
Software Architecture Description and UML

Paris Avgeriou1, Nicolas Guelfi1, and Nenad Medvidovic2

1 Software Engineering Competence Center (SE2C), University of Luxembourg,
6, rue Richard Coudenhove-Kalergi, L-1359, Luxembourg

{paris.avgeriou, nicolas.guelfi}@uni.lu
2 Computer Science Department, School of Engineering,

University of Southern California, Los Angeles, CA 90089-0781 U.S.A
neno@usc.edu

Abstract. The description of software architectures has always been
concerned with the definition of the appropriate languages for designing
the various architectural artifacts. Over the past ten years, formal or
less formal Architecture Description Languages (ADLs) and supporting
methods and tools have been proposed by researchers. More recently,
UML has been widely accepted in both industry and academia as a lan-
guage for Architecture Description (AD), and there have been approaches
to UML-based AD either by extending the language, or by mapping ex-
isting ADLs onto it. The upcoming UML 2.0 standard has also created
great expectations about the potential of the language to capture soft-
ware architectures, to allow for early analysis of systems under devel-
opment and to support qualities. Furthermore, the latest trends such
as MDA and the aspect-oriented paradigm are tightly connected with
both UML and AD, thus promoting new approaches which combine the
two. This workshop attempted to delve into this multi-faceted field, by
presenting the latest research advances and by facilitating discussions
between experts.

1 Introduction

Industry and academia have reached consensus that investing in architectural
design in the early phases of the lifecycle is of paramount importance to the
project’s success [2, 4, 5, 7, 10]. Moreover an undoubted tendency to create an
engineering discipline in the field of software architecture is apparent if we con-
sider the published textbooks, the international conferences devoted to it, and
recognition of architecting software systems as a professional practice [4]. Despite
the attention drawn to this emerging discipline, there has been little guidance
regarding how to describe a software architecture. Evidently there have been
advances in the field, especially concerning design and evaluation methods, as
well as reusable architectural artifacts such as architectural patterns and frame-
works. And there is growing consensus nowadays about certain aspects of the
task of software architecture description, such as the satisfaction of stakehold-
ers’ concerns through multiple views [1, 5]. But a software architecture needs
to be rigorously described if we expect to benefit from its advantages such as

N.J. Nunes et al. (Eds.): <<UML>> 2004 Satellite Activities, LNCS 3297, pp. 23–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



24 P. Avgeriou, N. Guelfi, and N. Medvidovic

communication of stakeholders, early analysis of the system, support of qualities
and trouble-free maintenance. Unfortunately the problem of describing software
architectures has not been solved; on the contrary we are still at early stages of
addressing it [4].

One of the greatest challenges in describing software architectures, and a ‘hot’
topic of research nowadays, is the definition of the appropriate languages. The
past ten years, formal or less formal Architecture Description Languages (ADLs)
and supporting methods and tools have been proposed by researchers [8]. More
recently, the Unified Modeling Language is being de facto accepted in both
industry and academia as a language for Architecture Description (AD), and
there have been approaches of UML-based AD either by extending the language,
or by mapping existing ADLs onto it. The upcoming UML 2.0 standard has
also created great expectations about the potential of the language to capture
software architectures, to allow for early analysis of systems under development
and to support qualities. Furthermore, MDA and the Aspect-Oriented paradigm
are tightly connected with both UML and AD, thus promoting new approaches
which combine the two.

The workshop on Software Architecture Description and UML made an effort
to look into these issues from a holistic viewpoint inside the UML community. It
has brought together researchers and practitioners who work on diverse aspects
of Architectural Description (AD) of software systems, related to the Unified
Modeling Language. It thus fostered a presentation of the latest approaches
on the field from both industry and academia, as well as a creative discussion
between the participants in specific themes.

The rest of this workshop report is organized as follows: Section 2 presents the
theme of the keynote speech, which discussed the upcoming UML 2.0 standard
with respect to specifying and enforcing software architectures. Section 3 out-
lines the contents of the papers that were presented in the workshop and involved
the issues of components, connectors, architecture-based analysis, static and dy-
namic modeling of architectures with UML 2.0 and a development methodology
that combines Aspect-Oriented Modeling and MDA. Section 4 describes the find-
ings of the discussion panel that consisted of three invited experts, who discussed
architectural issues from the viewpoint of three respective qualities: security, mo-
bility and performance. Finally Section 5 concludes with a brief synopsis of the
state-of-the-art and future trends.

