
Chapter 18

Variability in Web Services

Matthias Galster and Paris Avgeriou

What you will learn in this chapter
• Why service-based systems need special treatment of variability
• What types of variability can exist in service-based systems
• How we can address variability in service-based systems

1 Introduction

Service-based computing and associated development paradigms, including ser-

vice-oriented architecture (SOA), web services, or the idea of “Software as a

Service,” have gained significant attention in software engineering industry and

research. The aim of this chapter is to provide an introduction to variability in

service-based systems. Within this chapter, we use the term “service-based” for

systems that are largely or entirely built from web services [4], with SOA as the

primary architectural style.

To briefly illustrate variability in service-based systems, let us consider the

example of an online travel agency that communicates with various external

businesses (such as airlines, hotel companies, rental car companies) to obtain

airfares, hotel prices, etc., and to make reservations. Web services provide a

standardized way to exchange information between the online travel agency and

the information systems of these external businesses. In case a web service of an

M. Galster (*)

Department of Computer Science and Software Engineering, University of Canterbury,

Christchurch, New Zealand

e-mail: matthias.galster@canterbury.ac.nz

P. Avgeriou

Department of Computer Science, University of Groningen, Groningen, The Netherlands

e-mail: paris@cs.rug.nl

R. Capilla et al. (eds.), Systems and Software Variability Management,
DOI 10.1007/978-3-642-36583-6_18, © Springer-Verlag Berlin Heidelberg 2013

269

mailto:matthias.galster@canterbury.ac.nz
mailto:paris@cs.rug.nl


airline becomes unavailable, a web service of a different airline that offers the

desired flight can be used. In this example, variability could be expressed in a

variation point for selecting an airline web service. Variants (or options of alterna-
tive services) in this case would be the different airline web services.

In this chapter, we first provide a brief introduction of service-based systems.

Then, we motivate and illustrate variability in service-based systems in a real-world

example from the e-government domain and argue why variability handling is

useful. We will discuss why service-based systems need special treatment with

regard to variability and explore how variability in service-based systems could be

addressed.

2 Service-Based Systems

Service-based systems are distributed systems that are built from loosely coupled

software services. Services are autonomous, platform-independent computational

elements that can be described, published, discovered, orchestrated, and

programmed using standard protocols for building interoperating applications

[1]. Services are developed independent from a particular technology, for exam-

ple, could be implemented in Java or .NET, as long as they comply with

standards and protocols. For example, in local e-government, a municipality

can use services offered by the central government, such as a citizen registry,

or services to support the processing of taxes. In service-based systems, a service

registry enables service consumers to discover, bind, and assemble available

services, often at runtime. A service infrastructure (such as an Enterprise Service

Bus) connects services to service consumers. Service consumers query the

registry and compose applications using a service or a composition of services.

Consequently, service-based systems facilitate interoperability and reuse within

and across different systems.

Individual services usually correspond to business functions and provide func-

tionality to a large number of anonymous users (end users or other software

artifacts), often distributed across organizations [5]. Thus, service-based systems

support flexible environments and infrastructures for adaptable business processes.

However, the reusability of individual services and service-based systems is deter-

mined by their ability to support the variability required to adjust them to different

contexts. This means, if services or service-based systems cannot adapt to changing

situations and contexts, they can only be reused in a very limited scope. Therefore,

enhancing variability in service-based systems and providing methods that help

explicitly model and manage variability facilitates highly reusable and configurable

services and service-based systems.

270 M. Galster and P. Avgeriou



3 Variability in Service-Based Systems

Before discussing variability in service-based systems, we present an industrial case

from the e-government domain to motivate and illustrate variability in service-

based systems: the implementation of national laws in local municipalities in the

Netherlands. The national government may approve a law, which then is

implemented in municipalities. In the Netherlands, there are more than 400

municipalities; each municipality would implement the law including processes

and software systems that help implement the law autonomously. Differences

between municipalities are too big to have solutions as one product for all

municipalities, yet not too big to be covered by one generic solution to cover

possible variants.

