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Abstract A novel tensor interpolation method is introduced that allows Diffusion
Tensor Imaging (DTI) streamlining to overcome low-anisotropy regions and per-
mits branching of trajectories using information gathered from the neighbourhood
of low-anisotropy voxels met during the tracking. The interpolation method is per-
formed in Log-Euclidean space and collects directional information in a spherical
neighbourhood of the voxel in order to reconstruct a tensor with a higher linear
diffusion coefficient than the original. The weight of the contribution of a certain
neighbouring voxel is proportional to its linear diffusion coefficient and inversely
proportional to a power of the spatial Euclidean distance between the two voxels.
This inverse power law provides our method with robustness against noise. In or-
der to resolve multiple fiber orientations, we divide the neighbourhood of a low-
anisotropy voxel in sectors, and compute an interpolated tensor in each sector. The
tracking then continues along the main eigenvector of the reconstructed tensors.
We test our method on artificial, phantom and brain data, and compare it with (i)
standard streamline tracking, (ii) the Tensorlines method, (iii) streamline tracking
after an interpolation method based on bilateral filtering, and (iv) streamline track-
ing using moving least square regularisation. It is shown that the new method com-
pares favourably with these methods in artificial datasets. The proposed approach
gives the possibility to explore a DTI dataset to locate singularities as well as to
enhance deterministic tractography techniques. In this way it allows to immediately
obtain results more similar to those provided by more powerful but computationally
much more demanding methods that are intrinsically able to solve crossing fibers,
such as probabilistic tracking or high angular resolution diffusion imaging.
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1 Introduction

Diffusion Tensor Imaging (DTI) is a Magnetic Resonance (MR) technique that al-
lows quantitative measurement of three-dimensional diffusion of water molecules in
biological tissues [5, 35]. DTI has found many applications in medicine and neuro-
science [25,45] and nowadays is the only method enabling in vivo and non-invasive
exploration of architectonic organisation of human brain (among other organs), par-
ticularly of the cerebral white matter. Self-diffusion of water molecules in white
matter is more probable to occur along neural fibers than perpendicular to them [8],
leading to anisotropic diffusion of water which reflects the fibrous structure and the
directional arrangements of bundles of axons [7]. Although axon myelination seems
not to be essential for diffusion anisotropy [52], it is widely assumed to be the major
barrier to water diffusion in brain white matter.

The DTI method approximates the diffusion process in each voxel of a DTI
dataset by modelling the probability density function of water displacement via a
second order diffusion tensor that represents the covariance matrix of a Gaussian dif-
fusion process. This tensor is expressed as a three-by-three symmetric non-negative
definite matrix. For each voxel, the tensor’s eigensystem is used to describe the lo-
cal diffusion process; in particular, the principal eigenvector (corresponding to the
largest eigenvalue) shows the direction of main diffusivity.

DTI provides an estimation of anatomical connectivity patterns and reconstructs
fiber pathways within the human brain [35]. Several techniques have been proposed
in the literature: deterministic tractography (or fiber tracking) [4,14,24,30] is one of
the most commonly used techniques and relies on the assumption that the principal
eigenvector of a tensor accurately describes the orientation of the underlying fiber
bundles. This information is used to perform streamlining (or other line propagation
techniques) in the vector field induced by the principal eigenvectors of all voxels in
the dataset. Fiber tracking has been shown to be effective in many brain regions.

A major limitation of DTI is the fact that local diffusion information is not always
sufficient to determine the underlying fiber direction. In the case of low anisotropy,
i.e., when the two biggest eigenvalues (or even all three) have comparable magni-
tude, the principal eigenvector of the tensor does not necessarily correspond to the
main diffusion direction. In this case a tensor representation can sometimes provide
an approximated average of the multiple compartments present within a voxel [51]
and thus the streamlining may suffer from cumulative tracking errors that could lead
to erroneous results [28, 41].

