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The cumulant expansion for linear stochastic differential equations is extended to the case of linear 

stochastic difference equations. We consider a vector difference equation, which contains a deter- 

ministic matrix A, and a random perturbation matrix A,(t). The expansion proceeds in powers of ar,, 

where rc is the correlation time of the fluctuations in A,(t) and a a measure for their strength. 

Compared to the differential case, additional cumulants occur in the expansion. Moreover one has to 

distinguish between a nonsingular and a singular A,. We also discuss a limiting situation in which the 

stochastic difference equation can be replaced by a stochastic differential equation. The derivation is 

not restricted to the case where in the limit the stochastic parameters in the difference equation are 

replaced by white noise. 

1. Introduction 

In this and a subsequent paper we study the stochastic difference equation 

u(t) = A(t, w)u(t - 1) +f(t, W) (t = to + 1, r, + 2,. . .) , (l.la) 

&) = r+@) , (l.lb) 

where u(r) is an n-dimensional vector. A(r, co) and f(r, co) are a random 
time-dependent coefficient matrix and inhomogeneous vector, respectively*. The 
initial condition h(o) may in general be taken random too. The random nature 
of all these quantities is indicated by the parameter o, which is an element of a 
set 52 which, together with a cr-algebra C on Sz and a probability measure P on 
C, constitutes a probability space. In the following we will usually omit the 
parameter 0. 

We are interested in the statistical properties of the solution u(r, w) of (1 .l), 
such as its moments, correlation function (or covariance), distribution function 
etc., when the statistical properties of A, f and u,, are prescribed (by giving their 

*We use the words “random” and “stochastic” interchangeably. A non-negative matrix, whose 
columns sum to one will be called a “Markov matrix”‘), instead of “stochastic matrix”2). 

037%4371/83/0000-0000/$03.00 0 1983 North-Holland 



456 J.B.T.M. ROERDINK 

joint probability distribution or joint moments, cumulants etc.). Averages with 
respect to P are indicated by angular brackets, e.g. 

(u(t)) = dP(o)u(t, 0). s (1.2) 
62 

Probably the first studied equations of this type are the autoregressive equa- 
tions, which are used in time series analysis and economy3-‘). In this case the 
inhomogeneous term f in (1.1) is random, but not A. Such equations are called 
additive. 

Equations where also the matrix A is random are called multiplicative. A 
one-dimensional example was discussed by Paulson and Uppuluri’) in their study 
of compartment problems. For an application to random walks in random 
environments see ref. 9, section 4. A summary of known results for the one 
dimensional case is given by Vervaat”), who also provides an extensive bibli- 
ography. The n-dimensional case was studied by Kesten”). 

All authors mentioned so far consider the situation where the sequence of pairs 
(A (t),f(t)) is independent identically distributed (i.i.d), although A andfmay be 
statistically dependent. In this special case it is often possible to obtain exact 
results concerning the limiting behaviour of the probability distribution of u(t) as 
t+co. 

In this paper we will be concerned with eq. (1.1) where {A(t)) is an auto- 
correlated stochastic matrix sequence, f(t) is identically zero and the initial 
condition is non-random. In a second paper we treat the general case where both 
A andfare autocorrelated and possibly crosscorrelated with each other and with 
the random initial condition ug(o). 

Because of the much higher complexity of the problem it will in general be 
impossible to obtain exact results?. So our goal will be to obtain a systematic 
perturbation expansion for the case of small and rapid fluctuations in A. That is 
we assume A(t) to be of the form A(t) = A, + uA,(t, o) where A, is a deterministic 
matrix, A, random and a a small parameter measuring the magnitude of A,. An 
important property of the expansion is that it is valid for large t, i.e. it avoids 
secular terms. 

The method we use is a straightforward generalization of the cumulant 
expansion for linear stochastic differential equations’3m16). The basic assumption 
is that the fluctuations in A,(t, o) (as measured by the parameter a) are small and 
that the cumulants of A, decay rapidly. In this case one can define an auto- 
correlation time z, which is a measure for the time interval within which the 

tFor some limit theorems on products of random (possibly correlated) matrices, see Furstenberg 

and Kesten’*). 
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autocorrelation is still appreciable. The expansion then proceeds in powers of UT,. 
The, result is that the average of the solution u(t, o) of (1.1) withf = 0 and a fixed 
initial condition U, obeys itself a first order difference equation 

(W) = (1 + K(t/t,)}(u(t - 1)) (t = 4) + 1, t, + 2,. . .) ) (1.3) 

where K(t/t,,) is a deterministic matrix, which is obtained in the form of an 
expansion involving the correlation functions of A,(t, w). Moreover, K(t/t,) is 
independent of t,, when t - I,, >> t,. Higher moments of U, such as (u(t)@ u(t)) 
where 0 denotes a Kronecker product, can be obtained in the same way, because 
u(t) @ u(t) obeys an equation of the same type as u(t) itself. Multi-time averages, 
such as the correlation functions (u(t)Ou(t’)) will be.considered in part II. 