2 Specifying and Enforcing Software Architectures

The keynote speech1 concerned the theme of specifying and enforcing software
architectures during the development and evolution of the system. Current soft-
ware architecting practice often fails in both these activities: first, architecture
is not explicitly specified, which results in architectural intent being ‘hidden’

1 The keynote speaker, Bran Selic, is an IBM Distinguished Engineer and the chair of
the OMG task force, responsible for the finalization of the UML 2.0 standard.



Software Architecture Description and UML 25

or possibly ‘buried’ inside the code; second, as a result of this lack of architec-
ture specification, the architecture cannot be enforced, i.e. it cannot be properly
implemented and maintained. It thus runs the risk of getting corrupted by de-
velopers that don’t understand it, even by minor changes such as bug fixes. This
results in ‘architectural decay’, where the system implementation gradually drifts
apart from the original architectural intent.

Architectures are meant to be modeled at different levels and different lan-
guages, including the code level in a programming language. Models can therefore
be refined continuously at various levels of detail, from different viewpoints, until
the system is fully specified at the code level. In this respect, a software system is
distinguished from other engineering products, by the unique characteristic that
the model per se evolves into the system implementation. The model-driven de-
velopment paradigm implements this principle, based on two complementary
techniques: abstraction that is supported by modeling languages, and automa-
tion of the transformations between the models, that is provided by tools. Thus,
enforcing the architecture can be much more straightforward, since the archi-
tectural decisions can be passed on to the system through code generation. The
benefits are increased productivity and assured quality, since it will then be
impossible to corrupt the architectural intent by low-level programming.

The following definition of an engineering model was proposed: “a reduced
representation of a system that highlights the properties of interest from a given
viewpoint”. This definition emphasizes the following aspects: that the model is an
abstraction of the system at a specific level of detail; that it is often looked upon
from different viewpoints that demonstrate different sides of the system; and that
representing the system is not merely “syntactic sugar” but a meaningful visual
aid. A software architecture in particular is a model that enables communication
between the different stakeholders, drives the construction of the system and
determines the system’s capacity for evolution growth.

The rest of the discussion focused on the run-time view of software architec-
tures, which deals with the run-time organization of significant software compo-
nents interacting through interfaces, and being composed of successively smaller
components and interfaces. The application of UML 2.0 in describing run-time
architectures was elaborated. First, it was stressed that run-time architectures
should not be modeled only statically through class diagrams but also at an
instance level through collaborations. Then the most fundamental new concept
in the upcoming UML 2.0 standard for architectural description was discussed:
structured classes. These are originated from Architecture Description Languages
and describe the inner structure of a class, either through a behavior specifica-
tion or through a collaboration of parts through connectors. It is highly rec-
ommended that architects use structured classes to describe the hierarchical
decomposition of systems’ run-time structures. Ports are also a key concept in
structured classes, since they are points of grouped interactions, they specify
provided and required interfaces, and they decouple the structured class from
external entities. Structured classes are joined by connectors through their ports,
and connectors in turn can be constrained by a specific behavior protocol that



26 P. Avgeriou, N. Guelfi, and N. Medvidovic

can be appropriately specified with the use of interaction diagrams. The impor-
tance of structured classes lies in the fact that they can be rigorously specified
and thus facilitate code generation in order to enforce the architecture. Finally,
the Component element has been “upgraded” in UML 2.0 to subclass Structured
Class and to allow for mappings to specific platforms (e.g. EJB).

As a concluding remark, it was stressed that “to architect is to model”. The
process of architecting is inherently a modeling activity which captures the ar-
chitectural intent and subsequently enforces it during system development and
evolution, thus preventing ‘architectural decay’. Model-driven technologies are a
promising approach in the software architecture field, and UML 2.0 in particu-
lar, encapsulates much of what was defined in classical architectural description
languages and also supports architectural enforcement.