Fractional anisotropy (FA) is a measure of the anisotropy of a tensor. Voxels with
a small FA mainly occur because of partial volume effects at locations where fiber
crossing, fiber branching, or fiber kissing occur when two fibers meet and depart
from each other within a voxel [1, 22] (cf. Fig. 1). The presence of low-anisotropy
voxels is also related to the resolution of DTI data (being roughly 2× 2× 2 mm3,
while axons have a diameter in the order of µm) and to the high susceptibility of
DTI to noise during data acquisition [35, 37]. The inability to deal with areas of
low anisotropy and to distinguish among singularities (i.e., crossing, branching, or
kissing fibers) is considered to be the biggest problem of DTI [6,30,46]. Thus a ten-



Enhanced DTI tracking with Adaptive Tensor Interpolation 3

sor representation may not always be adequate to describe the underlying white
matter structure. Possible solutions are to perform MR acquisition with a large
number of gradient directions, as in High Angular Resolution Diffusion Imaging
(HARDI) [44] or Q-ball imaging [43], or process the data using probabilistic trac-
tography with multiple fiber orientations [9]. However, these methods require longer
scanning times and longer preprocessing steps (computing the directional probabil-
ity distributions needed for probabilistic tractography is very time consuming) and
are not always available in current clinical environments.

The method proposed in this paper aims to improve deterministic DTI tracking
by adding the ability to solve singularities without introducing a different diffusion
model. We present a tensor interpolation method which can achieve noise reduction
and resolve singularities to enhance subsequent streamline tractography in areas of
low anisotropy. The method improves deterministic fiber tracking by interpolating
voxels with low anisotropy reached during the tracking process. In such voxels di-
rectional information is gathered from the neighbourhood and the track is split to
follow both crossing or kissing fibers. Our approach provides a good alternative
when more involved approaches are not available or when the emphasis is more on
speed than quality: while probabilistic tractography requires hours of preprocessing,
our method detects and resolves fiber crossings in a few seconds.

2 Related Work

The issue of characterising fiber orientation in voxels with a population of more
than one fiber has been addressed in several ways in the literature [23]. Model-
based approaches include for instance multiple tensor fitting [11, 40, 44], proba-
bilistic techniques [9, 10, 27, 29, 31], DTI tracking based on front propagation al-
gorithms [32, 33, 38], and higher order tensor models [20]. Model free approaches
include Diffusion Spectrum Imaging (DSI) [47], HARDI [44] and Q-ball Imag-
ing [43]. For a review of tracking methods we refer to [2].

The importance of considering singularities in fiber tracking algorithms has been
shown by Behrens et al. [9]. Nevertheless, depending on the quality of the data
and the complexity of the tissue, model parsimony measures are required to deter-
mine when more complex models are justified [23]. For instance, probabilistic and
front propagation algorithms can intrinsically resolve singularities but have the ma-
jor drawback not to output a connection path but values describing the likelihood to
find a connection between two brain regions. Hence the user has to heuristically set
a threshold on these values and decide how reliable the result is.

The method proposed in this paper has been inspired by three different papers:
Hamarneh & Hradsky’s bilateral filtering of tensors [19], the surface reconstruc-
tion method via Coulomb potentials [21], and the Tensorlines propagation method
by Weinstein et al. [48]. Bilateral filtering of DTI data is a technique that tries to
reduce noise by identifying and delineating areas with similar diffusion properties.
Several papers on interpolation of tensor data or of expressions derived from tensors
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(such as eigenvalues, eigenvectors, or FA) have been published [16, 18, 36, 42]. For
instance, Westin and Knutson [50] have shown how normalised convolution can be
used as regularisation of tensor fields. Welk et al. [49] proposed median filtering,
and Castano-Moraga et al. [12] proposed anisotropic interpolation of DT-MRI data.
Hamarneh’s method is the application of bilateral filtering to DTI images and seems
to perform well in detecting edges in tensor fields. It can also handle, as a special
case, tensor interpolation; see the Appendix for more information on this method.

The surface reconstruction method proposed in [21] is not related to DTI; it is
an approach that tries to gather the necessary information from the whole dataset,
weighting the contribution of each sample by its distance from the area to be in-
terpolated. Using the whole dataset instead of only a certain neighbourhood of the
surface gives this method a better resistance to noise. We incorporate an adapted
version of this distance weighting in our method.

The Tensorlines method [48] does not address the issue of estimating a smooth
tensor but it is a technique that adaptively interacts with streamline propagation us-
ing the whole local tensor information to deflect the incoming tracking direction. In
this method the tracking direction in a voxel is defined by the collinearity between
the local main eigenvector and the main eigenvector of the previously visited voxel.
This method does not solve singularities but can perform tracking in low-anisotropy
regions and can produce longer tracks than standard streamlining. A drawback of
this method is that the integration step for tracking the fibers is equal to the voxel
size, while standard streamlining usually uses smaller integration steps. Further-
more, this tracking technique seems to be very sensitive both to noise and to the
parameters set by the user, who has to choose the relative weight of the incoming
direction for the local tracking.

