knowledge in order to understand the
architecture design for implementation. Architects would Share
(C) the AK with the implementers to facilitate their understanding.
ing
ge

Evaluate (F)

Learn (E)

Design 
Knowledge

Synthesize (G)

Consumer

Trace (D) Evaluate (F)

Consuming activity
Producing activity

ability created by producers 
nd used by consumers

Search / 
Retrieve (J)

owledge activities.



A. Tang et al. / The Journal of Systems and Software 83 (2010) 352–370 355
Once the initial system is deployed, architectural changes may
take place during the architectural maintenance stage. At this
stage, consumers would trace the design knowledge to the AK to
Learn (E) about design reasoning and Evaluate (F) the impact of cer-
tain architectural changes.

4. AK Tool comparison framework

The architectural life-cycle defines the knowledge activities that
AK tools should support. On this basis, we have specified a set of
criteria for comparing architecture knowledge management tools.
The criteria are based on the following sources:

� The current IEEE 1471-2000 standard or ISO/IEC 42010:2007
standard as a reference meta-model

� Architectural knowledge research in existing literature;
� Architectural knowledge activities defined in Section 3.

(Table 1) presents a list of these criteria. The criteria column
specifies the context for the comparison. For example, the Types
and Representation of AK (row 1 of Table 1) determine what kind
of reasoning knowledge can be captured. Research questions for
each criterion are given in the description column. Each criterion
is related to the AK activities (listed in the third column) of the
architectural life-cycle because each of these activities provide
usage contexts for the criterion.

The first two comparison criteria presented in Table 1 (i.e. AK
representation and AK relationships) are based on the IEEE 1471-
2000 standard, which acts as a baseline to evaluate the conceptual
models of the AK tools. Evaluation criteria 3–7 are based on the
architectural knowledge activities defined in Fig. 2, and they com-
pare how AK tools can be used to support these architectural activ-
ities. In addition, based on the literature review, we have found
that key supporting features are required in AK tools, and criteria
8–10 describe these requirements. We do not claim that the pro-
posed criteria are the exhaustive list of features that a comparison
framework for AK management tools should have. However, we
are very confident that the proposed criteria include the majority
of the features required by architecture life-cycle activities. In the
following, we motivate each of the criteria for AK management
tools:
Table 1
A framework for comparing architecture knowledge management tools.

Criteria Description

1. Types and
Representation of AK

What are the architectural knowledge types and repre
for general, context, reasoning and design knowledge?

2. Relationships between
architectural knowledge

How does a tool support and manage dependencies be
architectural knowledge (such as reasoning and design
types of relationships and traceability supported by th
support change impact analysis?

3. Architectural analysis
support

How does a tool support the analysis of architecturally

4. Architectural synthesis
support

How does a tool support architects to use and produce
synthesis stage?

5. Architectural evaluation
support

How does a tool support evaluation?

6. Architectural
implementation
support

How can a tool support architecture implementation a
knowledge captured in the early stages of the architec
communicated?

7. Architectural
maintenance support

How does a tool support architecture maintenance?

8. AK customization How does a tool support the personalization of knowl
different user’s preferences and profiles?

9. Integration with other
tools

How does a tool support the integration with other so
knowledge engineering tools and knowledge repositor

10. Collaborative
environment

How does a tool support collaboration between distrib
teams?
1. Types and representation of architecture knowledge (AK): The
types of AK captured can vary depending on what a tool
intends to do. AK representations also vary greatly using for-
mal model (Shaw et al., 1995), textual documentation (Tyree
and Akerman, 2005), graphs (Lee and Lai, 1996) to represent
relationships or using defined links within a knowledge
repository (Conklin and Begeman, 1988). In the comparison,
we evaluate the underlying model (or meta-model) of the
tools to compare what type of knowledge is captured and
how they are represented. We have used the IEEE 1471-
2000 reference model as a guideline to compare what AK
is captured and how they are represented by the tools (IEEE,
2000).

2. Relationships between AK elements: As illustrated in Fig. 2, the
consumer of architectural knowledge needs the ability to
trace AK through different types of interrelated AK entities,
for instance between requirements and design, or between
design and implementation (Hughes and Martin, 1998;
Ramesh and Jarke, 2001). An evaluation of such relationships
allow a user to assess how AK tools support architects in the
architecture life-cycle to perform functions such as tracing
related architectural knowledge and performing change
impact analysis (Bratthall et al., 2000).

3. Architectural analysis support: Architectural analysis is aimed
at defining and refining the problems solved by architectural
design decisions. This activity examines, filters, and/or refor-
mulates architectural concerns and context to come up with
a set of Architecturally Significant Requirements (ASR). AK
plays an important role to support this iterative activity. It
can provide appropriate templates to help elicit and struc-
ture scenarios, provide a repository of generic reusable def-
initions of ASRs (e.g. problem frames (Jackson, 1995), or
record the ASRs and scenarios in the analysis (Clements
et al., 2002; Bengtsson and Bosch, 1998). This criterion
examines what facilities an AK tool provides to support
architectural analysis.

4. Architectural synthesis support: Architecture synthesis is
aimed at identifying candidate architectural solutions that
can address the ASRs elicited during architectural analysis.
This activity is carried out by architects to map the problem
space to the solution space. AK tools can support architects
AK activities

sentations captured by a tool Architect (A), Synthesize (G), Distill (H), Apply
(I), Integrate (B), Learn(E), Search/Retrieve(J)

tween different types of
knowledge)? What are the

e tools? How do the tools

All AK activities

significant requirements? Integrate (B), Learn (E), Search/Retrieve (J)

AK during architecture Architect (A), Synthesize (G), Learn (E), Search/
Retrieve (J)
Evaluate (F)

ctivities? How does the
ture activities be

Architect (A), Synthesize (G), Evaluate (F),
Learn (E), Search/Retrieve (J)

Evaluate (F), Learn (E), Search/Retrieve (J)

edge representation based on Architect (A), Learn (E), Search/Retrieve (J)

ftware engineering and
ies?

Integrate (B), Share (C), Learn (E)

uted software development Share (C), Evaluate (F), Learn (E), Search/
Retrieve (J)



2 http://www.triana.escet.urjc.es/ADDSS.
3 http://www.archium.net.

356 A. Tang et al. / The Journal of Systems and Software 83 (2010) 352–370
by providing knowledge such as design patterns (Harrison
et al., 2007), architectural tactics (Bass et al., 2003), previous
architectural solutions and design rationale (Lee and Lai,
1996; Conklin and Burgess-Yakemovic, 1996), and alterna-
tive design solutions (Maclean et al., 1996). This criterion
examines how an AK tool support design synthesis with its
knowledge repository and facilities.

5. Architectural evaluation support: Architectural evaluation is
aimed at ensuring that the architectural design decisions
made are the right ones. During this activity the candidate
architectural solutions are assessed with regard to the ASRs.
This activity can be performed using architecture evaluation
methods such as ATAM (Kazman et al., 1998) or SBAR (Ben-
gtsson and Bosch, 1998), or review methods such as reported
in Maranzano et al. (2005), Avritzer and Weyuker (1998). The
types of evaluation or review that can be performed on a
architecture design depends on what AK is captured and what
kind of evaluation is desired (Dobrica and Niemela, 2002).
This criterion evaluates an AK tool by examining how it sup-
ports this activity through the knowledge it can provide.

6. Architectural implementation support: A tool captures and rep-
resents AK not only during architecting but also during sys-
tem implementation. It has been noted that one of the
issues with some design rationale tools is its ineffective com-
munication (Shipman and McCall, 1997). Evaluating how an
AK tool enables the communication of knowledge to archi-
tects, designers, programmers, and testers would be an
important aspect (Conklin and Burgess-Yakemovic, 1996).

7. Architectural maintenance support: One of the key purposes
of capturing AK is to retain it for future use. AK tools can
support maintenance activities in different ways, such as
requirements traceability (Ramesh and Jarke, 2001), evalua-
tion and impact analysis (Maclean et al., 1996). This criterion
examines in what ways an AK tool can be used to support
system maintenance.

8. AK customization (8): A user of an AK management tool may
like to customize different features of the tool for personal or
organizational preferences such as reporting in a preferred
format or tailored mechanism of capturing rationale. Such
personalization allows the user to manage the knowledge
to suit the objectives of the user (Ali Babar et al., 2007). This
criterion evaluates the user customization facilities provided
by an AK tool.

9. Integration with other tools: An AK tool would not be very use-
ful as a standalone tool, it has to integrate with other soft-
ware engineering tools to support the development life-
cycle (Regli et al., 2000). For instance, it has to use and com-
municate the knowledge from a requirement repository, the
knowledge entities may be exported to and imported from
such repository. This criterion examines the types of knowl-
edge that can be integrated with the AK tool and the facilities
that the AK tool can provide to allow such integration.

10. Collaborative environment: A fundamental characteristic of
software development is the collaboration between people
and teams. AK tools aim to facilitate such collaborations by
sharing relevant knowledge. An effective AK tool must pro-
vide a collaborative environment such as sharing, version-
ing, protected access (locking), and collaborative authoring
of AK (Farenhorst et al., 2007). This criterion assesses an
AK tool’s capabilities of supporting collaboration.

5. AK management tools

In this section, we introduce the AK tools that are the products
of recent research in this area. We believe that the tools are repre-
sentative of the current research on tool support for the AK man-
agement. The next subsections briefly describe different features
and the main concepts of each tool in this study.

5.1. ADDSS

The Architecture Design Decision Support System (ADDSS2) is a
research web-based tool for storing, managing, and documenting
architectural decisions (Capilla et al., 2006). ADDSS uses a flexible
approach based on a set of mandatory and optional attributes for
characterizing the design decisions. Hence, ADDSS provides a com-
bined codification-personalization strategy that has flexibility in
capturing knowledge. Moreover, ADDSS captures both architectures
and decisions following an iterative process which clearly shows the
evolution of AK over time, and simulates the way in which software
architects build their architectures as a set of successive refinements.
Depending on the specific phase of the software life-cycle (i.e. devel-
opment, maintenance, testing), a status (e.g. pending, approved, re-
jected, obsolete) and a category (i.e. main, alternative, derived)
attributes can be assigned to each decision indicating its current sta-
tus. ADDSS provides links between requirements and architectures
for forward and backward traceability. Also, a basic dependency
model enables dependencies between decisions, which can be used
to estimate the impact of adding, removing, or modifying a decision.
During the reasoning process, ADDSS users can reuse general knowl-
edge in the form of patterns and architectural styles. A query system
provides valuable information to the architect of related require-
ments, decisions, and architectures stored in the tool. PDF docu-
ments can be generated containing the detailed description of the
architectures and their decisions. Such documentation makes expli-
cit the ideas of the decision view described in Dueñas and Capilla
(2005) and provides a communication vehicle between the stake-
holders. ADDSS has been evaluated with following case studies:

� A case study with undergraduate students of the Rey Juan Carlos
University (Madrid, Spain) for evaluating the capabilities of
ADDSS 1.0, estimating the effort capturing decisions of a subset
of requirements of a real virtual reality system, and evaluating
the usability of the tool;

� An internal case study with ADDSS 2.0 for capturing the design
decisions of the overall set of requirements of the same virtual
reality system;

� Use of ADDSS in combination with a reverse engineering tool
called SAVE from the Fraunhofer IESE (Kaiserslautern, Germany)
to capture the key design decisions of tool (i.e. DecisionModeler)
for managing the variability of product line assets and store the
architectures recovered with SAVE and;

� Use of ADDSS with Master students of the Rey Juan Carlos Uni-
versity to estimate the effort in capturing design decisions for
the development, maintenance, and evolution of the architec-
ture of the virtual reality system and compare this with the typ-
ical architecture modeling effort.