3 Issues in Software Architecture Description with UML

In order to facilitate the presentation of key topics in the field and to allow
for extensive discussion on them, only six papers were selected to be presented
to the workshop. The papers were chosen through a rigorous reviewing pro-
cess, aimed at singling out high-quality submissions that concern a wide gamut
of research issues: components, connectors, architectural analysis, architecture
description in industrial projects, behavioral modeling and new trends such as
Aspect-Orientation and MDA.

3.1 Documenting Architectural Connectors with UML 2

The paper by Ivers et al. discusses the issue of UML 2 support for Architectural
Connectors, a concept which is treated by the software architecture community
as a first-class entity, just like components. The authors recollect that UML 1.x
was an awkward fit in representing architectural connectors, which led to design-
ers making their own conventions, either by using the existing UML elements,
or by extending the language. There was much anticipation in the architecture
community to see whether the upcoming UML standard would provide a better
support for connectors. The authors examine the concept of connectors in UML
2 with respect to how well it satisfies 4 criteria:

– semantic match - connectors naturally signify pathways of interaction.
– visual clarity - connectors should be distinguishable from components and

be represented by a minimum number of visual elements.
– completeness - connectors should be able to represent behavior, state and

interfaces.
– tool support.

The authors briefly analyze to what extent these criteria are fulfilled by four
standard UML 2 elements, which could be used as connectors, namely Associa-
tions, Association Classes, Classes and Connectors. Their findings are that none
of these elements is a perfect match, instead there is a tradeoff in using each
one of them. The authors conclude that even though UML 2.0 is much more



Software Architecture Description and UML 27

apt for architectural documentation in several aspects, representing connectors
still seems to be problematic. It must be noted that the analysis presented in
this paper focused on standard UML elements, and not on extensions of the
language.

3.2 Using UML for SA-Based Modeling and Analysis

The paper by Cortellessa et al. reports on how their research group is using
UML to specify Software Architectures (SA) for different kinds of analysis. They
outline four different approaches related to SA-based model-checking, testing,
performance and reliability analysis respectively:

– Model checking - It is performed through the Charmy framework that aims to
assist the software architect in designing Software Architectures and in val-
idating them against functional requirements. Formal model checking tech-
niques are used to check the consistency between the SA models and func-
tional requirements. The description of the architecture is based on stereo-
typed class diagrams for the component and connector view, state machines
for the component behavior and scenarios for the specification of temporal
properties.

– Testing - It aims to check to what extent a system under implementation
conforms to its architectural specification. It offers the advantage of testing
early and at a higher-level of abstraction. It allows the detection of structural
and behavioral problems from UML stereotyped class diagrams and state
diagrams respectively, as well as the specification of test cases as sequence
diagrams. Test cases are firstly specified at an architectural level and then
refined into the code level.

– Performance analysis - It is achieved through the SAPone approach which
automatically generates a performance model, based on a Queueing Network
model (QN), from a SA specification described by UML 2.0 Diagrams. The
UML profile for Schedulability, Performance and Time (SPT) is utilized in
order to annotate the UML diagrams with performance-related information.

– Reliability analysis - It focuses on modeling the reliability of a system as
a function of the reliability of individual components and connectors. The
authors have proposed an extension of UML to represent concepts in the
reliability domain, especially for component-based systems, and thus produce
reliability models at an architectural level.

Finally the authors introduce their ongoing work which aims to provide a
framework for incorporating all the above approaches into the same analysis
framework. Their rationale is based on the need to tradeoff between functional
and non-functional properties, by integrating the analyses of individual proper-
ties. They have introduced a framework that aims at such an analysis integra-
tion, independently of the notations or languages used for the different kinds of
properties.



28 P. Avgeriou, N. Guelfi, and N. Medvidovic

3.3 Flexible Component Modeling with the ENT Meta-model

The paper by Brada identifies two problems in current component meta-models:
(i) they merely reflect the present state-of-the-art in component technology with-
out allowing for extensions that could accommodate future developments; (ii)
the visual languages associated with the meta-models, similarly, offer specific,
preset views on components rather than more adaptable visualizations. The au-
thor proposes an approach in order to alleviate both these deficiencies:

– by introducing the ENT component meta-model which is open to future
technological developments and which enables us to define the component
characteristics from the users point of view (rather than in just technological
terms). This meta-model is built upon an analysis of a number of research
and industrial component meta-models.