Equations of type (1.1) with autocorrelated noise have recently been studied in 
population biology as a model for age-structured populations in random environ- 
ments, see for example Cohen”), Tuljapurkar and Orzack”) and Tuljapurkar19). 
These authors assume that the matrix A,(& o) in (1.1) is an n-dimensional Markov 
chain* endowed with certain ergodic or mixing properties which are mathe- 
matically more precise formulations of our assumption of a small correlation time 
r,. In this case the bivariate process (u(t), A (t)} constitutes again a Markov chain, 
which makes it possible to evaluate various quantities exactly, such as moments 
or the invariant long run distribution (see ref. 17, III). In part II we will show that 
the moments satisfy an exact difference equation from which they can easily be 
calculatedz6). 

It should be emphasized that we do not make these assumptions in the present 
treatment. Our only assumptions concern the parameters c( and r, as explained 
above. It will turn out that if CIO, is small enough the lowest order moments of 
A,(t) determine the value of (u(t)), whatever the precise nature of A,(t) may be. 
Moreover, even if {A,(t)} is a Markov chain and therefore (u(t)) can be exactly 
calculated, it may well be hard to do so explicitly (even numerically) if the 
dimension of A, is large. For this reason Tuljapurkar”) also resorted to a 
perturbation expansion, but he did this only for the sum of the (in his case 
nonnegative) components of u(t) and again assumed a Markov chain A,(t). 

The paper is organized as follows: section 2 is devoted to the derivation of the 
expansion in the case that the unperturbed matrix A, is nonsingular. (Since we will 
repeatedly use the analogy with the expansion for a s.d.e.t, we summarize the 
results for that case as far as necessary in an appendix.) The reader who wants 

*By a Markov chain we mean a Markov process with discrete time parameter and discrete or 

continuous state space. 

t Henceforth we use the abbreviations: r.d.e. = random difference equation; s.d.e. = stochastic 

differential equation. 
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to skip the details of the derivation finds a summary of the expansion to order 
u2r, in subsection 2.5. 

Section 3 considers different limiting cases. In particular we show that in a 
suitable limit we can replace (1.1) by a s.d.e. in the sense that the result of the 
cumulant expansion for the r.d.e. approaches that for the s.d.e. Also the first 
correction to this limit is calculated for the case in which the discreteness of time 
steps constitutes only a small deviation. 

Section 4 illustrates the results’with a simple example for which exact results 
are available for comparison. Finally we consider in section 5 the case that the 
deterministic A, is singular, which necessitates some modifications in the results 
of section 2. 

2. The cumulant expansion 

2.1. Definition of the interaction representation 

Consider the vector difference equation 

u(t) = A@, o)u(t - 1) (t EZ,,,,), (2.la) 

u(t,)=uo, (2.lb) 

where A(t) = A,(t) + d,(t, co), A,(t) being a deterministic matrix, A,(t, w) ran- 
dom, u(t) an n-vector and tl a parameter. We conform here to the notation of 
Miller4) and denote by I = {. . . ,-1, 0, 1, . . .} the set of all integers and 
Z, = {a, a + 1, a + 2, . .}, where a EZ. The initial condition u, is taken to be 
non-random. 

The essential assumption of the present method is that A,(t) possesses a short 
correlation time zc, in the sense that A,(t) and A,(t’) are statistically independent 
when (t - t’( % z,. E.g. if A, is generated by a Markov matrix pii we can define 7c 

by ee ‘/‘c = il I II, where 1, is the eigenvalue of pii with largest modulus smaller than 
1. 

For notational convenience we first define the analog of the matrizant2) for the 
case of a matrix differential equation (denoted by QA in the case of a s.d.e.16)). That 
is, the unique matrix solution oft 

X(t) = A(t)X(t - 1) (t ~zt~+,), 

Wo) = 1, 

*We denote the unit matrix just by 1 if no confusion is possible. 
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is written as 

i 

y ri A(s), tEI,,+,, 
XA~l4d = s=tg+l 

1, t = to. 