Another interpolation method that adaptively interpolates tensors along stream-
lines is the technique proposed by Zhukov et al. [53]. This method is based on
a moving least square regularisation of the tensors along the streamline. After re-
constructing a continuous tensor field in the volume through trilinear interpolation,
the method finds a polynomial that fits the data, in a least square sense, in a re-
gion around the tensor to be interpolated. The fitting depends on the location, the
orientation of the streamline at the point, and the history of motion along the stream-
line. This method was successfully applied to brain as well as heart diffusion data
[53, 54].

3 Methods

Our method is meant to enhance deterministic tracking techniques by interpo-
lating diffusion information from neighbourhoods of voxels with low anisotropy.
Inspired by [48] and [53], we do not apply interpolation to every voxel of the
dataset but only to those voxels reached during tracking. When a voxel with low
anisotropy is reached, regional information is gathered from the surrounding voxels
and this is used to find the direction, or directions, in which to continue the tracking.
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This prevents, in contrast to global interpolation, that the interpolation affects high
anisotropy as well as low-anisotropy voxels.

The basic steps of our algorithm are the following:

1. Choose a starting voxel in the dataset and start tracking a fiber.
2. Continue the tracking until a voxel with low FA is reached (FA< 0.3).
3. If such a voxel is encountered, interpolate the neighbouring voxels to find an

interpolated tensor with higher FA than the original. If this is possible, continue
the tracking along the main eigenvector of this tensor.

4. Visualise the resulting fiber.

3.1 Tensor Interpolation

Diffusion tensors do not form a vector space and special attention must be paid
when performing calculations on them [34] (cf. Fig. 6). The value of the determi-
nant of a tensor is in fact a measure of the dispersion of the diffusion process [3]
and Euclidean averaging of tensors has been shown to lead tensor swelling ef-
fects [13, 17, 42]. This could lead to a decrease of FA and to a possible stopping of
the tracking algorithm. Therefore tensor averaging is performed in Log-Euclidean
space as proposed by Arsigny [3]. Performing computations in this space prevents
the increase of the determinant of the averaged tensor [15].

We recall here that the logarithm of a tensor T is defined as

logm(T ) = RT log(D)R,

where D is the diagonal matrix of the eigenvalues of T and R is the matrix of its
eigenvectors. The formula for tensor exponentiation expm is analogous.

Given a (low-anisotropy) voxel at a certain position x, the corresponding tensor
T (x) is interpolated by gathering information from a neighbourhood of x containing
N voxels. The weight of the contribution of a certain neighbouring voxel at position
ξi is set proportional to its linear diffusion coefficient CL(ξi) and, like in [21], in-
versely proportional to a power n of the spatial Euclidean distance between the two
voxels x and ξi:

w(x,ξi) = CL(ξi)d(x,ξi)−n (1)

The linear diffusion coefficient CL is a rotational invariant of a diffusion tensor [26]
that measures the amount of linear diffusion in comparison to the overall diffusion.
It is defined as

CL =
λ1−λ2

λ1 +λ2 +λ3
(2)

where λ1,λ2,λ3 are the three eigenvalues of the tensor, ordered from the largest to
the smallest.

For a low-anisotropy voxel x an interpolated tensor T̃ (x) is thus computed ac-
cording to the following formula:
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T̃ (x) = expm

(
k · logm(T (x))+(1− k) ·

N

∑
i=1

w(x,ξi)
W (x)

logm(T (ξi))

)
(3)

where

W (x) =
N

∑
i=1

w(x,ξi) (4)

is the total weight at voxel x. The parameter k weights the influence of the tensor
T (x) and the influence of the neighbouring tensors T (ξi). It allows us to divide the
local and regional information into two complementary components. As explained
above, the tensor logarithm and tensor exponentiation used in this equation are ob-
tained by computing the eigenvalues and eigenvectors of the tensor field.

The weighting provided by CL ensures that voxels with predominantly linear
diffusion will provide more information than voxels with planar or isotropic diffu-
sion. We prefer to use the linear coefficient instead of the more commonly used FA
because we eventually aim to eigensolve the interpolated tensor and find proper di-
rections to follow during tracking. For this reason we want to give the same weight
(given equal spatial distance from the voxel to be interpolated) to voxels with planar
diffusion and to voxels with isotropic diffusion; using FA would have given more
weight to voxels with planar diffusion.