– by proposing a flexible graphical notation that, based on the meta-model
abstractions, allows the users’ to adjust the visual representation of compo-
nent interfaces. This concept is similar to using multiple views for showing
different aspects of a system’s architecture.

The author advocates that this approach would allow present or future com-
ponent metamodels to be mapped to the ENT metamodel, even if such mappings
always entail semantic gaps. Finally, the combination of components specified
in this metamodel with architectural connectors would be a challenging field of
future research.

3.4 Designing the Software Architecture of an Embedded System
with UML 2.0

The paper by Frick et al. discusses the results of an industrial project for model-
driven development of embedded systems software. Part of this methodology
was to devise an architecture description language, based on selected elements
of UML 2.0, particularly leveraging the port concept. The authors focused on
describing the software architecture of embedded systems as interconnections
of modules through explicitly-specified provided and required interfaces. Pairs
of required and provided interfaces are perceived as contracts that the module
must conform to, and they are usually attributed to the module’s ports. Thus
a module imports or exports a service specified by a contract, through a port.
Furthermore a module implementation can be either: (i) a behavioral model in
terms of a state machine that implements the module services; (ii) a composite
module that has an internal structure as mandated in the UML 2.0 composite
structures package; (iii) code written in a programming language and wrapped
in the context of UML. The first two cases support code generation, therefore,
all three implementations are considered executable.

Another significant aspect of this approach is that it aims at product-family
architecture design, where individual products, or variants are specific configu-
rations of module variants. Subsequently the latter are different implementations
of the same interface. This is a very helpful concept in the development of em-



Software Architecture Description and UML 29

bedded systems, as environment components can be considered as variants and
they can be simulated in order to test embedded control software.

3.5 Behaviors Generation from Product Lines Requirements

The paper by Ziadi et al. draws upon the current research trend to model vari-
ability in Product Lines (PL). Related research work has so far concentrated on
the static architecture of PL; the authors extend it to the behavioral aspects. In
specific the authors propose an approach to derive the behavioral specification
of individual products from that of a Product Line. To begin with, they exploit
the ability of UML 2.0 to algebraically compose sequence diagrams through spe-
cial composition operators. Therefore, they specify PL behavioral requirements
as algebraic expressions extended with constructs to specify variability. Build-
ing on that, they synthesize the detailed behavior for each product member in
the PL in two stages: The first stage uses abstract interpretation of the vari-
ability operators in scenarios to get behavior specialization of the PL according
to given decision criteria; in the second stage, the resulting product behavior
specifications, expressed as sequence diagrams, are synthesized into statecharts.

This approach thus helps to refine behavioral specifications for the whole
product family, which are specified in high-level sequence diagrams, into product-
specific implementation-level statecharts. Therefore it fosters efficient, formalized
traceability between requirements on a Product Line level and detailed design
of individual products in PL. It can also promote reuse of statecharts between
products that share common behavior.

3.6 A UML Aspect-Oriented Modeling Approach for Model-Driven
Software Development

The paper by Vachon and Mostefaoui introduces a development methodology
that combines Aspect-Oriented Modeling and Model-Driven Architecture (MDA),
which have both received growing interest from the research community. The au-
thors claim that these approaches naturally complement each other: MDA sep-
arates the business model, the computation model and platform specific-design
decisions into distinct development steps and documents the transformation from
one to another; aspect-orientation separates core functional requirements from
“crosscutting application concerns” while at the same time merging them in
a clean and explicit manner. Consequently, combining the two approaches en-
tails the ‘weaving’ of aspects in the different MDA models and supporting the
transformations among them.

Their method supports an iterative stepwise refinement process that not only
takes care of the satisfaction of functional requirements in an MDA fashion,
but also introduces aspects early: these are woven into platform-independent
design decisions and then transformed to platform-specific models. From the
aspect-orientation side, the authors propose a UML Profile as a modeling nota-
tion, called Aspect-UML, for the specification of aspects and their join points.
From the MDA side they present the MDA-based development phases, focus-
ing particularly on the transformation of platform independent models (PIM)



30 P. Avgeriou, N. Guelfi, and N. Medvidovic

into platform specific models (PSM). In specific they explain how to transform
Aspect-UML models into selected PSM, using a mapping between their corre-
sponding metamodels. They also explain how new generation transformation
tools can potentially automate the transformation of an Aspect-UML PIM into
target PSM.