A concrete example for this phenomenon is the implementation of the Dutch

Law for Social Support (known as the Wet Maatschappelijke Ondersteuning—

WMO law). This law mandates rules for providing social support to citizens, such

as domestic care. The responsibility and the execution of the WMO law lie with the

municipalities. This means, even though the law has been approved by the Dutch

national government, the solutions chosen to implement this law differ substantially

between municipalities. Variability must cope with static variability (originating

from differences between municipalities) but also dynamic variability (i.e., changes

to the WMO law once a solution is deployed) and the evolution of the system in its

environment. Throughout Dutch e-government initiatives, the “Software as a Ser-

vice” (or SaaS) model is used. As a result, software providers offer solutions for the

WMO law as software services, in a municipality-independent way. To cover the

needs of as many municipalities as possible, the SaaS must be customizable to

fulfill variations in business processes, functionality, and quality requirements of

municipalities.

As discussed in the previous section, service-based systems provide some degree

of flexibility by definition. However, it is difficult to build generic service-based

systems that can be adapted in different organizations and changing situations.

Even the eight fundamental design principles of service-orientation do not consider

variability as a key issue when designing service-based systems [6]. Thus, there is a

need for handling variability in service-based systems [12] for the following

reasons:

• It helps meet Quality of Service and optimize quality attributes. When a cur-

rently deployed service does not perform adequately, it can be replaced by a

better performing service. This means, configurations of service-based systems

can be changed. In e-government, there are multiple vendors for the same

software service. Due to the regulated nature of e-government, these services

have to provide the same functionality but may differ in terms of reliability or

performance. Based on these differences, services can be selected.

• It can enhance the availability of the system. When a service becomes unavail-

able, an alternative service with the same functionality can be used.

18 Variability in Web Services 271



• It allows for runtime flexibility. This means, rebinding of services can be

performed at runtime, potentially automatically when needed.

• It allows to handle different instances of one service-based system in different

organizations and versions and to adjust the system to operate in diverse

environments. This means, in Dutch e-government, the same system could be

used in multiple municipalities.

• Individual services are usually not designed with variability in mind to make

services highly customizable. By handling variability, artifacts in service-based

systems (such as specifications and models) can be designed with variability for

planned and enforced reuse [15].

• Related to a more technical aspect, if variability is not handled systematically

and parts of a service-based system are adapted in an uncontrolled manner,

interoperability problems occur [10]: Other parts of the system affected by the

adaptation might not be adjusted properly. For example, in the case of the WMO

law, many external parties (such as health care providers, doctors) are involved

in completing a business process. If a service is changed in an unsystematic

manner, it might not work with these external parties anymore.

3.1 Why Service-Based Systems Need Special Variability
Treatment

Service-based computing includes its own design paradigm and design principles,

design patterns, a distinct architectural model (SOA), technologies, and

frameworks [6]. Thus, in this section, we explore why service-based systems are

different compared to traditional reuse-based paradigms (such as product line

engineering, component-based development, or object orientation) and therefore

need special “treatment” with regard to variability.

• Dynamic execution environment: The most significant difference to other reuse-

based paradigms is that the dynamic execution environment of service-based

systems allows changing systems at runtime. This means, services can be

replaced or reconfigured while the system is running [18]. Product lines, for

example, focus on compile-time support. Consequently, to fully support

variability in service-based systems, events that occur in such systems must be

linked to rules to reason about alternatives [7]. This is particularly true in the

context of a volatile, distributed service composition in which services can

change, fail, become temporarily unavailable, or disappear.

• Different levels of abstraction: Service-based systems usually comprise different

levels, i.e., a business process level, the architecture level, and a service level

with the actual implementation. Each of these three levels might again comprise

different levels or descriptions (e.g., the architecture level usually consists of

different architecture views and/or layers). The alignment of business and IT is a

key concern in service-based systems, more than in other domains. This means,

272 M. Galster and P. Avgeriou



variability must be traceable through all these levels and variation points in one

level need to be translated into variation points in other levels to ensure business/

IT alignment. This also means that variability in service-based systems occurs at

different levels of abstraction. For example, variability might be provided

through parameter values used to invoke a service (service level), or by replacing

complete services (architecture level), or by changing the sequence in a

workflow (business process level).

• Nature of individual services: Another difference lies in the nature of individual
services. Services as computational units must accommodate the challenge of

meeting requirements for each organization that might use them while crossing

boundaries between organizations. This means, when handling variability in

service-based systems, there is no centralized authority that handles variability

concerns in the individual parts of the system. Also, a high heterogeneity in

customer requirements occurs due to anonymous service users. As a result, the

range of possible variations between services and service-based systems might

be very broad and extremely difficult to anticipate.