The inverse power law dependence of the weight on the distance extends the area
of influence so that even voxels further away will contribute to the interpolation.
This approach allows us, by taking the exponent n > 1, to consider a wider area of
influence than using a weighting that is linearly proportional to the inverse of the
distance. As shown in [21], this provides our method with more robustness against
noise. In contrast to the approach of [21], we do not extend the radius of influence
to the whole dataset, which would not be physically plausible for DTI brain data,
but restrict it to a spherical neighbourhood of the voxel under consideration. In the
artificial dataset of Fig. 3, where the low FA area is very large, a neighbourhood of
10 voxels was used for tracking; a neighbourhood of only 5 voxels was used for the
tracking in the synthetic volume and in the brain volume.

3.2 Extended DTI model

Because low-anisotropy voxels are mainly due to partial volume effects, the tensor
model cannot distinguish among cases in which crossing, kissing or branching fibers
occur within a single voxel (cf. Fig. 1). Thus, interpolation techniques may fail or
lead to erroneous results and it is not possible to tell if the tracking is following the
correct direction once it encounters a low FA voxel.

The second ingredient of our approach is meant to tackle this problem as fol-
lows. Whenever the tracking enters a low anisotropy voxel x, its 3D neighbour-
hood is divided in 26 sectors Si, one per direct neighbour (on the voxel grid, us-
ing 26-connectivity). An interpolated tensor T̃i(x) is computed for each sector Si,
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Fig. 1 Schematics of possible scenarios in a local fiber configuration. Within a voxel the fibers can
(a) cross each other, (b) kiss each other or (c) a fiber can split into two branches.

Fig. 2 Dataset subdivision when a low FA voxel is reached by the tracking (2D case; the 3D case
is a straightforward extension). a) The figure shows two fibers meeting in the center of an example
dataset. Tensors are displayed as ellipsoids whose major axis corresponds to the main eigenvector
and whose eccentricity depicts the amount of anisotropy; the colour indicates the direction of main
diffusivity (red: horizontal, blue: vertical). A seed is positioned in the black spot. b) When the
tracking (black line) reaches a low FA voxel (square) the dataset is uniformly subdivided into eight
sectors; each sector is centered at a direct neighbour of the low-FA voxel. Tensors are computed in
each slice according to equation Eq. (3).

i = 1, . . . ,26 according to Eq. (3), by interpolating the tensors of sector Si (cf. Fig. 2).
For each sector Si, centered at a voxel x, a likelihood value li(x) is computed by

li(x) = (C̃i
L(x)vi(x)) ·ui (5)

where vi(x) is the principal eigenvector of the interpolated tensor T̃i(x) and ui is the
unit vector bisecting sector Si (here u · v denotes the dot product of two vectors u
and v). C̃i

L(x) is the average distance-weighted linear diffusion coefficient in sector
Si,
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C̃i
L(x) = ∑

j∈Si

CL(ξ j)d(x,ξ j)−n.

The values li(x) are used as the likelihood for each sector Si that the tracking
should continue along the direction ui(x) (cf. Fig. 2). Because of the impossibility of
differentiating between crossing, kissing or branching fibers, we continue tracking
along the bisections of the two sectors with the highest likelihood value. Sectors
whose unit vector forms an angle bigger than 80 degrees with the incoming tracking
direction are discarded (according to the literature, a fiber bundle should not bend
more than 80 degrees within a single voxel). Doing so we both spot the singularity
and continue tracking along the correct direction.

Although it would in principle be possible to follow more directions, we chose to
continue the tracking only along two directions, resolving in this way the crossing
of not more than two fibers. It is not possible to determine the number of fibers that
may produce the partial volume effect in a voxel, and two is obviously the lower
bound.

4 Results

In this section we present results of our method for artificial data, phantom data and
DTI brain scans; the method is also compared with existing techniques.