5.2. Archium

The Archium tool3 (Jansen and Bosch, 2005) aims at providing
traceability among a wide range of concepts while maintaining this
knowledge during the life-cycle of a system. Archium employs a
range of concepts from requirements, decisions, architecture
descriptions, to implementation. All these concepts can be expressed
in the Archium language, which is an extension of the Java language.
This makes a single language act as an architectural knowledge
repository and implementation of a system. To support this
language, the Archium tool suite consists of a compiler, a run-time

http://www.triana.escet.urjc.es/ADDSS
http://www.archium.net


A. Tang et al. / The Journal of Systems and Software 83 (2010) 352–370 357
platform, and a visualization tool. The compiler turns the Archium
source files into executable models for the run-time platform. The
visualization tool in turn uses this run-time platform to visualize
the AK, thereby making the knowledge easily accessible. The tool
supports two types of traceability relationships: (a) formal relation-
ships, which are traceability links defined in the Archium meta-mod-
el, which have well-defined semantics. (b) informal links, which are
references made in the textual descriptions to model elements.
The tool has been applied to several small case studies to demon-
strate its application.
5.3. AREL

Architecture Rationale and Element Linkage (AREL4) aims to as-
sist architects to create and document architectural design with a fo-
cus on architectural decisions and design rationale (Tang et al.,
2007). AREL captures three type of AK: design concerns, design deci-
sions and design outcomes. These knowledge entities are represented
by standard Unified Modeling Language (UML) entities and they are
linked to show the relationships between them. Design concerns are
inputs that influence design decisions. It is an entity that encapsu-
lates concepts such as functional requirements (e.g. scenarios and
collaboration diagram), non-functional requirements (e.g. all quality
attributes) and project contexts. It also captures information about
design decisions and design rationale. Design outcomes comprise of
the resulting designs. Examples are classes, components, interface,
and use case. AREL has been implemented as a plug-in of a modeling
tool called Enterprise Architect (EA). AREL plug-in uses standard
UML notations to represent design and decision entities. Any cus-
tomized AK is captured by applying pre-defined tagged template
of a stereotype. Import tools are available to extract information
from Word-based requirement specifications, and plug-in tools are
available to enable graphical tracing and analysis of the information.
This tool has been tested on an industrial electronic payment system
specification (Tang et al., 2009). It is currently being used to develop
a knowledge management system in an engineering firm.
5.4. The Knowledge architect

The Knowledge architect5 (Jansen et al., 2008) is a tool suite for
capturing, managing, and sharing AK. The suite consists of an AK
repository, the Knowledge architect server, which stores the knowl-
edge entities, and of a number of Knowledge architect clients, which
capture and manage AK in different formats and contexts. One client
is the Word plug-in, which allows architects to capture and manage
AK in MS Word documents. A second client, also a plug-in, captures
and manages the AK of quantitative architectural analysis models
expressed in MS Excel. A third client, the Knowledge architect ex-
plorer, is a visualization tool that supports the analysis of the cap-
tured AK. This tool allows for the exploration of the AK by
searching and navigating through the web of traceability links
among the knowledge entities. The Knowledge architect emphasizes
on providing generic AK management without restricting itself to
specific AK meta-models. The server is thus responsible of maintain-
ing an accessible and generic AK repository while the different cli-
ents can implement specific AK meta-models and exchange AK
with each other. Besides the standard Knowledge architect clients,
external AK management tools can interoperate with the Knowledge
architect server through standardized interfaces. The tool suite has
been applied in two industrial case studies, one involving the Word
plug-in, the other one the Excel plug-in.
4 http://www.ict.swin.edu.au/personal/atang/AREL-Tool.zip.
5 http://www.search.cs.rug.nl/griffin.
5.5. PAKME

The Process-based Architecture Knowledge Management Envi-
ronment (PAKME6) is a web-based tool that is aimed at providing
knowledge management support for the software architecture pro-
cess. PAKME has been built on top of an open source groupware plat-
form, Hipergate (Hipergate, 2007), which provides features to
manage AK for geographically distributed stakeholders involved in
the software architecture process.

The knowledge repository of PAKME is logically divided into
knowledge-based artifacts, generic knowledge, and project-based arti-
facts. PAKME consists of four components; web-based user inter-
face component, knowledge management component, search
component, and reporting component. Corresponding to these four
components, PAKME’s features can be categorized into four AK
management services: knowledge acquisition, knowledge mainte-
nance, knowledge retrieval, and knowledge presentation. A de-
tailed description of the AK management framework support by
PAKME can be found in Ali Babar et al. (2006) and Tool description
can be found in Ali Babar and Gorton (2007). PAKME has been de-
ployed and evaluated in an industrial context for providing AK
management support for architecture evaluation of Avionics sys-
tems (Ali Babar et al., 2008).

6. Tool comparisons

The framework of 10 criteria for comparing AK tools represents
the perspectives of AK management. They illustrate key focuses of
the tools with respect to the architecting activities defined in Sec-
tion 3. Since each criterion represents an aspect of how AK is cre-
ated or used in the architectural life-cycle, we use specific methods
in each criterion to enable the comparison using three general
approaches:

� International standard – we compare the first two criteria based
on the IEEE 1471-2000 reference model as a baseline to compare
the entities and the relationships used in each tool (see Sections
6.1 and 6.2);

� Case study – criteria 3, 4 and 5 represent key architectural
design activities. To illustrate how each AK tool is used in the
AK development life-cycle, we use a case study to demonstrate
what knowledge each tool captures and how the knowledge is
represented and used (see Section 6.3) and;

� Scenario-based analysis – criteria 6–10 represent other perspec-
tives on AK management. To evaluate and compare how the AK
tools cater for these aspects of AK management, we have identi-
fied real-life scenarios to evaluate how each tool performs for
the AK activities characterized by those scenarios (see
Section 6.4).

6.1. Compare AK types and representation

To compare the different types and representations used by var-
ious AK tools, we have used the IEEE 1471-2000 standard as a basis
for comparing the meta-models of each AK tool. With the reference
model, we classify the modeling concepts. The resulting classifica-
tion is presented in Appendix A.

As a result of the comparison using criteria 1, we observe that
all the studied tools support the concepts described in the IEEE
1471-2000 standard. An exception is formed by the ‘‘mission”
and ‘‘library viewpoint” concepts, not supported by any of the AK
tools. In addition, the ‘‘environment”, and ‘‘viewpoint” concepts
are supported by some tools while a variety of new different con-
6 http://193.1.97.13:8080/ (an online version of PAKME can be accessed through
this URL).

http://www.ict.swin.edu.au/personal/atang/AREL-Tool.zip
http://search.cs.rug.nl/griffin
http://193.1.97.13:8080/


358 A. Tang et al. / The Journal of Systems and Software 83 (2010) 352–370
cepts like: variability, decision making activity, design history, pat-
tern, reviewer, or superseded design rationale are not addressed by
the IEEE 1471-2000. Therefore, we can learn that the AK tools
introduce new concepts, mostly associated to include the design
rationale that is poorly supported or described in the reference
model. As all the studied AK tools gather common architecture
descriptions, the aforementioned standard lacks details to describe
the underlying rationale and the decisions that belong to an archi-
tectural description.

Moreover, from Appendix A one could observe commonalities
and differences in terminologies and concepts but there exists:
(1) semantic differences for similar named concepts (2) semantic
equalities for different named concepts. For example, the Trade-
off concept of the Knowledge architect deals with trade-offs for
various quality attributes of different alternatives, which are
backed up by quantitative analysis results. This is a much more
specialized version of the Trade-off concept as found in Archium,
which covers both qualitative and quantitative trade-offs. Hence,
additional information is needed of the relationships between
the concepts of the various AK tools. To provide this information,
we make these relationships explicit. The following notation is
used in Table 2 for this purpose:

� Same-as (=) The concept is the same – as the concept(s) men-
tioned for the other AK tool.

� Generalization (G) The concept is a generalization of a concept
from another AK tool.

� Specialization (S) The concept is a specialization of a concept
from another AK tool.

� No relationship (-) No related concepts exists in the other AK
tool.

Since every AK tool has many concepts (see Appendix A for an
overview), five sets of comparisons are required to map them.
Due to space constraints, not all these mappings are presented
here. (Table 2) presents a small excerpt of these mappings. The ta-
ble illustrates how the Scenario, architectural design decision, and
Trade-off, concepts of the Archium tool relate to the other four
tools. Similar tables have been created to carry out analysis for
the other four tools.

Based on these mapping tables a number of interesting differ-
ences and commonalities become apparent among the five studied
AK tools. The following is a list of the key differences:

� Architecture design description versus no architectural design
description. Both Archium and AREL have an extensive support
to describe the architecture design with the help of an architec-
tural design model. Such a model is missing in the Knowledge
architect, ADDSS, and PAKME. As such, Archium and AREL pro-
vide better support for the description of architectural models
as described in 1471-2000 standard.
Table 2
Summary mapping of similar concepts of AK tools.

Archium ADDSS AREL

Scenario (S) Functional requirements (S) F
Architectural design

decision
(=) Architectural Design Decision (G) D

Trade-off (G) Trade-off (=) T
Solution (G) Alternative design decision with design

pattern if applicable
(G) C
desig

Design rules – –
Design constraints (S) Constraints (=) D
Consequences – –
� Requirement driven versus goal driven. ADDSS and PAKME
directly relate architectural decisions with scenarios and
requirements. The Knowledge architect, AREL, and Archium
instead use a goal driven approach, in which requirements and
scenarios are explicitly scoped and transformed into a goal that
an architectural decision tries to achieve.

� Explicit architectural modification versus discrete evolution. Arch-
ium is the only tool to model explicit changes to the architecture
model by the design fragment and delta concepts. AREL uses an
approach somewhere in between with the superseded design
concept. This concept defines that architecture elements can
be superseded by new (complete) definitions of them. Both tools
model the expected consequences such a modification will give.
ADDSS uses a discrete evolution model in which the modifica-
tion itself is not modeled, but rather a picture of the new model
is presented. It is the only tool, which makes such iterations
explicit. On the other hand, the IEEE-1471-2000 standard does
not prescribe any concepts to support architecture evolution.

� Scenario support. AREL, PAKME, and Archium have concepts for
supporting architectural scenarios, as used in ATAM. Both the
Knowledge architect and ADDSS do not support architectural
scenarios.

� Quantitative analysis support. AREL, PAKME and the Knowledge
architect support quantitative analysis. A difference between
them is that AREL and PAKME only model the outcome of such
an analysis, the Knowledge architect also models the analysis
process itself. Archium and ADDSS do not support quantitative
architectural analysis. This kind of quantitative analysis repre-
sents specialized design rationale analysis of the IEEE 1471-
2000 standard on rationale.