(2.2) 

The symbol F (in 2.2) stands for the time-ordering operator which orders the 
matrices in decreasing timeorder from left to right. The inverse of X, exists if A 
is nonsingular and is given by 

(2.3) 

where f is the anti-time-ordering operator (times increasing from left to right). 
With these definitions we now introduce the interaction representation (denoted 

by a superscript (I)) via 

u(t) = XAO(Ma(lY~) (t EZJ (2.4a) 

and 

A’,“(t) = X~‘(~l~O)~,(~)Xt”,,(t - 1/t,) (t EZ,,+ I) (2.4b) 

under the assumption that A,(t) is nonsingular on I,,, + , . Then one finds from (2.1) 
the transformed equation 

u(‘)(t) = (1 + aA’,“(t, o)}u(‘)(t - 1) (t EZ,,+J, (2Sa) 

u(‘)(tJ = Ug . (2Sb) 

2.2. The expansion 

From now on we will only consider the equation in the interaction represent- 
ation, eq. (2.5). Therefore we drop superfluous super- and subscripts and write 
(2.5) as 

du(t - 1) = aA(t, w)u(t - 1) (tEZ,,+,), (2.6a) 

Z.&J = ug . (2.6b) 

In the following we assume that the norm of A is of order one and a < 1. By the 
introduction of the difference operator A, defined by Af(t) =f(t + 1) -f(t) for 
arbitraryf, we want to emphasize the analogy with the case of a linear s.d.e. In 
fact, most of the theory for the latter case can be straightforwardly generalized 
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to the present situation of difference equations (a noteworthy exception being the 
case of a singular A,, which poses no difficulty for differential equations). 
Hence we will not repeat the arguments for expanding in cumulants rather than 
in moments, nor consider in detail the question how to justify the expansion, but 
refer to the previous literature’3-‘s). A summary of the most relevant results is 
given in the appendix. 

The formal solution of (2.6) is 

u(t)= 
[ 

T h (1 +aA(s)} 1 uo (t E&+ Jr (2.7) 
s=1fJ+l 

from which one derives the moment expansion for the average of U: 

(U(t))= l+a 

[ 

1 (A(t,))+a’ 

l,l,>ro 
,21,~~2>(0(A(tl)Act2)> 

+ . . . + a’-‘o(A(t)A(t - 1). . . A(t,+ 1)) 1 uo. (2.8) 
All summations run over all discrete values between the indicated limits. Now, in 
contrast to the expansion for a s.d.e., the series (2.8) terminates. We can of course 
formally write (2.8) as (t > ti > to, i = 1,2, . . . , I) 

(u(t)) = 1 + f a’ 

[ 

~,>~~,>,,(A(t,)A(t,). J(t,)) 1 u,, (2.9) 
/=I 

because there are no sets (tr, t2, . . . , tl) satisfying t > t, . . . > tl > to when t - to < 1. 

In the form (2.9) the analogy with the case of a s.d.e. is clearly displayed (compare 
eq. (A.3) of the appendix). 

As is well known’r’5), a series of this kind cannot be truncated to obtain valid 
approximations for large t. For this reason we use the following method?. Write 
(2.8) as 

( [ 

I-1 

d(u(t-1))= aA IT n {l+aA(s)) 
S=$+l I> uo. (2.10) 

Express u,, in (u(t - 1)) by inverting (2.8) (with t replaced by t - l), which will 
be possible if a is smal enough, and substitute the result in (2.10) to find 

A+@ - 1)) = K(Qo)(u(t - 1)) 3 (2.1 la) 

where 
r-1 

YF jJ (1 + aA( 

s=GJ+l 
-’ . 

(2.1 lb) 

tFor the justification of such a procedure, see ref. 13, 14. 
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The eqs. (2.11) constitute the central result upon which our subsequent consid- 
erations will be based. 

The matrix K(t/t,) is expanded in powers of a 

K(th) = f Krn(fl4h 
m=l 

(2.12) 

where K, is of order am. For example 

Kr = a(A (t)), 

Kz = a* 1 {(A (W (G) - (A (t))(A (~,)>)~ 
r>r,>,#J 

(2.13a) 

(2.13b) 

K3 = a3 1 {(A (W (W (G) - (A @))(A (W(Q)) 
,>l,>‘2>,o 

+ a3 C C { - (~(0~(~.J)(&2)) + (A(t))(A(t,))(A(t,))} . 
I > I, > to I z t* > 10 

(2.13~) 

The general expression for K, can be written in terms of the averaging operator 
8, defined by 

$9. . . = (. . .) . 

For later use we also introduce here the averaging operator 

4=1-8. 