4.1 Artificial data

4.1.1 High anisotropy area with a low-anisotropy core

The first artificial dataset we used consists of a 20×20×20 three-dimensional ten-
sor field containing high-anisotropy voxels (FA = 0.85) but with a cubic (7×7×7
voxels) low-anisotropy core (FA = 0.1), cf. Fig. 3, left upper picture. Tensors in the
high-anisotropy area are aligned to the vertical direction, while tensors in the low-
anisotropy area are aligned to the horizontal direction. This dataset is used to com-
pare our method (streamline tracking combined with the new interpolation method)
with (i) standard streamline tracking, (ii) the Tensorlines method, (iii) streamline
tracking after an interpolation based on bilateral filtering of tensors (see the Ap-
pendix) and (iv) streamline tracking using moving least square regularisation. The
tests conducted on this dataset explore the ability of the different approaches to re-
construct fibers passing through the low-anisotropy area.

White Gaussian noise was added to each tensor component. Figure 3 shows the
central slice of the dataset and a comparison among standard streamline tracking,
Tensorlines and our new method. Deterministic tractography was achieved using
Euler integration. The top right figure shows that standard tracking stops as soon as
it reaches the low-FA area. Tensorlines tracking (bottom left) gets distorted already
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with a low noise level (σ = 0.02), while our method (bottom right) is able to re-
construct the connection between the upper part and the lower part of the dataset.
For illustration purposes, the interpolation was applied to the whole dataset (and not
only to the voxels reached by the tracking) to show its effects on directionality and
on FA values.

Fig. 3 Top left: the artificial dataset is a 20×20×20 three-dimensional tensor field consisting of
highly anisotropic tensors (FA= 0.85) with a 7×7×7 low-anisotropy area (FA=0.1) in the middle.
The picture shows the central slice of the dataset. Background colour represents FA (black: 0,
white: 1); the colour of the ellipsoids represents direction (blue: vertical, red: horizontal). Top right:
white Gaussian noise (σ = 0.02) was added to each tensor component. Streamline tracking (red
line) was seeded in a single voxel in the top of the picture. Bottom left: the Tensorlines technique.
Bottom right: streamline tracking after our new tensor interpolation.

Figure 4 shows a comparison among our method, interpolation based on bilateral
filtering, and Zhukhov’s moving least square regularisation. Since these methods
were all able to track through the low-anisotropy region of Fig. 3, we measured the
effectiveness of the three interpolation techniques on three different voxels in the
dataset: the voxel in the middle of the low-anisotropy area; a voxel with low FA,
directly on the border of the inner low-FA core, and a high-FA voxel on the border
of the inner core. Three different measures were used to compare the techniques.
First, the FA value of the interpolated voxel; this shows the ability of each technique
to gather anisotropy from the neighbourhood. Second, the Log-Euclidean distance
between the interpolated voxel and a voxel in the high-FA area (before the noise
addition); this indicates the ability to reconstruct the tensors. Third, the angular
difference, in degrees, between the main eigenvector of the reconstructed tensor
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and the main eigenvector of a voxel in the high-FA area (before the noise addition);
this indicates the ability to perform correct tracking after interpolation.

The experiments were conducted at several noise levels. Gaussian white noise
was added individually to each tensor component with standard deviation σ varying
between 0.001 and 0.025. For each noise level we repeated the experiment 25 times.
When adding Gaussian noise, we maintained the non-negative definiteness of the
diffusion tensor. This prevents to generate tensors with non positive eigenvalues
which are difficult to interpret physically (since they describe non positive diffusion
factors) [3].

As seen in Fig. 4, the interpolated tensors present an FA always bigger than 0.3,
even at relatively high noise levels (a threshold of FA = 0.2 is usually used as a stop-
ping criterion for streamline tractography). Our method is more effective in restoring
high-FA values than the interpolation based on bilateral filtering, and it is also more
effective than moving least square regularisation, except for high noise levels. The
Log-Euclidean distance between the interpolated tensors and the “expected” tensor
is quite small in all three cases. Again, our results show lower Log-Euclidean dis-
tances than those achieved by the interpolation based on bilateral filtering, except
for a small region below σ = 0.02 in Fig. 4(f). Compared with moving least square
regularisation, our method produces lower Log-Euclidean distances especially for
the voxel the center of the low FA region (Fig. 4(d)). Regarding the angular error of
the three interpolation techniques we see no significant difference, see Fig. 4(g, h,
i). The average angular error grows roughly linearly with the amount of noise, and
it does not exceed 6 degrees (at σ = 0.025).