• Organizational issues: Organizational differences occur as services and service-
based systems are no longer developed, integrated, and released in a centrally

synchronized way [14]. Instead, services are developed and deployed indepen-

dently and separately in a networked environment. Developers need to consider

the integration of services, third-party applications, organization-specific

systems, and legacy systems. Thus, rather than self-contained and isolated

software development, service-based systems extend towards enterprise level

collaborative exchange of services and components over networks. Therefore

(and similar as stated in the previous paragraph), coordinating variability

concerns is problematic during service-based development.

• Quality attributes: Quality attributes (e.g., performance, maintainability, secu-

rity, reliability) in service-based systems are more diverse than in other domains

and difficult to achieve [8].

3.2 Types of Variability in Service-Based Systems

As mentioned in the previous section, there are different reasons why service-based

systems require special treatment with regard to variability. This also means that

there are particular types of variability in service-based systems that may not occur

in other types of systems. In this section, we therefore discuss types of variability

that exist in service-bases systems. However, rather than providing a complete

taxonomy, we provide an overview of basic types as well as where variability might

occur in service-based systems. Please also note that we do not discuss variability

based on technological aspects. A good overview in this regard has been presented

by Robak and Franczyk [16]. From a high-level perspective, we differentiate two

categories of variability:

18 Variability in Web Services 273



1. Variability inside a service, with services as reusable units that can be adapted

for different contexts [2]. In the e-government case, one example of variability

inside a service is a difference in quality requirements of municipalities with

regard to response time.

2. Variability in the service-based architecture (i.e., the composition of services).

In the e-government case, examples for variability in the service-based system

are different situations in which a service for assessing the need for a wheelchair

through a government authority is called, or is not called, based on local

regulations in the municipality.

Going into more detail of the first category, variability inside a service, the

following types of variability can be found:

• Variability in parameters required by a service [20]: The type of data sent at

service invocation can vary. For example, data sent to a service might be a single

variable or an array of variables. This type of variability is usually expressed in

Web Service Definition Language (WSDL) documents.

• Variability in parameter values [11]: The value of a parameter used at invocation

might vary. For example, the age requirement for a wheelchair subsidized by a

municipality differs between municipalities.

• Variability in the protocols [20]: Different protocols might be used by clients to

communicate with services.

On the other hand, more detailed types of the second category, i.e. variability in a

service-based architecture, include the following:

• Logic variability [2, 20]: A service includes operations for providing a certain

functionality. The logic is the algorithm or logical procedure used in the

operations of the service. A service can provide different logics depending on

the requested functionality.

• Variability in the web service flow [2, 17]: A web service flow is a composition

of service using a process-based approach. It specifies sets of tasks which are

executed by the participants of a process. Additionally, a web service flow

defines the execution order of tasks, the data exchange among the participants,

and business rules. Web service flow variability expresses that services can be

alternatively or optionally executed in a workflow, in different orders. This type

of variability is described in Business Process Execution Language (BPEL)

specifications for business process models and service flows. A detailed discus-

sion of variability in a web service flow, which also considers technical and

implementation aspects (e.g., message exchange), can be found in [17]. The

service flow has two abstractions: the service and the related business process.

Services are modeled as sets of operations, while the business process defines a

flow of activities. Each activity is implemented by executing an operation on a

service. Variation points affect the description of the flow needed to perform a

set of ordered operations (see variability model in [11]).

• Composition variability [2]: The business process consists of several services to

fulfill end user needs. For one service in the workflow, there may be more than

274 M. Galster and P. Avgeriou



one possible service interface which implements the service with different

implementation logics or quality attributes. Variability occurs in selecting the

most appropriate service.

• Variability in quality attributes: Quality attributes might vary from one system to

another. For example, one municipality might have higher privacy or perfor-

mance requirements than another one. This type of variability might be specified

in Web Service Level Agreement (WSLA) specifications for web service level

agreements between the service consumer and the service provider [11]. This

type of variability is most difficult to handle and even a major challenge in

software product lines.

4 How to Address Variability in Service-Based Systems

We consider three major strategies for addressing variability in service-based

systems. First, as currently argued by many authors, we could adopt product line

approaches in the service domain [13]. Referring to the types of variability from the

previous section, this strategy can be applied for handling variability in the compo-

sition of a service-based system if services are treated as features.

Second, as product lines focus on feature and decision models, we can apply new

methods and concepts—beyond the product line domain. This strategy has not yet

been thoroughly explored. Examples for this strategy include modeling variability

from a pattern point of view [20]. Here, pattern approaches can be used to describe

variation points. Again, referring to variability types from the previous section, this

strategy could be applied for variability in quality attributes.