� Quality model. The Knowledge architect and AREL explicitly
model the quality attributes and relate them to the architectural
decision-making process. Interesting enough, there are some
noticeable differences in how these tools achieve this. In AREL,
a quality attribute is seen as a specialized design concern. For
ADDSS, a similar approach is taken, as quality attributes have
explicit relationships with the non-functional requirements
upon which the architectural design decisions operate. The
Knowledge architect uses a different perspective on quality
attributes, as it views this concept as a property of a design
alternative. In addition, the Knowledge architect tool traces
the refinement of abstract quality attributes into more concrete
ones. The Archium and PAKME tools do not explicitly model
attributes.

� Architectural review. The Knowledge architect is the only tool to
provide concepts to capture architectural review knowledge.
This includes facilities for different people to comment, approve,
and disapprove the validity of some AK. Support for reviewing is
missing in the Archium, AREL, ADDSS, and PAKME tools.

� Patterns and style support. ADDSS, Archium, and PAKME offer
support for the notion of patterns and architectural styles. Of
these three tools, patterns are the most visible in PAKME and
Knowledge
architect

PAKME

unctional requirements – (=) Scenario
esign rationale (=) Decision (=) Architecture

decision
rade-off (G) Trade-off (=) Trade-off
hosen design and alternative
n solution

(=) Alternative (=) Design option

– (=) Rule
esign constraint – (=) Constraint

– (G) Benefit



A. Tang et al. / The Journal of Systems and Software 83 (2010) 352–370 359
ADDSS, as in these tools the patterns are the design options con-
sidered for an architecture decision. The difference between
PAKME and ADDSS is that PAKME offers evaluation options for
patterns and styles. The Knowledge architect and AREL do not
have explicit concepts for patterns and styles. This concept is
absent in the IEEE 1471-2000 standard.

� Decision process tracking. The Knowledge architect and ADDSS
track the status, creators, and the people responsible for a design
decision. Thus providing additional information to track the pro-
gress of the decision process. The AREL, PAKME, and Archium
tools do not offer such facilities.

� Classification/categorization of decisions. ADDSS and PAKME are the
only tools which categorize/classify design decisions. The catego-
rization denotes whether a decision is a Main (selected), Derived
(selected but specialized from a Main decision) or alternative (ini-
tially considered but afterwards is non-selected) decision. The
classification of design decisions by these tools is usually based
on whether the design decision involves a variation point, pattern,
style, or something else. The other three tools do not offer such a
classification or categorization for their decisions.

� Risk identification support. The AREL, Knowledge architect, and
PAKME tools offer support to explicitly record risks. This feature
is missing in the Archium and ADDSS tools. This concept is a spe-
cialization of design rationale in the IEEE 1471-2000 standard.

� Multiple users/projects support. Both ADDSS and PAKME offer
support for different users for their tools on different projects.
Hence, project management through multi-user support can
be better controlled as well as permissions for accessing differ-
ent types of knowledge. The Archium, Knowledge architect,
and AREL tools do not offer such functionality; instead they
use the model of a single project with a single type of user.

6.2. Compare AK relationships

The explicit relationships between different types of AK are
important to understand how the AK can be used and what life-cy-
cle activities they support. These relationships form parts of the
architectural activities such as implementation and evaluation
(Fig. 1). For instances, a requirement is defined by an end user as
a stakeholder or a design decision is explained by its rationale.
Hence, the relationships in AK models underpin how that knowl-
edge can be used by architects effectively. In this section, we use
16 generic relationships defined in the IEEE 1471-2000 architec-
tural model as a basis to analyze the relationships supported by
the studied AK tools. Appendix B is a summary of the relevant rela-
tionships defined in each AK tool. Each relationship is specified in a
Table 3
Mapping the relationships between the IEEE 1471-2000 and the AK tools.

IEEE 1471-2000 entities IEEE 1471-2000 relationships

Mission – system 1. Fulfills
Environment – system 2. Influences and

3. Inhabits
System – architecture 4. Has
System – stakeholder 5. Has
Architecture – architectural description 6. Described by
Stakeholder – concerns 7. Has
Architectural description – concern 8. Identifies
Architectural description – viewpoint 9. Selects
Architectural description – view 10. Organized by
Architectural description – model 11. Aggregates
Architectural description – rationale 12. Provides
View – viewpoint 13. Conforms to
View – model 14. Consists of
Viewpoint – model 15. Establishes methods
Concerns – viewpoints 16. Covers
Viewpoint – library viewpoint 17. Has source
general form: hRelationshipi between two entities, hEntityAi and
hEntityBi.

The diversity and types of relationships of the AK tools makes
the comparison between them quite complex but the IEEE-1471-
2000 provides a baseline for comparison (see Table 3). If an AK tool
does not support the relationship in the reference model, the cell in
Table 3 will show the symbol (-). If the AK tool models a relation-
ship, then the number shown and the role in a cell is the relation-
ship number which is defined for that tool in Appendix B. For
instance, the Knowledge architect tool explicitly models stake-
holder has requirements (in Appendix B), and this concepts con-
forms to the IEEE 1471-2000 architectural description standard
that stakeholder has concerns (Row 7 of Table 3).

IEEE 1471-2000 relationships can be broadly grouped into three
categories:

� High-level relationships that relate key system concepts such as
mission, systems, stakeholders, description and concerns (see
relationships 1 to 7 in Table 3);

� Relationships that are central to the architectural description
that involves concerns, views, model and rationale (see relation-
ships 8–12 in Table 3) and;

� Relationships that highlight different perspectives or viewpoints
of an architecture (see relationships 13–17 in Table 3).

The comparison of what and how IEEE 1471-2000 relationships
are supported by AK tools in Table 3 have led to a number of
observations:

� AK tools are architectural description focused. The AK tools com-
monly support relationships in modeling (relationship 11 in
Table 3), reasoning (relationship 12) and architectural design
concerns (relationship 8). It shows that the AK tools focus on
the AK knowledge management activities surrounding architec-
tural design analysis, synthesis and evaluation.

� AK Tools are decision focused. All of the AK tools use design deci-
sions as one of the key concepts. However, this concept is not
represented in the IEEE 1471-2000 standard. The concept of
design decision as represented by these tools provides a broader
meaning than the definition in the standard. For instance, the
relationships in the AK tools represent a series of steps or con-
nectivity to other architectural knowledge, whereas the stan-
dard defines the relationship as providing rationale to
architecture description. From the analysis, we have found that
ADDSS, AREL and Knowledge architect provide more specialized
decision-based relationships than the standard.
ADDSS Archium AREL Knowledge architect PAKME

– – – – –
1 – – – –

8 – – – –
4 – – – –
– – 7 2, 3 –
9 1 7 1 1
1,2 2 1 4 2, 5
– – 6 – –
10 – 6 5 4
6 3 2 9,10 7
6, 7 4 3 7,8 3, 11
– – – – –
10 – – 6 –
– – – – –
– – 6 – –
– – – – –



360 A. Tang et al. / The Journal of Systems and Software 83 (2010) 352–370
� Lack high-level architectural relationships. There is none or little
support for relationship types 1 to 5 from Table 3 by the AK tools
except for ADDSS which emphasize these concepts. It indicates
that the high-level relationships in a system are mostly omitted
by most AK tools. The lack of relationships at that level implies
that the architectural context of a system is probably not suffi-
ciently represented by the studied AK tools.

� Weak support for viewpoints and views. In the standard, there are
a number of relationship types that are related to views or view-
points (relationship 9, 10, 13 to 17 in Table 3). However, in the
AK tools, there is very limited support for these relationship
types. ADDSS can visualize different architecture views, while
AREL provides some viewpoint support similar to architectural
frameworks (Open Group, 2003; Zachman, 1987).

� AK tools provide evolution support. IEEE 1471-2000 standard does
not have relationship types that support architectural evolution.
Two of the AK tools, AREL and ADDSS, provide some evolution
relationships. Such relationships are defined in the tools to sup-
port activities such as architectural analysis and maintenance.

� Support for architectural knowledge reuse. IEEE 1471-2000 does
not have relationships that support architectural reuse. These
relationships are useful in the areas of architecture synthesis
and evaluation. Three of the AK tools, PAKME, Archium, and
ADDSS, support relationships that allow architects to trace a
design to a general design pattern.

From the above comparisons, we have found that all the AK
tools are design decision centric. All of the tools support relation-
ships that are geared towards the architectural design activities
and decision making. The relationships between key architectural
concepts such as design concerns, design decisions, models and de-
sign rationale are supported. However, when it comes to the sup-
port of viewpoints, there is very limited support by the AK tools.
Such lack of support for viewpoints may hinder the ability of an
architect to see different perspectives of the architecture. Thus,
there are limitations in performing AK activities presented in
Fig. 2. The AK tools complemented the IEEE 1471-2000 standard
by providing support for architectural reuse and evolution. On
the other hand, the IEEE 1471-2000 standard does not prescribe
design decision and design patterns that are key relationship con-
cepts in some of the AK tools.
6.3. Comparing AK tool support for architectural analysis, synthesis
and evaluation

Architecture analysis, synthesis and evaluation are major activ-
ities in the architectural life-cycle. In order to compare their sup-
port by AK tools in a meaningful way, we have selected to use a
case based on a Cyber Video Company (CVC). Following the com-
parison of the type and relationship representation of the AK tools,
an example case can help to illustrate development life-cycle sup-
port of architectural analysis, synthesis and evaluation (i.e. criteria
3, 4 and 5 respectively) of the AK tool.

The case is based on the CVC system, a home entertainment sys-
tem that delivers to consumers the movies of their choice via satel-
lite. The case involves the definition of software requirements,
business rationale, use cases, assumptions, design decisions, design
alternatives, workflows models and architecture products. In the
case, a group of students have undertaken a project to build a video
on demand system. In the architectural design, the design con-
cerns, architectural model and design decisions have been docu-
mented. We compare the implementation of AK tools in terms of
their support for analysis, synthesis and evaluation using a design
decision (DD26) and its associated functional requirement (FR) and
non-functional requirements (NFR):
FR01: The user is able to access CVC services through a GUI
stored in the Brain-box (BB) and displayed on the TV. The GUI
is controlled through the Set-top Box (STB) remote control.
FR06: Serving a request for a popular movie must not exceed 1
hour and 8 hours for non-popular movies in VCR quality and
popular movies in DVD quality.
FR23: BB will not shut down due to a user request while it is
receiving a movie that was requested.
NFR05: In the case of a failure of the BB during the receiving of
an access key for an already paid movie, the key should be
retransmitted.
NFR06: In the case of a failure of the BB during the receiving of a
requested movie the movie should be retransmitted.