4.1.2 Crossing fibers

The second artificial dataset consisted of three fibers that meet each other in the cen-
ter of a 20×20×20 dataset. Each fiber is represented by a strip of high-FA voxels
(FA = 0.85). The dataset was used to evaluate the ability of our method to recog-
nise directional information in different sectors of the dataset. Figure 5(left) shows
a slice of the dataset where the three fibers cross. Tracking was seeded at the top
of the figure and the track did split when it reached the low-FA area. White Gaus-
sian noise was added to each tensor of the dataset and the tracking was repeated 25
times per noise level; the standard deviation of the noise varied from 0.001 to 0.25.
Figure 5(right) shows statistics on the ability to find the correct fibers as a function
of noise level. The blue line represents the probability to find all five segments that
meet in the low-FA area (the incoming direction was not considered as a possible
solution). The blue shaded area represents its standard deviation. The red line in-
dicates the probability to find the two fibers that the algorithm should detect, i.e.,
the only two fibers forming an angle smaller than 80 degrees with the incoming
direction. The red shaded area is its standard deviation.
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Fig. 4 Comparison between results achieved by our method (red lines), by the interpolation based
on bilateral filtering (blue lines), and by the moving least square regularisation method of Zhukov
et al. (green lines). Error measures were computed for three different voxels in the dataset shown in
Fig. 3: a voxel in the middle of the low-anisotropy area (column 1), a voxel with low FA, directly on
the border of the inner low-FA core (column 2), and a high-FA voxel on the border of the inner core
(column 3). Row 1: FA value of the interpolated voxel. Row 2: Log-Euclidean distance between the
interpolated voxel and a voxel in the high-FA area. Row 3: angular error of the interpolated voxel.
All error measures are shown as a function of noise level σ . Each line represents the average of 25
runs and the shaded area indicates the corresponding standard deviation.

4.2 Phantom data

The next dataset considered was a physical phantom DTI dataset representing two
90deg crossing fibers. The dataset was made of Dyneema R© fibers. The fibres were
grouped in parallel bundles of 780 filaments which were crossed, surrounded by a
shrinking tube, and immersed in water (Courtesy of E. Fieremans, NYU Medical
Center, and J. Sijbers, Univ. of Antwerp). Figure 7 shows a comparison among stan-
dard deterministic tractography, our method and the results of probabilistic tracking
performed with FSL [39]. The white disc indicates the position where the tracking
was seeded. No constraints were set on the angles between the incoming and the
outgoing directions. Standard deterministic tractography was not able to resolve the



12 Crippa, Jalba, Roerdink

Fig. 5 Left: artificial dataset with three fibers crossing in the middle. The figure shows the central
slice of the dataset. Tracking was seeded in the black spot. The tracking follows the fiber until the
low-anisotropy area in the middle and then detects all other fibers. Right: The blue line shows the
probability, as a function of noise level, to detect all five fibers meeting in the center (the incoming
direction was not considered as a solution). The red line indicates the probability to find the two
fibers that the algorithm should detect (the only two fibers forming an angle smaller than 80 degrees
with the incoming direction).

crossing: the tracking stopped when it encountered a low FA voxel. Our algorithm
(which is deterministic as well) recognised all the fiber segments and it was able to
continue tracking in all the directions detected by the much more computationally
demanding probabilistic method.

Fig. 6 Comparison between averaging of tensors in Euclidean versus Log-Euclidean space. First
row: three input tensors. Second row: tensor A is obtained by Euclidean averaging, tensor B by
log-Euclidean averaging. The tensor in A shows a lower FA compared to the tensor in B.
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Fig. 7 Tracking performed in a physical phantom DTI dataset depicting two crossing fibers. The
pictures show a slice of the dataset. The white disc indicates the position where the tracking was
seeded. Left: tracking results of standard deterministic tractography; the tracking stopped in the
crossing area. Middle: results of our algorithm; crossing fibers were detected and all branches
were found. Right: tracking by probabilistic tractography with FSL.

Fig. 8 Tracking performed for a DTI brain dataset. The red square in the left picture indicates the
Corpus Callosum. The right picture shows a magnification of the red area. The white disc indicates
the position where tracking was seeded. Our algorithm was able to detect the blossoming of the
fibers of the Corpus Callosum below the cerebral cortex (leftmost branch) and the intersection
between Corpus Callosum and Corona Radiata (rightmost branch).