4 Architectural Support for Qualities

The aim of the discussion panel was to discuss critical, but under-addressed is-
sues pertaining to software architectural description. Three distinguished experts
were invited to the discussion in order to shed some light on the architectural
support for 3 respective qualities, namely security, mobility and performance.
The short talks of the experts and the subsequent discussions are summarized
in the following paragraphs.

Dr. Jan Jürjens2 explored the field of architectural design for security-critical
systems [6]. Dr. Jürjens advocated that the main problem in the software archi-
tecture of security-critical system is that security is not designed up-front as an
architecture-level issue, but rather “circumvented” at a later stage, resulting in
potential security compromises. The remedy that is proposed for this problem,
is an approach, entitled Model-based Security Engineering. It deals with archi-
tectural design artifacts arising in industrial development of security-critical sys-
tems (e.g. UML models) and requires tool-supported security analysis. It man-
dates the automatic analysis of models against security requirements and then
follows a round-trip engineering style, where code or tests are generated from
models and vice versa. The approach suggests the use of UML for the typical
reasons of standardization, broad industry adoption and extensive tool support.
A UML profile, named UMLsec, has been proposed in order to grasp the details
of secure systems development. Finally this approach suggests the use of secure
architectural patterns in a formal, methodological way, using the aforementioned
UMLsec profile.

Professor Raffaela Mirandola3 elaborated on the issue of mobility of software
systems. She advocated that mobility of code is an architectural-level design issue
that serves several goals such as service customization, dynamic functionality
extension, fault-tolerance, performance improvement etc. Unfortunately there
is no silver bullet in designing architectures of mobile systems, instead there is
always the risk of performance shortcomings. She also explained that the current
architectural styles for mobile systems can be classified into two categories: those
where only code moves and those where code moves along with its state. As far
as the locations where mobility of software takes place, they can be logical or
physical, they can be nested, and finally they can also be mobile themselves.
There are currently two approaches to modeling architectures of mobile systems

2 Dr. Jürjens is affiliated to the Technical University of Munich, Germany.
email: juerjens@in.tum.de

3 Professor Mirandola is affiliated to Universita di Roma “Tor Vergata”, Italy.
email: mirandola@info.uniroma2.it



Software Architecture Description and UML 31

[9]: (i) UML-based modeling which is visual, extensible, a de-facto standard
in industry for architectural design but has imprecise semantics; (ii) “mobility-
oriented” Process Algebras which are unambiguous, have compositional features,
and facilitate analysis, but are overly complex, not widely used and they lack
support for architectural design. Typically, as in other cases, bridging between
formal and semi-formal approaches is a key research issue in this area.

Professor Murray Woodside4 tackled the issue of performance modeling [11]
with respect to software architecture modeling. He stressed the fact that the re-
lation between the performance model and the architecture is bi-directional: the
performance model is constructed upon the architectural model, and the results
of performance modeling are a valuable feedback in selecting and validating the
various design choices in the architectural model. Performance modeling is ac-
tually based on architectural high-level information such as architectural styles,
partitioning of functionality into components etc., but it also requires additional
low-level details, such as workload and demands for operations. Analysis of per-
formance models subsequently takes place through formal techniques such as
queueing, petri nets, layered queueing, simulation etc. An interesting aspect
that arises from performance modeling is that different architectural configura-
tions can be compared against each other, as long as some parameters such as
workload, the platform and the number of processors are kept invariant. How-
ever, it is of paramount importance to evaluate the tradeoff between the detail
and accuracy (and therefore cost) of performance modeling and the value of the
produced results. A useful rule of thumb in this case is to match the precision
of performance data to the level of detail in the architecture model.