The BrainBox (BB) is a device developed by CVC in order to ac-
cess and rent media content, a Set-top box, a satellite antenna, a TV
and Internet connection. The requirements mentioned above influ-
enced the selected decision (DD26) which was analyzed with its
associated information and including the traces. From the analysis
of points of failure in a system, a deadline of a request cannot be
made. Therefore, when a new movie request makes scheduling
infeasible, CVC cannot guarantee delivery within 8 hours or 1 hour.
The movie will be delivered late. The solution for this situation im-
plies that the system must inform the user that the deadline can-
not be made. As a result, the design decision made was: DD26:
The Scheduler on CVC has a scheduling feasibility test before preceding
a request. This decision had two design options (A and B), which are
based on giving the user the ability to cancel or accept the request
when bandwidth allocation motivates the system to inform the
user that the deadline of a request cannot be satisfied. We used this
example to study how each tool would support an architect during
the analysis, synthesis, and evaluation activities.

ADDSS – ADDSS models decision DD26 as a free text description
with a set of attributes that characterize such decision. In architec-
tural analysis, the architect stores the functional and non-func-
tional requirements as the context knowledge that will be used
to motivate decision DD26. In addition, ADDSS can store general
knowledge in the form of design patterns and architectural styles,
organized by different categories (e.g. structural, creational) that
can be reused in the creation of design decisions. The ADDSS’s
meta-model supports design alternatives which are implemented
in the tool by means of a category attribute that allows to classify
decisions as Main, Derived (i.e. a more specialized decision from a
Main one), and Alternative. This classification is also comple-
mented using the Status attribute which indicates the current state
of the decision in the life-cycle of the architecture project. The al-
lowed values for the status are: pending, approved, rejected, and
obsolete.

For architectural synthesis, we stored both alternatives for deci-
sion DD26 and we labeled these as alternative decisions with pend-
ing status. Each choice is characterized by the set of attributes that
describe the decision itself and its rationale. Also, the responsible
and a time-stamp are automatically filled by the tool. During the
construction of the architecture, explicit links between require-
ments and decisions is defined. Those requirements used in previ-
ous decisions are marked, so the architect exactly knows which
requirements are not yet implemented. In addition, ADDSS can de-
fine basic dependencies between decisions that are used to repre-
sent software constraints or dependencies between requirements.
These dependencies form a traceable network of decisions that is
used to estimate the impact of modifying, adding, or removing a
decision, but validation facilities to check the integrity of the deci-
sion model are not yet implemented. Also, ADDSS does not de-
scribe the type of the link between two decisions. Because our
example deals with an isolated design decision, we did not define
dependencies to previous decisions. ADDSS supports different



A. Tang et al. / The Journal of Systems and Software 83 (2010) 352–370 361
architecture views as well as decisions with different granularity
levels.

For architectural evaluation, the decisions are evaluated and the
choice selected becomes a ‘‘main” decision which should be ‘‘ap-
proved”. Therefore, the status attribute allow ADDSS users to eval-
uate decisions after they have been stored. At the end of the
evaluation process, a figure containing an image of the architecture
which belongs to the result of the decisions made and considered
as valid (i.e. approved) is uploaded and shown to the user who
can easily browse the evolution of the architectures made along
the construction process. Hence, an explicit link between decisions
and architectures is defined. Such links provide a complete trace-
ability between decisions and other products of the software life-
cycle. Finally, the decisions, requirements, and architectures are
documented in ADDSS as PDF documents that can be generated
automatically from the tool. The integration to external tools for
feeding the requirements from other sources and the integration
with architecture modeling tools have not been implemented.

Archium – Archium models the design decision as free text ele-
ments, which describe various knowledge entities. Formal code is
used to express semantic relationships between these free text ele-
ments and the implementation of the solution. For the architectural
analysis, the architect describes the problem, motivation, and cause
for DD26 first. Context knowledge in the form of software require-
ments can be stored. These requirements realize different scenar-
ios in Archium. Next, the context of the decision is described,
which includes the assumptions and software architecture upon
which this decision is based.

For the architectural synthesis, two potential solutions are con-
sidered for this decision. Each of these is described in the solution
part of the decision, as a separate formal element using the Archi-
um language. For each decision, a free text description is provided
in addition to the formal elements necessary to implement them,
as well as any rules or constraints of a solution are also described
using specific free text elements. When the architect adds a deci-
sion in Archium, the rationale is also stored with the description
of the alternatives. Archium can check for the consistency of archi-
tectural design decisions. For instance, whether a functional
dependency of a decision is satisfied before the decision is applied.
Compared to ADDSS, Archium uses the concept of design fragment,
which can include or apply patterns and styles in the architecture
(i.e. general knowledge). These reusable fragments are organized in
a library which contains at this moment with a few fragments. The
reason for this, compared to ADDSS, is because Archium is much
more code-oriented that the other tools.

The architectural solution belonging to a set of decisions is mod-
eled in Archium using a component and connector view which al-
lows the architect to perform the modeling tasks using the same
tool interface (as opposite to ADDSS which uploads the architecture
from an external modeling tool). Other architecture views like the
deployment view, is not supported in Archium. The tool can check
implementation against architectural decisions. Therefore, if a
decision is ignored or disregarded, the tool warns and prohibits vio-
lations of the architectural decisions. Also, superfluous decisions
can be checked when decisions overlap (i.e. are redundant) or
when they are unnecessary (i.e. decisions that do not affect the
architecture model at all). During the creation of architectural deci-
sions, traceability between decisions and to other external artifacts
is defined in Archium by means of formal and informal relation-
ships. Formal relationships are those relationships defined in the
Archium meta-model for which explicit language construct are
provided, and used to determine the impact of an architectural
decision and relate it to the components in the architecture. Infor-
mal relationships are defined as textual descriptions in the charac-
terization of a design decision and they work similar to hyperlinks
to relate two model elements. This is called in Archium the design
decision dependency view, and it defines five different relation-
ships between a decision and a requirement (i.e. creates, obsolete,
uses, realizes, and threatens). In our example, the formal relation-
ship ‘‘realizes” is used to relate DD26 with FR06 and the associated
use case, as well as the uses relationship to NFR05, NFR06, and FR06.

For the architectural evaluation, the architect records the pros
and cons using free text language elements for each solution. After
which a trade-off is made between them. This forms the basis of
the rationale (a free text element) that motivates the choice for
one particular solution. This choice is formally expressed in the
Archium language.

AREL – AREL is built with the Enterprise Architecture UML tool
to create and visualize architecture entities AREL models which are
mainly composed of architecture entities (hhAEii) that are related
to architecture rationale (hhARii) elements. AREL uses architecture
design rationale as connectors to relate requirements, constraints,
and assumptions to design objects. Traces between the different
architecture elements and its rationale help explain architecture
design, identify change impacts, trace root causes, relate architec-
ture design objects, and verify architecture design among other
uses. Design rationale is captured in AREL qualitatively and quan-
titatively within an hhARii node. Qualitative design rationale pro-
vides the arguments for selecting a particular design alternative,
whilst quantitative design rationale uses cost, benefit, and risk to
quantify the merits of an alternative.

For the architectural analysis, AREL support different types of
entities like requirements. Functional requirements FR06, FR01
and FR23 are UML entities that contain textual description of the
requirements. AREL uses the hhtraceii stereotype to link require-
ments to decisions. Hence, the functional requirements of the
CVC product are linked to decision DD26 using trace links. For
the architectural synthesis, AREL models decision DD26 and all asso-
ciated architecture elements as UML entities. UML models of the
architectures we need to build are well supported in AREL, and
up to three viewpoints (i.e. business, information, and software de-
sign) are supported to model AREL architecture elements from dif-
ferent perspectives. Architects can create AREL model by dragging
and dropping elements from a tool-box during design modeling,
but not additional general knowledge as reusable patterns is de-
fined. In the CVC example, decision DD26 is modeled as a UML
package and it contains two key elements: the design rationale of
the decision and the discarded design option A. The design ratio-
nale for decision DD26 comprises the reasons for choosing the de-
sign, the design issues and the assumptions (i.e. about NFR05 and
NFR06). Moreover, decision DD26 is linked to the design artifacts
of option B. In this way, the decision can be traced to its design out-
comes. Forward and backward traceability is supported by AREL.

For the architecture evaluation, the rationale of the decisions
being evaluated must contain the strengths and weaknesses of
the design options. During the debate of the design alternatives,
a number of factors are considered. For instance, the trade-offs of
the alternatives using appropriate weights, the risks and non-risks,
and an assessment which summarizes the decisions selected and
non-selected and the justifications behind them.

The Knowledge architect – The Knowledge architect is a platform
to create, manage, and share AK and consists of three related tools:
the Knowledge architect Word and Excel plug-ins and the Knowl-
edge architect explorer. The Knowledge architect uses the concept
of a knowledge entity to represent different types of knowledge.
The purpose of the Word plug-in is to create and use AK in which
knowledge entities are special annotations (i.e. special kinds of
Word comments) in a Word software architecture document that
can be colored to discriminate the different types of knowledge
entities.

Starting with the architectural analysis, the architect would first
add the related requirements (FR01, FR06, FR23, NFR05 and NFR06)



362 A. Tang et al. / The Journal of Systems and Software 83 (2010) 352–370
to the knowledge repository. Some may be marked as risks or con-
cerns. This can be performed in the Word plug-in, where the archi-
tect selects the text and/or figure(s) representing the
aforementioned concepts, fills in a few details in a form, and the
tool automatically adds the knowledge to the knowledge reposi-
tory. To start the analysis, the architect finds or defines a decision
topic for DD26 in the document and adds this to the knowledge
repository. While doing so, the architect defines the relationships
with the requirements, thereby promoting some of them to archi-
tectural significant requirements.

For the architectural synthesis, the Word Client informs the
architect, through textual coloring, about the open decision topic.
This helps the architect to focus on the decision topics for which
architectural synthesis is still needed. Knowledge entities like a
decision can be related to other knowledge entities (e.g. require-
ments). The relationship to other entities depends on the type of
the entity and on the domain model being used. The architect
comes up with alternatives A and B to address the pending decision
topic. Compared to the other tools, Knowledge architect captures
design rationale in a different way with respect to the other tools
because it is based on the existence of a software architecture word
document in which design decisions and other knowledge entities
are marked and colored in the document. Then, knowledge entities
are characterized using a template like in previous approaches. In
other tools such as ADDSS and PAKME, these templates are filled
first, and the documentation containing the knowledge entities is
generated afterwards. A refresh menu option has to be used to
show the updates made in the word document. In addition, the
Knowledge architect explorer tool is used to visualize the different
types of knowledge entities and their relationships among them
(e.g. the relations of a decision to other decisions or requirements).
Also, this tool uses a pop-up menu to visualize the details of each
knowledge entities. Compared to the visualization facilities of tools
like ADDSS and AREL, is not so straightforward to visualize soft-
ware architectures in the Knowledge architect explorer.

Finally, in architectural evaluation, the tool helps the architect,
again with colored text, in spotting the alternatives that have no
associated design decision. In this case, the tool highlights alterna-
tives A and B encouraging the architect to choose between them.
The choice is documented as DD26 in the repository. To assist an
architect, the Word plug-in can asses about the completeness of
architectural knowledge using a pop-up menu where red means
problematic and green means perfect. Also, a status attribute is
used to describe the current state of the knowledge entity (e.g. val-
idated, reviewed), such as, for instance, when knowledge entities
have to be validated in a review.