4.3 Brain data

Results of the tracking for a DTI brain data set are shown in Fig. 8. A coronal slice
of the brain is shown in the leftmost figure, colour coded according to the FA values
(black represents FA=0 and white FA=1). Seeding the tracking in the lower part of
the body of the Corpus Callosum, our method was able to detect the blossoming
of the upper part of the Corpus Callosum where the fibers reach the cerebral cortex,
and to resolve the low-FA area generated by the intersection of Corpus Callosum and
Corona Radiata. Brain dataset courtesy of Gordon Kindlmann, Scientific Comput-
ing and Imaging Institute, University of Utah, and Andrew Alexander, W. M. Keck
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Laboratory for Functional Brain Imaging and Behavior, University of Wisconsin-
Madison.

5 Conclusions

DTI tractography allows the inference of connectivity patterns within white matter
of the brain. There are two main limitations of this technique. The first is that the
tensor model does not always reflect the underlying white matter structure, as it
is not able to deal with singularities such as crossing, branching, or kissing fibers.
The second limitation is the inability of DTI tracking to reconstruct more than one
trajectory per seed point.

In this paper we introduced an improved tracking technique that allows DTI
streamlining to solve low-anisotropy regions and permits branching of trajectories.
Our method performs interpolation for any low-anisotropy voxel met during track-
ing. Interpolation is computed in Log-Euclidean space [3] and collects directional
information in a spherical neighbourhood of the voxel in order to reconstruct a ten-
sor with a higher linear diffusion coefficient than the original. The weight of the
contribution of a certain neighbouring voxel is proportional to its linear diffusion
coefficient and inversely proportional to a power of the spatial Euclidean distance
between the two voxels. This inverse power law provides our method with robust-
ness against noise [21] . In order to resolve multiple fiber orientations, we divide the
neighbourhood of the low-anisotropy voxel in 26 sectors, and compute an interpo-
lated tensor in each sector according to the weighted tensor interpolation formula.
The tracking then continues along the main eigenvector of the reconstructed tensor.

We tested our method on artificial, phantom and brain data, and compared with
existing methods: (i) standard streamline tracking, (ii) the Tensorlines method, (iii)
streamline tracking after an interpolation based on bilateral filtering, and (iv) mov-
ing least square regularisation. We showed that in contrast to standard streamline
tracking, our method is able to continue tracking in low-anisotropy areas, while Ten-
sorlines tracking gets distorted already for low noise levels. Compared to streamline
tracking after the interpolation based on bilateral filtering, our method is more ef-
fective in restoring high anisotropy values. Compared to the moving least square
regularisation, our method generally performed better except for high noise levels.
For phantom and real MRI data, we found that our method was able to detect the
same tracts as probabilistic tracking.

Due to its ability to resolve cases of multiple fiber orientations in a single voxel
our method gives the possibility to obtain, in comparison to standard deterministic
tractography, results more similar to those provided by more powerful techniques
that are intrinsically able to solve crossing fibers, such as high angular resolution
diffusion imaging, which is not always available, or probabilistic tracking with mul-
tiple fiber orientations [39], which is computationally much more demanding: while
probabilistic tractography requires hours of preprocessing, our method detects and
resolves the crossing in a few seconds. Furthermore, in contrast to the probabilistic
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tractography, in our approach there is no need to perform heuristic thresholding for
interpreting the results.

Future work will include a deeper study on the results achievable with this
method in comparison with probabilistic tracking and other techniques that allow
multiple fiber orientations per voxel. Validation of the results, e.g., by histological
analysis, will certainly be a requirement for the practical application of this and
other DTI techniques.
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7 Appendix

Bilateral filtering of diffusion tensor data is achieved according to the following
formula [19]:

T (x) = expm

(
N

∑
i=1

wi(x)
k(x)

logm(T (ξi))

)
(6)

wi(x) = α f1(dT (T (x),T (ξi))+(1−α) f2(dS(x,ξi)) (7)

where dT (T (x),T (ξi)) is the tensor dissimilarity between the two tensors T (x) and
T (ξi). dS(x,ξi) is the spatial Euclidean distance between the voxels x and ξi. Here
f1 and f2 are monotonically decreasing functions that map dT and dS in the inter-
val [0,1]. The value α weights the contribution of the two distances. We used a
simplified version of bilateral filtering, by setting α to zero and thus weighting the
contribution of the tensor T (ξi) only according to the Euclidean distance between
voxels x and ξi.
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