Third, we can combine existing methods from the product line domain and

concepts based on the specific requirements of service-based systems. For example,

to support variability at the architecture level of service-based systems, new

viewpoints for the product line architecture could be introduced. This strategy

could be applied to variability in BPEL, WSDL, or WSLA specifications;

variability in parameters requirements by a service and actual parameters;

variability in protocols and logic; as well as variability in the web service flow.

In the remainder of this section, we first list principles for how to address

variability. Then, we discuss handling variability by utilizing product line

paradigms together with traditional web service development (third strategy) as

the strategy that is followed most. The other two strategies are omitted due to lack

of space.

4.1 General Principles

The four following principles, as general guidelines, can be used to address

variability in service-based systems [3]:

18 Variability in Web Services 275



1. Recognize commonalities and variations across the scope of multiple service-

based products within and across an organization. In the e-government example,

commonalities and variations occur due to differences in business processes,

local regulations, and infrastructures.

2. Leverage the recognized commonalities by building “core assets” that exist in all

product variants, including services across product variants with established

points of variation. In the e-government example, core asset services are services

that are required in all municipalities, such as billing citizens for obtaining a

wheelchair.

3. Address enterprise integration needs that service-based systems must offer.

Integration must take variability into consideration. Integration could encompass

many systems and involves sharing services across systems. For example, in

municipalities, existing legacy systems or third-party software (such as enter-

prise resource planning systems or data base systems) must be integrated.

Legacy systems and third-party software occur in all municipalities but vary

between municipalities.

4. Address end-user needs for variation within the service-based system. For

example, municipalities can select services as needed to accommodate unique

workflows.

4.2 Product Lines and Web Service Development

As mentioned at the beginning of this section, using the product line paradigm to

address variability in service-based systems has been the most popular strategy so

far [19] as service-based systems and product lines share certain commonalities [3].

A technical comparison between the variability in product lines and variability in

service-oriented computing is given by Chang and Kim [2].

Recently, Sun et al. proposed a framework and a tool suite for modeling and

managing variability of web service-based systems [18]. This framework addresses

runtime and design-time variability and is an extension of COVAMOF.

COVAMOF was originally developed to manage variability in software product

lines. Sun et al. use UML diagrams and a specifically developed UML profile to

model variability. This work builds on VxBPEL an extension of BPEL to support

variability in web-based systems [12]. VxBPEL has extra XML elements to support

the expression of variation points and variants in a BPEL process. An example of a

VxBPEL fragment to code a variation point is shown in Fig. 18.1 (adapted from

[12]). Variation points can be placed inside a BPEL process at any place where a

single activity can be placed.

VxBPEL supports service replacement, different service parameters, and chang-

ing system composition. Compared to Sun et al., VxBPEL variability is only

modeled in the implementation layer rather than at higher levels of abstraction.

Sun et al. make full use of COVAMOF to model variability also at the architectural

level to help understand the composition of a service-based system.

276 M. Galster and P. Avgeriou



In the example of WMO implementation, the VxBPEL fragment above could

contain a VariationPoint name¼“PersonalBudget”. This variation

point expresses variability in the way the personal budget of a citizen who applies

for societal support is determined. Variants for this variation point are Variant
name¼“Inhouse” and Variant name¼“External”. Based on the selected
variant, either a service for in-house processing of the personal budget is invoked or

the request for budgeting is sent to an external provider.

5 Outlook

Handling variability in service-intensive systems enables systems which are highly

adaptable and reusable in different environments. Handling variability helps con-

struct systems that do not only reuse services but can be reused as a whole. In this

chapter, we highlighted the need for and benefit of variability handling in service-

based systems. Moreover, types of variability as it might occur in service-intensive

systems were discussed as well as how variability could be addressed.

To further leverage variability in service-oriented systems and web services,

new tools would need to be created that support the concepts discussed in this

chapter. Moreover, to facilitate dynamic service variability, “self-adaptive” and

“plug-and-play” architectures can be investigated. Recently, utilizing dynamic

product lines in a service-oriented context has been explored [9].