PAKME – Both ADDSS and PAKME are web-based tools for sup-
porting the creation and use of architectural design decisions.
Therefore, collaborative and sharing features are easier to imple-
ment than in the other studied tools. PAKME provides several fea-
tures to support AK management for designing and maintaining
software architecture of the case. For example, PAKME provides
different templates to capture and maintain artifacts and their
relationships that are characterized as architectural knowledge
by PAKME’s data model described in Ali Babar et al. (2006). PAKME
uses more detailed templates than ADDSS for characterizing the
design decisions. PAKME’s model has three main activities: archi-
tecture analysis, architectural synthesis, and architectural
evaluation.

For the architectural analysis, architectural significant require-
ments (ASRs) are elicited and characterized by concrete scenarios
(i.e. context knowledge) that are captured using the knowledge
acquisition service through specific templates. Similar to ADDSS,
general knowledge can be retrieved from a repository which has
been populated with architecture patterns, design primitives, and
case studies as well. This generic knowledge can be instantiated
to project-specific knowledge. For example, instantiating abstract
scenarios into concrete ones.

During architectural synthesis, the architect tries to identify can-
didate architectural solutions that address ASRs and uses specific
templates to codify and capture the decisions that are motivated
by the scenarios already captured. The same as in ADDSS, PAKME
supports different granularity levels for the decisions being cap-
tured. The architect can describe the architecture decision DD26
along with the contextual information using design decision tem-
plate provided by PAKME which also shows the traceability that
has been established between different artifacts. The tool also
helps establish and maintain traceability from DD26 to the con-
crete scenario and quality factor to be satisfied by this design deci-
sion. The architect can also establish several types of relationships
(such as dependency and constraints) between different architec-
ture design decisions. Compared to ADDSS, PAKME provides a com-
plete list of dependency types between decisions. Also, artifacts
created outside PAKME can be attached to each design decision.
For example, the architect may want to models decision DD26 with
a UML diagram using the AREL tool, and then export XMI or make a
graphic file of the model and attached with DD26 captured using
PAKME’s template.

For the architectural evaluation, the architect ensures that the
architectural decisions were the right ones. PAKME supports archi-
tecture evaluation to visualize the risks. Also, the rationale of de-
sign options is captured in PAKME in a separate template. By
capturing design options as cases, PAKME enables architects to
support a case-based reasoning. In the example of decision DD26,
the rationale for each design option (A and B) is captured and
viewed. This rationale describes the reasons underpinning the
decisions. Finally, reporting facilities for architecture evaluation
can be used to represent the relationships between artifacts and
show the positive and negative effects between different architec-
tural artifacts.

6.3.1. An analysis of the AK tool applications on the case study
Using the case study to compare AK tools for criteria 3, 4, and 5,

we have observed the following. For criterion 3 (i.e. architectural
analysis), ADDSS, AREL, Archium, and the Knowledge architect fo-
cus on requirement analysis because the requirements are explic-
itly represented. PAKME, on the other hand, uses scenarios for the
problem specification. Archium captures assumptions on which
the decision is based to describe the problem, the motivation,
and the causes. The Knowledge architect distinguishes between
risks and concerns, but both PAKME and ADDSS include project
information specific as an add-on to the requirements. PAKME pro-
vides more detailed templates for capturing information for the
different development phases.

For criterion 4 (i.e. architectural synthesis) ADDSS and PAKME
support general knowledge in the form of patterns and architec-
tural styles, while in the other tools this feature is less supported.
Also, ADDSS provide a status and category attributes to discrimi-
nate between candidate decisions and assign a status depending
on the moment the decision is being evaluated. Hence, users can
replay the reasoning process that took place at a given moment.
Also, the time-stamp and version fields can be used to track the
evolution of decisions. PAKME supports different granularity levels
for the decisions during the capturing process but ADDSS nicely re-
late the decisions to general knowledge. All of the studied tools
provide traceability mechanisms from decisions to external arti-
facts as well as to other decisions. In particular, AREL provides a
good support and PAKME can model a wide variety of dependen-
cies. Archium provides an important capability as it warns about
potential or incompatible violations when selecting the different
alternatives. While ADDSS can relate decisions to general knowl-
edge, this is not possible in AREL, but AREL relates a more refined



A. Tang et al. / The Journal of Systems and Software 83 (2010) 352–370 363
relationships depicted in UML whereas ADDSS associates the en-
tire architecture with a set of decisions made. The Knowledge
architect captures design rationale in a different way, because it
is based on the existence of a word document in which design
decisions and other knowledge entities are marked and colored
in the document.

For criterion 5 (i.e. architectural evaluation) ADDSS provides
support to specify if a decision has been pending, approved, re-
jected, or obsolete but no support for other external evaluation
based on quality attributed is available. Further review or assess-
ment procedures can be done on the PDF reports generated by
the tool. PAKME can visualize the risks to ensure the decisions ta-
ken are the right ones and reporting facilities can be used, like in
ADDSS, to represent the relationships between artifacts and show
the positive and negative effects between different architectural
artifacts. Archium users can review the pros and the cons of the
decisions and check the existence of overlapping or incompatible
decisions. AREL uses the strengths and weaknesses of the design
options contained in the rationale and appropriate weightings of
risks to assess about the best or optimal decisions. The Knowl-
edge architect uses the colors to highlight the alternatives and
the same as ADDSS, a status attribute to describe the current
state of the knowledge entity (e.g. validated, reviewed). All the
tools except the Knowledge architect uses the rationale for fur-
ther trade-off analysis, but ADDSS provides only partial support
for this. As a summary of the discussion, we can say that all
the tools support the three criteria mentioned before but some
of them put more emphasis on some of the activities than the
others.

6.4. Comparing AK tool support for implementation, maintenance and
others

The comparisons of the AK tools on the ground of implementa-
tion, maintenance, customization, integration and collaboration
provide insights into different aspects on the use of AK tools. To en-
able such comparisons, we have provided scenarios to illustrate
the criteria. Appendix C describes a scenario for each criterion,
and we then analyze how each of the studied AK tools deals with
the scenarios. As a result of the evaluation of use cases for criteria
6–10, we have found the following:

Criteria 6 (i.e. implementation) all the tools provide some trace-
ability support to help implementation. However, only AREL
and Archium offer traceability between implementation arti-
facts and the design rationale and vice-versa. In Archium,
implementation adherence is available through constraint and
rule implementation, which is something AREL lacks.
Criteria 7 (i.e. maintenance) all the tools provide traceability
support to assist users in maintenance tasks when decisions
are modified; and analyze the impact of changes both in deci-
sions as well as in the related elements. It is interesting to note
that AK tools aim at retaining and reusing AK, therefore trace-
ability support for maintenance purpose is naturally a key fea-
ture of such tools.
Criteria 8 (i.e. customization) only ADDSS and PAKME offer sup-
port for different users with different levels of permissions as
they provide project management features. In addition, ADDSS
defines optional attributes that can be used by different user
profiles to characterize different amount of information of the
decisions stored.
Criteria 9 (i.e. integration with other tools) ADDSS and PAKME
provides integration with PDF documentation but not with
external modeling tools. AREL and the Knowledge architect
can interact with Word documents to describe architecture
models. In addition, the Knowledge architect interacts with
Excel models. Archium lacks any kind of automatic or semi-
automatic integration.
Criteria 10 (i.e. collaborative environment) supports different
users with access privileges but lacks locking mechanisms for
concurrent users accessing the same information. Archium is
a standalone tool and depends on a Source Code Management
(SCM) system. AREL has multi-user support and users can lock
and secure the information contained in Word documents to
prevent concurrent edits. The Knowledge architect has a ver-
sioning system integrated in its knowledge repository to pre-
vent conflicts in case of shared access. PAKME support
concurrent access from multiple users and has also collabora-
tive features for distributed teams. The AK tools generally
require improved integration with external tools, support more
collaborative features, and provide better multi-user features
for project management in distributed teams.
7. Findings

In this work, we have compared five different AK management
tools in terms of how they support the activities in the architecture
life-cycle. It is noted that the authors of this paper are also the
researchers behind the creation of the tools that are being com-
pared. This may introduce bias in the comparison. To address this
potential issue, we define a set of ten criteria that represent the
architectural knowledge activities. The foundation of these criteria
is formed by using current research literature as well as an interna-
tional standard as guidelines. The following are the findings of
comparing the AK tools with the criteria for comparison.

7.1. Architectural knowledge representation

From Appendix A, we have found that all the AK tools compre-
hensively support the IEEE 1471-2000 concepts of rationale and
concern. The studied AK tools also provide support for AK reasoning
knowledge and context knowledge that are illustrated in Fig. 2. This
shows that researchers generally consider the importance of de-
sign context and design reasoning. On the other hand, the level
of support for design knowledge varies, and it is evident from
Appendix A that architectural models are not well supported. Arch-
ium and AREL support design knowledge representation explicitly
because the tools are tightly integrated with the architecture
development process. The emphasis of these tools is to support
software architectural design. However, ADDSS, Archium and
PAKME support general knowledge representation (e.g. design pat-
terns or tactics) to facilitate AK reuse. From the analysis, we notice
that there are different knowledge focuses amongst the AK tools
and the IEEE standard. It indicates that AK can vary even though
the architectural activities are similar. For the future, AK tools
should provide a comprehensive and tailorable knowledge repre-
sentation to allow organizations to support and evolve their AK.
Representation and conceptual models should be opened to allow
integration with external knowledge sources.

7.2. Architectural knowledge relationships

The AK relationships offered by the studied tools allow knowl-
edge consumers to relate different types of AK. From Table 3, we
see that all the tools can trace the design rationale to architectural
descriptions. Additionally, these tools have specialized relation-
ships that are not defined in the standard. It indicates that the
AK tools emphasize the concept of design reasoning which is lar-
gely missing from the IEEE 1471-2000 standard. The AK tools also
provide support for architectural evolution support and knowledge
reuse support. These key features are missing from the standard.



364 A. Tang et al. / The Journal of Systems and Software 83 (2010) 352–370
On the other hand, the AK tools generally lack the relationships to
support architectural view and viewpoints. This could limit the
capabilities of the knowledge users to retrieve different perspec-
tives of the AK.

7.3. Architectural life-cycle activities

Architecture analysis, synthesis, evaluation, implementation,
and maintenance are the key activities in the architecture life-cy-
cle. In the comparison, we have found that all the studied tools
are capable of capturing requirements and architectural concerns
to support solution design. Furthermore, they all support architec-
tural implementation by providing traceability between artifacts
created in different development phases. However, each of them
has been designed with a different purpose in mind, and therefore
some provides better support for certain stages of the architecture
life-cycle than the others. For instance, the goal of Archium was to
investigate the relationship between reasoning knowledge and de-
sign knowledge. It focuses on the architecture implementation and
maintenance stage, not just through traceability but actual round-
trip engineering and impact analysis. The goal of the Knowledge
architect is to offer a general AK platform, which can be extended
for specific purposes, such as software architecture documentation
(i.e. the Word Client) or quantitative architectural analysis models
(i.e. the Excel Client). Due to these specific clients, the current
Knowledge architect tool suite is focused on architectural synthesis
and evaluation.