5 Epilogue

We can safely conclude that the description of software architectures is still a very
relevant subject in the research community. The practice of software architect-
ing is growing, and there are many notations used in the scope of architectural
description. UML is gaining more and more prominence and has made steps
forward in this direction but can still be awkward to use for certain aspects of
architectural description. The support for qualities has been under-represented
in ADLs in the past, and this has not changed with UML; nor will the use of
UML per se provide such support. A synergy between experts in the domains of
the various qualities and software architecture, is a challenging issue and a neces-
sity. The UML 2.0 standard is currently being explored for its appropriateness
in the field, while some shortcomings have already been identified and attempts
are made to overcome them. Nevertheless UML 2.0 is likely to redraw the land-
scape substantially. We are looking forward to this development, and will gauge
UML 2.0’s native architectural support, and software engineering community’s
reactions to it in deciding on possible follow-ons to this workshop.

4 Professor Woodside is affiliated to Carleton University, Canada.
email: Murray.Woodside@sce.carleton.ca



32 P. Avgeriou, N. Guelfi, and N. Medvidovic

References

1. Avgeriou, P., Guelfi, N., Razavi, R.: Patterns for documenting software architec-
tures. Proceedings of the 9th European Pattern Languages of Programming (Eu-
roPLOP) conference. July 2004, Irsee, Germany.

2. Bosch, J.: Design and Use of Software Architectures. Addison-Wesley, 2000.
3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.: Pattern-

Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley and
Sons, 1996.

4. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,
Stafford, J.: Documenting Software Architectures: Views and Beyond. Addison-
Wesley, 2002.

5. IEEE, Recommended Practice for Architectural Description of Software-Intensive
Systems. IEEE std. 1471-2000, 2000.

6. Jürjens, J.: Secure Systems Development with UML. Springer-Verlag 2004.
7. Kruchten, P.: The 4+1 view model of architecture. IEEE Software, November 1995.
8. Medvidovic, N. and R. N. Taylor: A Classification and Comparison Framework for

Software Architecture Description Languages. IEEE Trans. Softw. Eng. 26 (2000),
pp. 70-93.

9. Grassi, V., Mirandola, R., Sabetta, A.: A UML Profile to Model Mobile systems.
In Proc. of UML 2004 conference, 11-15 October 2004, Lisbon, Portugal. Springer
LNCS 3273.

10. Shaw, M., Garlan, D.: Software Architecture - Perspectives on an emerging disci-
pline. Prentice Hall, 1996.

11. Petriu, D, Woodside, M.: A Metamodel for Generating Performance Models from
UML Designs In Proc. of UML 2004 conference, 11-15 October 2004, Lisbon, Por-
tugal. Springer LNCS 3273.

Appendix: Acknowledgement

We extend our thanks to all those who have participated in the organization of
this workshop, particularly to the program committee, which is comprised of:

– Arsanjani Ali, IBM Global Services, USA
– Bosch Jan, University of Groningen, the Netherlands
– Dubois Eric, CRP Henri Tudor, Luxembourg
– Egyed Alexander, Teknowledge Corporation, USA
– Ewetz Hans, Clearstream International, Luxembourg
– Garlan David, Carnegie Mellon University, USA
– Issarny Valerie, INRIA, France
– Kruchten Philippe, University of British Columbia, Canada
– Ortega-Arjona Jorge, Universidad Nacional Autonoma de Mexico, Mexico
– Pastor Oscar, Universidad Politecnica de Valencia, Spain
– Poels Geert, University of Arts and Sciences Brussel, Belgium
– Razavi Reza, University of Luxembourg, Luxembourg
– Riehle Dirk, Stanford University, USA
– Romanovsky Alexander, University of Newcastle, UK
– Rosenblum David, University College London, UK
– Sharif Niloufar, Clearstream International, Luxembourg


	Introduction
	Specifying and Enforcing Software Architectures
	Issues in Software Architecture Description with UML
	Documenting Architectural Connectors with UML 2
	Using UML for SA-Based Modeling and Analysis
	Flexible Component Modeling with the ENT Meta-model
	Designing the Software Architecture of an Embedded System with UML 2.0
	Behaviors Generation from Product Lines Requirements
	A UML Aspect-Oriented Modeling Approach for Model-Driven Software Development

	Architectural Support for Qualities
	Epilogue