Now all terms of order a”’ in (2.11 b) can be represented by 

(2.14a) 

2 by 

(2.14b) 

the formula 

K,OlhJ = am (,, c:, _ ) (A ON - PIA Ml - 9b4 (~1. . . (1 - PM (h- J) y 
I 

(2.15) 

where the asterisk means the following: after expressing the summand of (2.15) in 
the moments of A, one has to sum each term over all li, t > ti > t,,. with the 
restriction that successive time variables within the same moment are always 
decreasing (see for example (2.13~)). The summand of (2.15) has previously been 
called a “totally time ordered cumulant” (t-cumulant for short) and is denoted 
as (see also the appendix) 

(A @)A (t,) * * . ‘4 c&t- ,I>, . 

To save writing we will often use the abbreviated notation aA E i 
(i=1,2,..., m - I), aA (t) E 0, so (2.15) becomes 

K&/G = I* (01 . . . (m - l)),. (2.16) 
(Q.. I &J 
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2.3. The p-cumulants 

Now we are going to express the quantity (2.15) as a summation over the 
so-called “partially time-ordered cumulants”‘5) (abbreviated as p-cumulants). 
This is analogous to the case of a s.d.e. (eq. (A.6) of the appendix), but now 
additional cumulants emerge. 

As the first step we will collect all terms in (2.15) for which all time variables 

4, 12,. . . , t,-, take on different values (i.e. no two equal). It will be shown that 
after a relabeling of summation variables all these terms can be written as an 
ordered summation over t,, t,, . . . , t, _ Ir denoted as 

K:-“= 1 . . . . (2.17) 
[I,. . I, _ ,I 

where [t,, t2, . . . , t, _ ,] stands for the ordered sequence t, > t2 > . . . > t, _ , , and the 
summation extends over all integer values between to and t compatible with this 
ordering. The superscript (m-‘) m (2.17) indicates that all m - 1 summation 
variables are different. 

One term of (2.15) which contributes to (2.17) is that for which 
t,>t,>.. > t, _ , in the original time variables 

C (012...(m-l)),. 
[r,, . Gpl II 

Secondly one might take all terms of (2.15) with t2 > t, > t3 > t4 > . . . > t,_, . This 
means that A(t,) and A(t,) necessarily belong to different moments. So by a 
reldbeling of the summation variables t, and t2 we can write this term as 

[,,, : I - (02),(134. . . b - I>>, 
.m L 

In fact, in the case of a s.d.e. K,,, is also of the form (2.15) with all summations 
replaced by integrations, but with the same restrictions on the integration 
variables that are indicated by the asterisk. However, in the latter case there are 
no separate terms for equal integration variables* (see ref. 15, subsection 3.3). So 
we can immediately conclude that all terms in (2.15) with distinct time variables 

t,, tz, . . . , t, _ , can be written in the form (A.6) of the appendix with integrations 
replaced by summations 

K’“- 1) = 
m C (012...(m-l)),. (2.18) 

[I,. . 1, - ,I 

The symbol (. . .)p in (2.18) denotes the p-cumulant of m matrices A. It is a sum 
of (m - l)! terms (one term for each permutation of 1,2, . . . , m - l), each of 

l These are included as upper limits of the integration domains, see (A.6). 
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which is a product of t-cumulants. For the precise definition we refer to the 
appendix. The most important feature of this decomposition in t-cumulants is that 
two successive matrices A (1,) and A (tj) occurring in a permutation belong to the 
same t-cumulant if t, > tj (so i <j), but to different t-cumulants if ti < t, (i >j) (the 
reason is again that these matrices A (t,) and A (t,) originally (i.e. in (2.15)) must 
have belonged to the same or to different moments, respectively). 

Now we are left with the terms in (2.15) where two or more time variables are 
equal. Again these terms can be written as ordered summations over m - 2, 
m - 3, . . distinct time variables. The method is the same as above, the only 
difference being that successive matrices A (t,) and A (t,) belong to the same, resp. 
different t-cumulants if ti > t, (i <j), resp. ti ,< tj (i >j) (matrices with equal time 
variables can never have belonged to the same moment). For example all terms 
in (2.15) with t, = t, > t, >. . . > t,,_ , can after relabeling of time variables be 

written as 

(2.19) 

or all terms with t,=t,>t?>t,>t,>t6>‘..>tm-, yield 

c (03),( 12),( 145.. . (m - 2)), (2.20) 
[f,,.. .I, -J 

In this way one can collect all terms in (2.15) with two equal time variables which 
are larger than the remaining ones and we write them as 

c (01123...(m-2)),. (2.21) 
[r,....,r,-21 

The summand in (2.21) is a p-cumulant with equal numerals (corresponding to 
matrices with equal time variables). Its decomposition into f(m - I)! products of 
t-cumulants (of which the summands of (2.19) and (2.20) are two examples) is 
given in the appendix. Of course there are also terms with two equal summation 
variables where of the (m - 3) other ones there is one larger and (m - 4) smaller 
than these two. They can be written as 

c (012234.. . (m - 2)), . (2.22) 

In this way one obtains all terms in (2.15) with precisely m - 2 distinct time 
variables in the set (t,, tZ, . . . , t,_ ,}. The collection of all ‘these terms is denoted 
by Kp-“. 