AREL focuses on the synthesis, implementation, and mainte-
nance stages, as it captures design reasoning alongside UML mod-
els for use in the implementation and maintenance stages. ADDSS
focuses on the analysis and synthesis stages. It captures, manages,
and documents design decisions and relates these to architecture
products. It also supports evaluation by explicitly documenting
the status and categories of alternative solutions. The forward
and backward traceability support is also useful for maintenance
activities. PAKME supports architecture analysis by providing hun-
dreds of general scenarios. It provides patterns and design decision
cases to support architecture synthesis. It captures rationale and
supports various architecture evaluation methods. With the differ-
ent degree of support of the tools for the different phases of the
software life-cycle, we observe a need to generalize and enhance
the conceptual models of existing AK tools to provide a more com-
prehensive AK tool that can support all the activities defined in
Fig. 2. For instance, combine the concepts of design patterns
emphasized in ADDSS and PAKME with the design support offered
by Archium and AREL in a single AK tool.

7.4. Supporting features in architectural knowledge management

Architecture customization, integration, collaboration and
knowledge retrieval support are important parts of AK tools. Cur-
rent AK tools offer very limited customization, integration capabil-
ities and collaborative features. The web interface used in ADDSS
and PAKME provide better opportunities to enhance collaborative
and distributed features. ADDSS include optional attributes that
can be tailored to different users that are interested in different
types of information items used to characterize the design deci-
sions. The Knowledge architect is integrated with Microsoft Word
and Excel to capture and manages AK from different sources and in
different formats while it interoperates with other systems
through web services. We expect that the customization of AK to
serve individual user’s needs, tool interoperation, as well as com-
puter-supported collaborative AK management will receive greater
attention in the future. In the case study, we have identified the
following issues with respect to the supporting features of the
studied AK tools:
� Low degree of integration with each other or other knowledge
repositories – all the tools have been created as stand-alone
tools with little capabilities to export or import AK, they there-
fore lack the capabilities for collaboration and sharing;

� Limited assessment and evaluation facilities – none of the tools
provide any architecture evaluation although they can capture
the reasoning if an evaluation method is used and;

� Knowledge retrieval capabilities are simplistic and reactive, all
the tools provide search functions that require the architects
to take initiative and have a certain level of knowledge about
the domain and the design.
8. Conclusions and future work

Research on architecture knowledge management and architec-
tural design decisions recently have led to the development of sev-
eral architectural knowledge management tools. In this paper, we
have compared five architectural knowledge management tools
to analyze the current states of research in this area.

In order to carry out the comparison in a uniform way, we have
defined a comparison framework based on the AK management
activities that take place during the software architecture life-cy-
cle. In the comparison framework, we have defined ten distinct cri-
teria to compare the AK management tool support. These criteria
represent how AK management is used in the architecture life-cy-
cle. We have used IEEE 1471-2000 standard for architectural
description to compare the entity and relationship representations
of the studied AK tools. We have also used a case study and a set of
scenarios to illustrate and compare how these tools serve the
architectural activities.

The results of the comparison have shown that all AK tools fo-
cus on reasoning and contextual knowledge, some tools emphasize
on design knowledge whilst others emphasize on general knowl-
edge. The difference of emphasis highlights the two key aspects
of knowledge: to support architectural design activities and to sup-
port knowledge reuse. Traceability is well supported by all the tools
but the support on knowledge integration and customization are
limited. The results of the study have shown that views and view-
points defined in IEEE 1471-2000 are not well supported by the AK
tools, except ADDSS, which emphasizes more than the others on
describing architecture views. Conversely, architectural knowledge
management aspects such as design evolution and design patterns
are the key features of the AK tools, but are neglected in the IEEE
standard. In addition, knowledge sharing features are not yet
implemented in the tools analyzed, and it is only mentioned as a
future capability. Such feature is closely related to multi-user man-
agement and collaborative development.

Through this study, we have provided an in-depth description
of AK tools and their underlying support of architectural activities.
Such knowledge will guide future enhancements to the studied
tool. This research has enabled us to identify some of the future re-
search directions for AK management tools:

� tools interoperability to enable AK exchange;
� intelligent AK management tools to providing automated sup-

port to architectural activities, e.g. notifications, suggestions,
etc and;

� define an encompassing AK representation model that combines
the features from different AK models.

This work has already begun, for instances, the Knowledge
architect is moving towards a universal knowledge repository on
the server and different implemented meta-models on the clients;
and we are working on the extraction of concrete AK design mod-
els from AREL into a generic design decision pattern in PAKME.
PAKME and ADDSS are being analyzing for integrating their data



Appendix A. Mapping IEEE 1471 to AK tool concepts

IEEE 1471-2000
Entities

Archium ADDSS AREL Knowledge architect PAKME

Mission N/A N/A N/A N/A N/A
Environment N/A Project Business env., information systems

env. technology env.
N/A Project

System N/A System UML models N/A N/A
Architecture Design fragment Architecture UML models Knowledge entity
Stakeholder Stakeholder Stakeholders Stakeholder Stakeholder Stakeholder
Architectural

description
Design fragment Architecture

description
UML models Artifact

Artifact fragment
Architecture
description

Rationale Architectural design decision,
trade-off, decision, motivation,
Cause, Solution, Design rules,
Design constraints,
consequences, pros, cons

Architectural design
decision
Open description for
design decision
(rationale), decision
types (category),
constraints,
dependencies, status

Design rationale, qualitative design
rationale, design issue, design
assumption, design constraint,
design strengths and weaknesses,
trade-offs, design decision
supporting info., alternative design
solution and rationale, quantitative
design rationale, cost and benefit of
design, implementation and
outcome certainty risk

Decision topic, alternative, design
concept, quick decision, design
decision, specification, decision,
trade-off, ranking

Support information,
architecture decision,
design option, design
rationale, constraint
Assumption, strength,
weakness, costs,
benefit, complexity,
justification, rule,
context, trade-offs

Concern Requirement category,
requirement, actor, scenario,
problem

Quality attributes
Functional and non-
functional
requirements

Motivational reason/design
concerns, functional requirements,
non-functional requirements

Risk, requirement, concern, quality
attribute

Architectural
significant
requirement
Quality factor

Viewpoint N/A N/A Business viewpoint N/A Viewtype
Data viewpoint
Application viewpoint
Technology viewpoint

View N/A Decision view Viewpoint-based Topology/view Architecture view
Architecture view

Library viewpoint N/A N/A N/A N/A N/A
Model Component entity, port,

interface, connector, abs.
connector, arch modification,
delta composition technique,
composition config., design
fragment composition

Variation points
Patterns
Architecture styles

Design models/design outcome
Data model
Application model
Technology model

Component N/A

Concepts not in
IEEE 1471
standard

Architectural design patterns Iterations
Decision making
activity
Evolution support

Evolution support, superseded
design concern, superseded design
rationale, superseded design

Scenario, analysis result analysis
output, number, value, system
parameter, quick sys parameter,
analysis function/analysis model,
mapping, confidence, variability,
author, reviewer, review state,
reviewable, person

Analysis model, effect
of a pattern, pattern,
design tactic, user
group, user, log,
design history,
parameters

A
.Tang

et
al./The

Journal
of

System
s

and
Softw

are
83

(2010)
352–

370
365



Appendix B. Relationships supported by the AK tools

Tool Relationships hRelationshipName:: EntityA: EntityBi

ADDSS 1. Meets::System:Requirements – This relationship links the requirements that have to be satisfied by a particular system
2. ImpactsOn::Requirements:ArchitecturalDesignDecision – This relationship directly links the motivation for making a particular design decisions to one or

more requirements
3. Grows::Iteration:ArchitecturalDesignDecision – This relationship describes that decisions are made on the basis on successive refinements (iterations) of the

architecture to show the evolution of decisions and architecture products
4. IsInterested::Stakeholders:ArchitecturalViews – This relationship links the interest of the different stakeholders to different architecture views which

includes explicitly the decision view
5. AffectedBy::ArchitecturalDesignDecision:Constraints – This relationship models the restrictions affecting a decision which can be motivated by the require-

ments and causes to model a dependency to other decision
6. DesignOutcome::ArchitecturalDesignDecision:Architecture – This relationships links directly a set of design decisions with its outcome (i.e. a design object)
7. DescribedBy::ArchitecturalDesignDecision:Status/Category/Open description (rationale)/Pattern/Architectural Style/Variation Point – This relationship out-

lines how a design decision is modeled in terms of the elements mentioned
8. IsSupported::System:Architecture – This relationship provides a direct link between a system and its corresponding architecture
9. Examines::Stakeholder:Requirements – This relationships describes that one or more stakeholders are interested on one or more requirements

10. IsComposed::Architecture:TraditionalViews: This links defines that one architecture can be described by one or several architecture views
Archium 1. DesiredBy::Requirement:Stakeholder – This relationship links the explicit concerns to the stakeholders, which require them

2. Uses::ArchitecturalDesignDecision:Requirement/Scenario – This relationship links the architectural design decisions, which are part of design fragments
with the requirements and scenarios they address

3. PartOf::ArchitecturalModification:ArchitecturalDesignDecision – This relationship links the modification of an architecture with an architectural design
decision

4. PartOf::Trade-off/Decision/Motivation/Cause/Solution/Design rules/Design constraints/Consequences/Pros Cons:ArchitecturalDesignDecision – This relation-
ship makes the rationale part of the more general architectural design decision concept

5. Composes::DesignFragmentComposition:DesignFragment – This relationship models how a solution of a design decision or a pattern is applied to the design
AREL 1. DesignCause::DesignConcern:DesignDecision – This relationship links the design concerns with the decisions that they influence

2. DesignOutcome::DesignDecision:DesignOutcome – This relationship links a design decision to the results of the decision, i.e. design models
3. DecisionContainment::DesignDecision:DesignRationale – This relationship represents the design rationale that are contained by a design decision
4. DesignEvolution::NewDesignElement:OldDesignElement – This relationship enables architects to trace superseded design elements
5. DecisionEvolution::NewDecision:OldDecision – This relationship enables architects to trace superseded design decisions
6. Viewpoint::Element:Viewpoint – An architecture element and decision is identified by a viewpoint
7. PartOf::ArchitectureElement:Attribute – Information is contained in the architecture element entity

Knowledge
architect

1. Has::Stakeholder::Requirement – This relationship links stakeholders with their explicit concerns
2. DescribedBy::KnowledgeEntity:ArtifactFragment – This relationships relates a AK element with a specific part of an Artifact (e.g. a paragraph in a Word doc-

ument or a particular range of Excel cells)
3. ContainedIn::KnowledgeEntity:Artifact – This relationship links an AK element with the artifact in which it is described
4. Creates::Alternative:Concern – This relationship links the concerns that come up from an alternative
5. PartOf::SystemParameter:Topology/View – This relationship links a system parameter with a specific view
6. PartOf::Component:Topology/View – This relationship links components with one or more views
7. DescribedBy::DecisionTopic/Alternative/DesignConcept/QuickDecision/DesignDecision/Specification/Decision/Trade-off/Ranking:ArtifactFragment – This

relationship links rationale elements with parts of artifacts
8. ContainedIn::DecisionTopic/Alternative/DesignConcept/QuickDecision/DesignDecision/Specification / Decision/Trade-off/Ranking:Artifact – This relation-

ship links rationale elements with the artifacts in which they are described
9. DescribedBy::Component:ArtifactFragment – This relationship links an abstraction of one or more system parameters with a part of an artifact