Fig. 18.1 VxBPEL fragment

to code a variation point

(adapted from [12])

18 Variability in Web Services 277



References

1. Asadi, M., Mohabbati, B., Kaviani, N., Gasevic, D., Boskovic, M., Hatala, M.: Model-driven

development of families of service-oriented architectures. In: First International Workshop on

Feature-Oriented Software Development, Denver, CO, pp. 95–102. ACM (2009)

2. Chang, S.H., Kim, S.D.: A variability modeling method for adaptable service in service-

oriented computing. In: 11th International Software Product Line Conference, Kyoto, Japan,

pp. 261–268. IEEE Computer Society (2007)

3. Cohen, S., Krut, R.: Managing Variation in Services in a Software Product Line Context. CMU

SEI, Pittsburgh, PA (2010)

4. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the

web service web: an introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput. 6(2),
86–93 (2002)

5. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design. Prentice

Hall, Upper Saddle River, NJ (2005)

6. Erl, T.: SOA Design Patterns. Prentice Hall, Upper Saddle River, NJ (2009)

7. Gannod, G.C., Burge, J.E., Urban, S.D.: Issues in the design of flexible and dynamic service-

oriented systems. In: International Workshop on Systems Development in SOA Environments,

Minneapolis, MN, pp. 118–123. IEEE Computer Society (2007)

8. Gu, Q., Lago, P.: Exploring service-oriented system engineering challenges: a systematic

literature review. Serv. Orient. Comput. Appl. 3(3), 171–188 (2009)

9. Hallsteinsen, S., Jiang, S., Sanders, R.: Dynamic software product lines in service-oriented

computing. In: 3rd International Workshop on Dynamic Software Product Lines, San

Francisco, CA, pp. 28–34 (2009)

10. Jiang, J., Ruokonen, A., Systa, T.: Pattern-based variability management in web service

development. In: Third European Conference on Web Services, Vaxi, Sweden, pp. 83–94.

IEEE Computer Society (2005)

11. Kim, Y., Doh, K.: Adaptable web services modeling using variability analysis. In: Third

International Conference on Convergence and Hybrid Information Technology, Busan,

Korea, pp. 700–705. IEEE Computer Society (2008)

12. Koning, M., Sun, C., Sinnema, M., Avgeriou, P.: VxBPEL: supporting variability for web

services in BPEL. Inf. Softw. Technol. 51(2), 258–269 (2009)

13. Lee, J., Kotonya, G.: Combining service-orientation with product line engineering. IEEE

Softw. 27(3), 35–41 (2010)

14. Lee, J., Muthig, D., Naab, M.: An approach for developing service oriented product lines. In:

12th International Software Product Line Conference, Limerick, Ireland, pp. 275–284. IEEE

Computer Society (2008)

15. Medeiros, F.M., de Almeida, E.S., de Lemos Meira, S.R.: Towards an approach for service-

oriented product line architectures. In: Workshop on Service-oriented Architectures and

Software Product Lines, San Francisco, CA, pp. 1–7. Software Engineering Institute (2009)

16. Robak, S., Franczyk, B.: Modeling web services variability with feature diagrams. In: Revised

Papers from the NODe 2002 Web and Database-Related Workshops on Web, Web-Services,

and Database Systems, pp. 120–128. Springer (2003)

17. Segura, S., Benavides, D., Ruiz-Cortes, A., Trinidad, P.: A taxonomy of variability in web

service flows. In: First Workshop on Service-oriented Architectures and Product Lines, Kyoto,

Japan, pp. 1–5. SEI (2007)

18. Sun, C., Rossing, R., Sinnema, M., Bulanov, P., Aiello, M.: Modeling and managing the

variability of web-service-based systems. J. Syst. Softw. 83(3), 502–516 (2010)

19. ter Beek, M., Gnesi, S., Fantechi, A., Zavattaro, G.: Modelling variability, evolvability, and

adaptability in service computing. In: First International Workshop on Automated

Configurations and Tailoring of Applications, Antwerp, Belgium, pp. 14–19. CEUR (2010)

20. Topaloglu, Y., Capilla, R.: Modeling the variability of web services from a pattern point of

view. In: European Conference on Web Services, Erfurt, Germany, pp. 128–138. Springer

(2004)

278 M. Galster and P. Avgeriou


	Chapter 18: Variability in Web Services
	1 Introduction
	2 Service-Based Systems
	3 Variability in Service-Based Systems
	3.1 Why Service-Based Systems Need Special Variability Treatment
	3.2 Types of Variability in Service-Based Systems

	4 How to Address Variability in Service-Based Systems
	4.1 General Principles
	4.2 Product Lines and Web Service Development

	5 Outlook
	References