In general we denote the collection of all terms with i distinct time variables out 
of the set {tl, t,, . . ,t,_,)byKf,i=l,2 ,..., m - 1. Since there can at most be 
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t - to - 1 different integers between t, and t we have that Kg = 0 for i > t - t, if 
m>t-to. 

Summarizing the above considerations we get the following rules for obtaining 
K,(t/t,) in (2.12): 

i) 
ii) 

iii) 

iv) 

v) 

vi) 

Choose a number ig(l, 2,. . . ,m - l}. 
Choose n, times a number 1, n2 times a 2, . . . , ni times a i, so that 

n,+n,+... ni=m - l;n,= 1,2,. . . (this can be achieved in (7-f) possible 

ways); call the sets of numbers thus obtained S,(i, m - l), 
I = 1,2, . . . ) (:I:). 

For each I, write a sequence of m dots. Write a zero on the first dot and 
place the numerals in S, on the remaining dots in nondecreasing order. 
Put brackets (. . .), around each sequence of numerals. 
Replace each numeral k by aA (and 0 by aA( and sum the 
resulting expression over t,, t2, . . . , ti where each time variable runs through 
all integer values between to and t under the restriction t, > t, > . . . > ti. 

Sum all contributions from the sets S,(i, m - 1) for different 1. This yields 
Kg. 

vii) Finally sum over all values of i to obtain 

m-l 

K&/t,) = 1 K;(t/t,). 
i=l 

Examples (all primed summations C’ are between t,, and t): 

K, = K$ = a(O), , 

K2= K~)=a2~‘(Ol)p, 
‘I 

K’,Z) = a3 z (012),; KG’) = a3 1’ (01 l), , 
11 “2 ‘I 

Kk3) = a4 1’ (0123),; Ki2’ = a4 C’ ((Oll2), + (Ol22),) , 
I, > 12 > I) 11 ’ 12 

K$‘)=x (Olll),. 
‘I 

(2.23) 

A general definition of the p-cumulant is given in the appendix. The lowest order 
ones are 

(O), = (0); (Ol), = (01) - (0)( 1) = ((01)). 
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With double brackets (( . . * )) we denote ordinary cumulantsl’). If the matrices 

A(t) and A(t’) commute for all t and t’ the p-cumulants can be expressed in 
ordinary cumulants’3). 

Finally we want to give a very formal expression for K(t/t,) from which one 
can obtain all the terms K, by expansion with respect to a. Let us first formally 
sum all terms Ki) 

f K$?=~‘(01),+(011),+(0111),+~~~ 
m=2 11 

= a* F’ (A(t):A(t,)(l - aA(t,))-‘:)p. (2.24) 

The colons in (2.24) indicate that to evaluate the p-cumulant one should first 
expand the expression between the colons in powers of a and subsequently take 
the p-cumulant of each term. In the same way one finds 

g K$) = c’ a3(A (t):A(t,)A^(t,):), , (2.25) 

where aa = aA(t)(l - aA(t)) Continuing in this way we arrive at 

K(t/t,) = a(A(t)) + c am+l c (A(t):A(t,)A(t2). . . A(t,):), 

( [ 
I-1 = aA( T fl (1 +aAl(s)) : . s=tg+l I> P 

(2.26) 

This compact but formal representation of K will be useful when studying the 
correlation functions of u(t). This will be taken up in part II. 

2.4. Estimates for large time 

It is known that the p-cumulants have the cluster property14,‘5), i.e. if the 
moments (A (t)A (t,) . . . A (t,_ ,))factorize, the corresponding p-cumulant 

@(0M,) *. . am-I))p vanishes. Since we assume that the stochastic matrix- 
sequence {A (t)) has a finite correlation “time” z,, this will be the case if there is 
a gap between two successive times ti and ti+ , large compared to z,. If two or more 
time variables in a p-cumulant are equal, the same is true if there is a gap of order 
~~ between two successive distinct time variables (this can be shown via the 
decomposition in t-cumulants along the same lines as in ref. 15, appendix A). 