10. ContainedIn::Component:Artifact – This relationship links rationale elements with the artifacts in which they are described

366
A

.Tang
et

al./The
Journal

of
System

s
and

Softw
are

83
(2010)

352–
370



PAKME 1. Proposes::Stakeholder:Scenario – The relationship links the stakeholder with scenarios, which are proposed by stakeholders. This is a many-to-many rela-
tionship that means each stakeholder can propose many scenarios and each scenario can be proposed by many stakeholders

2. Characterises::scenario:Architecturally Sign ficant Requirement (ASR) – This relationship links each scenario with the ASR that has been characterized using
that scenario

3. CapturedBy::Architectural Design Decision Architectural description – This relationship links each architectural design decision with its architectural
description

4. DocumentedBy::Architectural description:A chitectural views – This relationship links architectural description of each architectural decision with appro-
priate architectural views used for architec ural description

5. Identified::scenarios:analysis model – This elationship relates scenarios with suitable analysis model
6. SatisfiedBy::Scenario:Design tactics – This lationship links scenarios with design tactics that are used to satisfy the required scenarios
7. DevelopedFor::Analysis model:ASR – This r lationship relates analysis model with suitable ASRs for which an analysis model has been developed for
8. ImpactOf::Pattern:ASR – This relationship nks the patterns with ASRs on which a pattern has negative or positive impact
9. FoundIn:: Tactics:Patterns – This relationsh p relates design tactics with corresponding design patterns

10. Has:: Architectural decision:design options This relationship links design options that have been considered with architectural design deicsion
11. Attachedto::architectural design rationale: rchitectural design decision – This relationship relates architectural design rationale with architectural design

decisions
12. ExtractedFrom::Scenario:Pattern – This rela ionship links scenarios with the patterns from which those scenarios have been extracted. A scenario is usually

attached with one pattern, however, a patte n can be the source of many scenarios DependsUpon::Architectural Design Decision:Architectural Design Deci-
sion – This is a circular relationship that r lates an architectural design decision with other architectural design decisions to represent the dependency
relationship

Appendix C. A comparison of AK tools with criteria 6–10

Scenarios ADDSS Archi m AREL Knowledge architect PAKME

Criterion 6 – A developer is
implementing a design,
which must be enforced
so during implementation
the design is not violated.
The rules, constraints and
context need to be
adhered to during
implementation

ADDSS does not support
modeling. However, it allows
check the decisions and the
requirements linked to the
architectures uploaded into
the tool. The architect can
visualize the architectures
and their underpinning
decisions along the
development process. In
addition, patterns can be
reused as proven design
choices

Archi m enables a user to
expre s part of the
archi cture in a Java-based
ADL. rchium’s compiler
check for constraints such
as co munication integrity
const aints, i.e. constraints
on w at and how the pieces
of co e communicate with
each ther. Some rules and
const aints can also be
textu lly expressed with
differ nt levels of scope. The
run-t e visualization uses
these copes to inform an
archi ct about the specific
rules nd constraints

AREL provides traceability
support between design
elements and design
decisions. An architect can
select one or more design
concerns and have the
system automatically trace
to all interrelated design
components, design
decisions and requirements.
The results of the search are
displayed in a UML diagram.
It can help programmers to
adhere to the architectural
design. Design evolution is
also supported. AREL cannot
enforce architectural design
adherence

Knowledge architect does
not support implementation
tools. However, it helps
implementers by providing
traceability among
architectural decisions, their
context, and constraints

PAKME helps describe
architecture in terms of
design decisions, captured as
cases along with contextual
information, constraints, and
rationale behind a design
decision. Availability of the
contextual information and
rationale provided by each
design decision case can help
understand the context and
reasoning for each
architectural design
decisions as well as their
constraints, and rules

(continued on next page)

A
.Tang

et
al./The

Journal
of

System
s

and
Softw

are
83

(2010)
352–

370
367
i

:

r
t
r

re
e

li
i
-

A

t
r
e

u

u
s

te
A
s

m
r
h
d
o
r
a
e
im
s

te
a



Appendix C (continued)

Scenarios ADDSS Archium AREL Knowledge architect PAKME

Criterion 7 – An architect
needs to modify a system
in production which is
new to her. She needs to
analyze the impact of the
changes to the existing
architecture

During maintenance, an
architect can revisit and the
decisions modified and
visualize which
architectures are impacted
by changes. The trace links
also help track the root
causes of changes and know
which requirements can be
affected by displaying the
architectures and
requirements affected by a
decision. ADDSS can only
display entire architecture
products affected by
decisions, not single design
artifacts

The Archium’s run-time
platform helps visually
inspect the AK of a running
system. An architect any use
the visualization feature to
trace the dependencies
among the architectural
design decisions underlying
the architecture design

When a requirement or a
design artifact is modified,
the impact of the
modification can be traced
forward to a detailed design
or backwards to the
requirements. For this kind
of scenarios, AREL provides
traceability support and
probability estimation of the
level of impacts a change
may cause

Knowledge architect’s Word
plug-in enables a reader to
follow traceability links
among software architecture
documents. The Explorer
enables one to view and
filter relationships between
various types of knowledge
entities. These features helps
perform impact analysis. can
support impact analysis

PAKME enables an architect
to retrieve the architecture
decisions taken, design
options considered, rationale
for choosing a certain design
option, trade-offs made, and
findings of architecture
evaluation. Such information
can help the architect to
understand original design
decision as well as the
potential effects of any
modifications in the
architecture

Criterion 8 – An
organizational policy
might require members
with different privileges to
access AK. The users may
like to customize the tool
for personalized features

The current version of
ADDSS supports different
user roles and enables
privileges for accessing the
information of projects and
architectures. ADDSS
provides also some
personalization mechanism,
as users can select certain
optional attributes for
capturing and documenting
their design decisions

Archium does not support
different levels of viewing
and editing permissions.
This responsibility has been
left to Source Code
Management systems (e.g.
SVN, CVS, Visual Source Safe,
etc.) for maintaining the
Archium source code
containing the codified AK

AREL does not support
different levels of viewing
privileges. It also does not
support customized
preferences

The Knowledge architect
suite does not offer support
for making differences in
privileges

PAKME allows an
organization to implement a
security policy with different
levels of access to different
architectural artefacts. A
user’s access privileges are
attached to login account
and any request to retrieve/
modify an artefact is
accommodated based on a
user’s privilege

Criterion 9 – An architect is
describing architecture in
a text document, which
needs to be stored a tool’s
knowledge repository

ADDSS only provides
integration with a graphical
library for generating
thumbnail images of the
architectures uploaded to
the tool as well with PDF
documents containing AK
stored in the tool. These
documents are generated
automatically

The architect has to
manually convert the
concepts in the architecture
documents into Archium
code, thereby formalizing
the software architecture

AREL is built on a UML tool
Enterprise Architect. Users
may enter different AK into
the UML repository. If the
knowledge is in a document
form such as Word, a
document link can be
created in an AK entity to
that external document

Knowledge architect
provides a repository
accessible through APIs and
a DB interface. It provides
plug-ins for MS Word and
Excel that can annotate AK
and export it to the
repository

PAKME is not fully
integrated with any other
tool. An architect can use
templates to capture
decisions and rationale. Any
associated documents can be
uploaded as attachments to
each decision. PAKME can
also generate PDF reports
based on the artefacts in the
repository

Criterion 10 – The chief
architect and 2 architects
responsible for different
subsystems are creating
knowledge entities in
their respective areas.
They do not want to
overwrite each other’s
work

ADDSS supports concurrent
users but not locking
mechanisms. Users can
access their own information
on behalf of system
privileges and enable access
to other users as a way to
share the decisions for a
given architecture or project

Archium is dependant on the
use of an external Source
Code Management system
(SCM) to support this
scenario. Using such a
system, Archium supports
isolated creation and editing
of design decisions and their
associated architectural
modifications

AREL has multi-user support.
Users may lock and secure
information to stop
concurrent edits

The Knowledge architect has
a versioning system
integrated in its knowledge
repository. Shared access of
knowledge is thus
guaranteed to prevent
conflicts

PAKME supports concurrent
access to the knowledge
base for multiple users. It
doesn’t have locking/
unlocking mechanism.
However, it has several
collaborative features to
support distributed software
development

368
A

.Tang
et

al./The
Journal

of
System

s
and

Softw
are

83
(2010)

352–
370



A. Tang et al. / The Journal of Systems and Software 83 (2010) 352–370 369
models in order to provide a unified web-based tool which can also
support decisions specific to product line architectures.
References

Avgeriou, P., Kruchten, P., Lago, P., Grisham, P., Perry, D., 2007. Architectural
knowledge and rationale – issues, trends, challenges. ACM SIGSOFT Software
Engineering Notes, 41–46.

Avritzer, A., Weyuker, E.J., 1998. Investigating metrics for architectural assessment.
In: Proceedings of the Fifth International Software Metrics Symposium, pp. 4–
10.

Ali Babar, M., Gorton, I., 2007. A tool for managing software architecture knowledge.
In: Proceedings of the Second Workshop on Sharing and Reusing Architectural
Knowledge (ICSE Workshops).

Ali Babar, M., Gorton, I., Jeffery, D.R., 2005. Capturing and using software
architecture knowledge for architecture-based software development. In:
Proceedings of the Quality Software International Conference (QSIC ‘05), pp.
169–176.

Ali Babar, M., Gorton, I., Kitchenham, B., 2006. A framework for supporting
architecture knowledge and rationale management. In: Dutoit, A.H., McCall, R.,
Mistrik, I., Paech, B. (Eds.), Rationale Management in Software Engineering.
Springer, pp. 237–254.

Ali Babar, M., de Boer, R.C., Dingsøyr, T., Farenhorst, R., 2007. Architectural
knowledge management strategies: approaches in research and industry. In:
Second Workshop on SHAring and Reusing Architectural Knowledge –
Architecture, Rationale, and Design Intent (SHARK/ADI 2007).

Ali Babar, M., Northway, A., Gorton, I., Heuer, P., Nguyen, T., 2008. Introducing tool
support for managing architectural knowledge: an experience report. In:
Proceedings of the 15th IEEE International Conference on Engineering
Computer-Based Systems (ECBS ‘08), pp. 105–113.

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice. Addison
Wesley, Boston.

Bengtsson, P., Bosch, J., 1998. Scenario-based software architecture reengineering.
In: Proceedings of Fifth International Conference on Software Reuse, pp. 308–
317.

Bosch, J., 2004. Software architecture: the next step. In: Software Architecture: First
European Workshop, EWSA 2004, St Andrews, UK, pp. 194–199.

Bratthall, L., Johansson, E., Regnell, B., 2000. Is a design rationale vital when
predicting change impact? – a controlled experiment on software architecture
evolution. In: Second International Conference on Product Focused Software
Process Improvement, pp. 126–139.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996. Pattern-
Oriented Software Architecture – A System of Patterns. Wiley.