As a consequence the summations in the cumulant functions K,(t/t,,) virtually 
extend only over intervals of order ?c, and in particular we may replace the initial 
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time to in K(t/t,) by - co if t - to s 7,. This enables us to deduce the following 
estimates for the successive Q’s (assuming that 11 A(t)11 is of order one*), which 
are valid after a transient time much larger than z, (compare the discussion for 
a s.d.e. in ref. 15) 

K-a, 

K$” - a(az,) , 

KP’ - a(azJ2, Ki’) - a’(az,) , 

Kf’ - a(azJ3, Kf’ - a2(azJ2, Ki’) - a3(at,) , 

(2.27) 

And generally 

’ Kg - am - i(az,)i . (2.28) 

These estimates can be sharpened in many cases. To give a concrete example, let 
us assume that 

II (A @)A 0,) . . . A (4&l( < c,lp I”- hi (lp ( < l), (2.29) 

where C,,, is a constant?. This condition is met in several important cases2’). Then 
we have the estimate 

K$-am-‘yi, y =a-. 

l-Id 
If we now define r, by 1p I = ee”‘c, then y < az,. 

The most important result of this section is that after a transient time of order 
r,, the average of the solution u(t) of (2.6) obeys itself a first order difference 
equation with coefficients which are independent of the initial time to. If {A(t)} 
is a stationary sequence the cumulant functions Km are independent of to and t 

for t - to 9 zc, e.g. 

I-l 

ae2K2 = 
I, = to+ I 

(2.3 1) 

where C(r) = (( A(t)A(t - r)>) is the autocorrelation matrix (also called covar- 
iance matrix) of A(t). 

*II. .I/ denotes a matrix norm. 
tThe dependence of the constants Cm on m determines whether the expansion (2.12) is convergent 

or asymptotic. 
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Comment 
The above considerations apply to the eq. (2.5) in the interaction representation. 

In particular, the autocorrelation time z, is that of A’,‘)(t) and is not the same as 
that of A,(t), but is modified by the deterministic matrix A,,. (See also ref. 15, 
appendix B.) An example will be given in part II, see also Tuljapurkar”). 

2.5. Result to second order in u 

We have found that if both a G 1 and ar, < 1, the average of the solution u(‘)(t) 

of (2.5) obeys the first order difference equation 

(u”‘(t)) = 1 + a(A$“(t)) + a* ,;?, ((A!l)(t)A(“(t,)))](u(“(t - 1)) , (2.32) 
0 

where ((...)) d eno es t an ordinary second order cumulant. In the original 
representation (2.1) we have in the case of a time independent deterministic matrix 
A, and after a transient period of order z, 

(u(t)) = A, + a(A,(t)) + a2 f 
r=l 

x ~40&G-14(t - d))A,' 
1 
(4t - 1)) . (2.33) 

For many practical applications this approximation will suffice. Note however, 
that even if A,(t) is a scalar Gaussian process, the approximation (2.33) is not 
exact (in contrast with the case of a s.d.e.). The reason is that although in this 
case KC”‘-‘) = 0 for m > 2, the second order cumulant of A, also occurs in the m 
cumulant functions Kg, i < m - 1 for m > 2. 

3. Limiting cases 

3.1. Comparison of time scales 

In the case of a s.d.e. we had only one dimensionless expansion parameter, viz. 
ur i3-16). To obtain a valid expansion we had to assume that uz, 4 1. In the present 
sitfiation the “time” variables are in fact just integers, so we have two dimen- 
sionless expansion parameters: u and r, (or alternatively tl and a~,). Accordingly 
we may distinguish between different limiting cases. From (2.27) we deduce that 
at any rate both a and ar, have to be small. 

a) r, = 0 (no correlations) 
Only K, contributes. {A(t)} is a sequence of independently distributed random 
matrices, i.e. there are no correlations at all. In this case the solution of (2.6) 
constitutes a Markov chain. 



468 J.B.T.M. ROERDINK 

b) rC N 1 (correlations last only a few time steps) 
All Kc, i = 1,2, . . , m - 1 are of order am, so in this case one can just expand 
in a itself. 

c) z, $ 1 (correlations over many time steps) 
Since aq must be smaller than one, we also require that a $ 1. This implies’that 
the evolution of u(t) is very slow on the original time scale (see (2.6)), but the 
correlations are relatively long-lived. Now the most important contribution to K, 
is Kp-‘). But the terms Kg-‘) are precisely those which are present in the case 
of a s.d.e. (with summations replaced by integrations). And indeed we show below 
for a one dimensional example that in a suitable limit we can replace (2.6) by a 
s.d.e., in the sense that the results of the cumulant expansions for both cases 
become identical in the limit. The effects of the autocorrelation are retained in the 
limiting procedure, so the resulting s.d.e. is in general not a diffusion equation*26). 

In section 3.3 we then calculate the first correction to this limit, which describes 
in lowest order the effect of the discreteness of time steps. 

3.2. The limit a-4, Z,+CC 

In this subsection we investigate whether we can replace the r.d.e. (2.6) by a 
s.d.e. in the limit in which the change of u(t) per time step becomes smaller and 
smaller, i.e. when a-+0. To have still a nonvanishing effect in this limit, we also 
have to rescale the independent variable t in such a way that one step on the new 
time scale corresponds to many steps on the old one. Moreover we also want to 
retain the effect of the finite autocorrelation time r, of the noise A(t) in (2.6). 
Accordingly we let r, grow indefinitely at the same rate with which the time t is 
resealed as a+O. 

To see what is involved let us consider the following one dimensional case 

Au(t) = a5(t + lb(t), 

GJ=uo, (3.1) 

where {t(t)),“=_, is a stationary random sequence with auto-correlation time r, . 
Then we know from the results of section 2 that, if az, Q 1, the average of u obeys 

d (u(t)) = [aK(‘)(t + l/t,,) + a2K(*)(t + l/to) + . . .](u(t)) , (3.2) 

where 

aK”’ = f Kz- 1) 

m=l 

(3.3a) 

and in general 

a’K(i) = f Kg-“, i = 2,3,. . , . (3.3b) 
m=i+l 

*For a direct diffusion approximation to stochastic difference equations, see refs. 21 and 22. 
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The order of magnitude of @ is given by (t - to $ T,) 

KI;1’ - am-i(a7c)i, (3.4) 

so after a transient period all functions Kc’), Kc’) . . . are expansions in powers of 
az, (i.e. the parameter a does not appear separately). From this one sees that as 
a becomes small, while az, stays constant (so z, becomes large), the most important 
contribution in (3.2) comes from aK(‘). Its terms of order a and a2 are 

K$(t + l/t,) = a(t), 
, - 10 

(3Sa) 

K$‘)(t + l/to) = a2 1 C(s;z,) , 
s=l 

(3Sb) 

where (<) is the constant average of c(t) and C(s;r,) is the autocorrelation 
function 

(3.6) 

We explicitly indicate the dependence of C on the autocorrelation time r,. In (3.5b) 
only the values of C at discrete time points occur, but we assume that C is given 
by an expression which is defined for all real S, that C is Riemann-integrable and 
Jo”O dslC(s)l < co. To be more specific we assume that C depends only on the 
quotient s/z,, so that 

c(&s;Ez,) = C(s;r,) ) v E 5 0. 

In particular this implies that 

(3.7) 

as r,-+cc 

0 

(3.8) 

at least if the integral in (3.8) is nonzero for some finite value of To. And the 
condition (3.8) is needed if we want to obtain a nonzero value for K$‘)/a in (3.5b) 
as a+O. 

Now consider the limit 

a-0, az, = constant = y , (3.9) 

where y denotes the value of the constant. Also define a new time scale 7 and a 
new function u(7) by 

t = k/al; 47) = 4b/aI), (3.10) 

where 7 can now be any real number, and [x] denotes the entier of X. In this limit 
a - ‘KY) will approach a limiting value of order y , and we expect that also the 
higher contributions a - ‘Kg- ‘), m = 3,4, . . . to Kc’) approach a value of order 

Y m - 1. But K”’ 
9 

K(3) . . . will not occur because they are multiplied by additional 
factors a. 
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So let us consider (3.2) to 0(a2) (take t, = 0 for convenience) 

d(u(t)) = [ a((> + a2 i C(s;r,) 1 (u(t)). s = I 
In terms of u(r) this yields by using (3.9) 

Then take the limit a +O. For the expression involving C we find 

b/i*1 
aCC s;I =a’f 

s=l ( > s = I 
C(as;y)+ s dr’ C(r’,y), as a-0, 

(3.11) 

(3.12) 

(3.13) 

0 

where we used (3.7) and the integrability of C in order to replace the Riemann 
sum by the integral. Thus (3.11) becomes 

(3.14) 

Now we ask the question whether we can reproduce the result (3.14) by starting 
directly from a stochastic differential equation instead of (3.1). This will indeed 
be possible if the function C(r’;y) in (3.14) is itself again a correlation function 
of some continuous time stationary random process, which is the case if C(r’;y) 
is a nonnegative-definite function of r’ on W3). Under this assumption there 
exists* a random process f(l) with 

(r(Q) = (0; (( &)trW>> = C(lt - +,) , (3.15) 

where t, is now the correlation time of the process c. So if one starts with the s.d.e. 