Capilla, R., Nava, F., Pérez, S., Dueñas, J.C., 2006. A web-based tool for managing
architectural design decisions. In: Proceedings of the First Workshop on Sharing
and Reusing Architectural Knowledge.

Capilla, R., Nava, F., Dueñas, J.C., 2007a. Modeling and documenting the evolution of
architectural design decisions. In: Proceedings of the Second Workshop on
Sharing and Reusing Architectural Knowledge.

Capilla, R., Nava, F., Tang, A., 2007b. Attributes for characterizing the evolution of
architectural design decisions. In: Proceedings of the Third International IEEE
Workshop on Software Evolvability, IEEE CS, pp. 15–22.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.,
2002. Documenting Software Architectures: Views and Beyond. Addison
Wesley.

Conklin, J., Begeman, M., 1988. gIBIS: a hypertext tool for exploratory policy
discussion. In: Proceedings of the 1988 ACM conference on Computer-
Supported Cooperative Work, pp. 140–152.

Conklin, E., Burgess-Yakemovic, K.C., 1996. A process-oriented approach to design
rationale. In: Moran, T., Carroll, J. (Eds.), Design Rationale: Concepts, Techniques
and Use. Lawrence Erlbaum Associates, pp. 393–427.

de Boer, R.C., Farenhorst, R., Lago, P., van Vliet, H., Clerc, V., Jansen, A., 2007.
Architectural knowledge: getting to the core. In: Third International Conference
on the Quality of Software Architectures (QoSA).

Dobrica, L., Niemela, E., 2002. A survey on software architecture analysis methods.
IEEE Transactions on Software Engineering 28, 638–653.

Dueñas, J.C., Capilla, R., 2005. The decision view of software architecture. In:
Proceedings of the Second European Workshop on Software Architecture
(EWSA 2005). Springer-Verlag, pp. 222–230.

Farenhorst, R., Lago, P., Vliet, H.V., 2007. Effective tool support for architectural
knowledge sharing. In: First European Conference on Software Architecture
(ECSA’07), pp. 123–138.

Farenhorst, R., Izaks, R., Lago, P., Vliet, H.V., 2008. A just-in-time architectural
knowledge sharing portal. In: Proceedings of the Seventh Working IEEE/IFIP
Conference on Software Architecture (WICSA), pp. 125–134.

Harrison, N., Avgeriou, P., Zdun, U., 2007. Architecture patterns as mechanisms for
capturing architectural decisions. IEEE Software.

Hipergate, 2007. An open source CRM and groupware system.
Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P., 2005.

Generalizing a model of software architecture design from five industrial
approaches. In: Fifth Working IEEE/IFIP Conference on Software Architecture
(WICSA 2005), pp. 77–88.

Hughes, T., Martin, C., 1998. Design traceability of complex systems. In: Fourth
Annual Symposium on Human Interaction with Complex Systems, pp. 37–41.
IEEE, 2000. IEEE Recommended practice for architecture description of software-
intensive system (IEEE Std 1471-2000). IEEE Computer Society.

ISO/IEC, 2007. ISO/IEC 42010:2007 Systems and software engineering –
Recommended practice for architectural description and software-intensive
systems, p. 23.

Jackson, M., 1995. Software Requirements and Specifications: A Lexicon of Practice,
Principles and Prejudices. ACM Press/Addison-Wesley Publishing Co.

Jansen, A., Bosch, J., 2004. Evaluation of tool support for architectural evolution. In:
Nineteenth International Conference on Automated Software Engineering
(ASE’04), pp. 375–378.

Jansen, A., Bosch, J., 2005. Software architecture as a set of architectural design
decisions. In: Proceedings Fifth IEEE/IFIP Working Conference on Software
Architecture, pp. 109–120.

Jansen, A., Vries, T.D., Avgeriou, P., Veelen, M.V., 2008. Sharing the architectural
knowledge of quantitative analysis. In: Proceedings of the Quality of Software-
Architectures (QoSA 2008).

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J., 1998. The
architecture tradeoff analysis method. In: Proceedings of the Fourth IEEE
International Conference on Engineering of Complex Computer Systems
(ICECCS ‘98), pp. 68–78.

Kruchten, P., Lago, P., Vliet, H.v., 2006. Building up and Reasoning about
Architectural Knowledge, Quality of Software Architecture (QoSA). Springer-
Verlag.

Lee, J., Lai, K., 1996. What is design rationale? In: Moran, T., Carroll, J. (Eds.), Design
Rationale – Concepts, Techniques, and Use. Lawrence Erlbaum, New Jersey, pp.
21–51.

Maclean, A., Young, R., Bellotti, V., Moran, T., 1996. Questions, options and criteria:
elements of design space analysis. In: Moran, T., Carroll, J. (Eds.), Design
Rationale – Concepts, Techniques and Use. Lawrence Erlbaum, New Jersey, pp.
53–105.

Maranzano, J.F., Rozsypal, S.A., Zimmerman, G.H., Warnken, G.W., Wirth, P.E., Weiss,
D.M., 2005. Architecture reviews: practice and experience. IEEE Software 22,
34–43.

Perry, D.E., Wolf, A.L., 1992. Foundation for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17, 40–52.

Ramesh, B., Jarke, M., 2001. Towards reference models for requirements traceability.
IEEE Transactions on Software Engineering 27, 58–93.

Regli, W.C., Hu, X., Atwood, M., Sun, W., 2000. A survey of design rationale systems:
approaches, representation, capture and retrieval. Engineering with Computers,
209–235.

Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G., 1995.
Abstractions for software architecture and tools to support them. IEEE
Transactions on Software Engineering 21, 314–335.

Shipman III, F., McCall, R., 1997. Integrating different perspectives on design
rationale: supporting the emergence of design rationale from design
communication. Artificial Intelligence in Engineering Design, Analysis, and
Manufacturing 11, 141–154.

Tang, A., Jin, Y., Han, J., 2007. A rationale-based architecture model for design
traceability and reasoning. Journal of Systems and Software 80, 918–934.

Tang, A., Han, J., Vasa, R., 2009. Software architecture design reasoning: a case for
improved methodology support. IEEE Software, 43–49.

The Open Group, 2003. The Open Group Architecture Framework (v8.1 Enterprise
Edition). The Open Group.

Tyree, J., Akerman, A., 2005. Architecture decisions: demystifying architecture. IEEE
Software 22, 19–27.

Wang, Z.Y., Sherdil, K., Madhavji, N.H., 2005. ACCA: an architecture-centric concern
analysis method. In: Fifth IEEE/IFIP Working Conference on Software
Architecture, pp. 99–108.

Zachman, J., 1987. A framework for information architecture. IBM Systems Journal 38.

Antony Tang is a senior lecturer at Swinburne University of Technology. His
research interests are software architecture design reasoning, software engineering
techniques and vehicle software systems. He has been working in the IT industry
since 1984. He received his PhD in IT from Swinburne University of Technology in
2007. He’s a member of the IEEE Computer Society and ACM. Contact him at
atang@swin.edu.au.
Paris Avgeriou is Professor of Software Engineering at the Department of Mathe-
matics and Computing Science, University of Groningen, the Netherlands. He heads
the Software Engineering research group since September 2006. He has participated
in a number of national and European research projects on software engineering,
that are directly related to the European industry of Software-intensive systems. He
has been co-organizing international workshops in conferences such as ICSE,

ECOOP, ICSR, UML, ACM SAC and editing special issues for journals like IEEE Soft-
ware. He is in the editorial board of Springer TPLOP. He is a member of IEEE, ERCIM,
Hillside Europe and acts as a PC member and reviewer for several conferences and
journals. He has received awards and distinctions for both teaching and research
and has published more than 80 articles in peer-reviewed international journals,
conference proceedings and books. His research interests concern the area of
software architecture, with a strong emphasis on architecture modeling, knowl-
edge, evolution and patterns. Contact him at paris@cs.rug.nl.



ms and Software 83 (2010) 352–370
Anton Jansen is a scientist at ABB corporate research in the software architecture &
usuability (SARU) group in Västerås, Sweden since 2009. Between 2002 and 2009,

he was a member of the Software Engineering and Architecture (SEARCH) research
group at the University of Groningen, the Netherlands. He received a master of
science degree in computing science in 2002, as well as a Ph.D. in Software Archi-
tecture in 2008 from the University of Groningen, the Netherlands. He has worked

370 A. Tang et al. / The Journal of Syste
as a Ph.D. associate (2002-2006) on architectural decisions under supervision of Jan
Bosch, and as a postdoc (2006-2008) on the Dutch Joint Academic and Commercial
Quality Research & Development (Jacquard) project GRIFFIN. His research interests
are software architecture and architectural knowledge. In his spare time, he likes to
play multiplayer computer games, cycling, and reading books. Contact him at
antony@ca.rug.nl.

Rafael Capilla is an assistant professor of software engineering in the Universidad
Rey Juan Carlos of Madrid (Spain) since 2000. Previously, he worked as system
analyst and a Unix system administrator for several years. He holds a PhD in
Computer Science, and his research interests are software architectures, particu-
larly decision-making processes, product line engineering, software variability, and
Internet technologies. Capilla is a member of IEEE CS. Contact him at
rafael.capilla@urjc.es.

Muhammad Ali Babar is a Senior Researcher with Lero, University of Limerick,
Ireland, where he leads projects on software architecture and empirical assessment
of software development technologies. Previously, he worked with National ICT
Australia (NICTA). He has authored/co-authored more than 90 peer-reviewed
publications. He has co-edited a book, software architecture knowledge manage-
ment: theory and practice. Dr. Ali Babar has also been a co-guest editor of special

issues of IEEE Software, JSS, IST, and ESEJ. He has presented tutorials in the areas of
software architecture and empirical approaches at various international confer-
ences includingICGSE09, XP08, ICSE07 and WICSA07. Apart from being on the
program committees of several international conferences such as WICSA/ECSA,
ESEM, SPLC, ICGSE, and ICSP, Dr. Ali Babar is program chair of ECSA2010 and pro-
gram co-chair of PROFES2010. Prior to joining R&D field, he worked as a software
engineer and an IT consultant for several years in Australia. His current research
interests include software architecture, software product lines, and evidence-based
software engineering. Contact him at Muhammad.AliBabar@lero.ie.


	A comparative study of architecture knowledge management tools
	Introduction
	Managing architectural knowledge
	Managing architectural knowledge in the architecture life-cycle
	AK Tool comparison framework
	AK management tools
	ADDSS
	Archium
	AREL
	The Knowledge architect
	PAKME

	Tool comparisons
	Compare AK types and representation
	Compare AK relationships
	Comparing AK tool support for architectural analysis, synthesis and evaluation
	An analysis of the AK tool applications on the case study

	Comparing AK tool support for implementation, maintenance and others

	Findings
	Architectural knowledge representation
	Architectural knowledge relationships
	Architectural life-cycle activities
	Supporting features in architectural knowledge management

	Conclusions and future work
	Mapping IEEE 1471 to AK tool concepts
	Mapping IEEE 1471 to AK tool concepts
	Mapping IEEE 1471 to AK tool concepts
	References