&u(t) = aF(t)u(t), 

u(0) = u, (3.16) 

and applies the cumulant expansion (A.4)-(A.6) to it, using (3.1 S), one finds back 
the eq. (3.14) by putting t = (r/a), u(t) = u(z) and rc = (y/a) in the result. So our 
conclusion is that in the limit (3.9) combined with an appropriate time-resealing, 
the r.d.e. (3.1) and the s.d.e. (3.16) are equivalent in the sense that their respective 
cumulant expansions give the same answer. 

*E.g. one could take the Gaussian process f satisfying (3.15). 
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Example 
Consider (3.1) where t(t) is a stationary two-state Markov chain (values f 1) 

with transition matrix 

T=(l-yyJ O<v<l. 

This implies for every sequence t, > t, > * * . > t, 

(3.17) 

(3.18) 

where 

p=l-2v, -l<p<l. (3.19) 

With the help of (3.18) we can calculate all cumulant functions K,,, of (2.12) for 
example 

K2(t/ - co) = a2 f p” = a6 
s=l 

with 

(3.20) 

~2.!?- 
l-p’ 

(3.21) 

If we define r, by 

jp 1 = e- ‘k , (3.22) 

we see that the limit rc+ co corresponds to Ip I+ 1. Now as p + 1 it is true that 
G/a+oo in accordance with (3.8) but if p+ - 1 we find that d/a--i. And 
indeed, (3.7) is satisfied if 0 < p < 1, but not if - 1 < p < 0. So in the latter case 
the general estimate (2.28) gives no indication at all of the real behaviour of the 
K-functions as r,+ co. The underlying reason is of course the increasingly rapid 
oscillations of the correlation function of 5 as p + - 1 (a +O): 

k/4 
aCC s,l ( > 

k/@l 
=a 1 (->“e-ar/y. 

s=l a s=l 
(3.23) 

In other words, if p + 1, we approximate the area under the curve e -r’iy by finer 
and finer partitions of the interval [0, t] (fig. l), while as p + - 1 the function 
C(s, (y/a)) (which is now only defined for integer s) becomes more and more 
oscillating as the partitions become finer, due to the factor ( - >” in (3.23) (fig. 2), 
and as a +O the resulting sum in (3.23) (i.e. the shaded area in fig. 2) goes to zero. 
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0 T T’ 

Fig. 1. Approximation of the sum (3.13) by an integral. 

El =n .I 

t- --i 

( jnaeY _.ey 

“.I 

Fig. 2. Approximation of the sum (3.23) by an integral. 

So we consider the limit (3.9) corresponding to p --f 1. Then the parameter 6 in 

(3.21) approaches 

(3.24) 

and 5(t) is now a process with zero mean and covariance 

((am)) = e-l’-+c . (3.25) 

It is not difficult to show that in the limit (3.9) also the higher corrections to 

(3.14) (i.e. the remaining contributions to Kc’)) approach those in the expansion* 

for (3.16), if one takes for c(t) the stationary dichotomic Markov process’4) 

(values + 1) with generator W and transition matrix T, given by 

w=-v 
’ v‘ ( 1 VI -VI 

T = e,w = 1 1 + e-2”‘r 

( 

1 - e-2”‘r 
; r 2 1 _ e-2v’r * + e-2v’r 

> 
. 

(3.26) 

where v’ is related to the parameter v in (3.17) by 

y = ;(I - eP2”) (3.27) 

l That means use (A.6) or alternatively the terms K,” 1 -I) of (2.23) with summations replaced by 

integrations. 
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and r, in (3.25) is given by 

rc=(2v’)-1. (3.28) 

This process f(;<t) is the continuous time embedding24) of the discrete process t(t) 
generated by (3.17). This embedding is only possible if 0 < v < i, i.e. if 0 < p < 1, 
which again explains why we had to take p + 1 and not p + - 1. 

It seems plausible that these results can be extended to the case of a vector 
equation (2.6), as long as only a single autocorrelation time is involved, so that 
one can make an assumption like (3.7). But if different correlation times occur, 
there may be different ways to obtain limiting equations, depending on which r, 
one chooses in (3.9). Therefore we will not discuss this point further here2’j). 

3.3. First correction to eq. (3.14) 

Now we want to calculate the first correction to the result (3.14) by taking the 
discreteness of time steps into account in lowest order in a. We illustrate the 
method again by the example of the previous subsection. 

Again we have to specify the way in which r, depends on a as a becomes small. 
It turns out to be convenient if instead of (3.9) we take the combination (3.21) 
to be constant, i.e. 

d= ae - ‘/G 

1 _ e-‘k 
= constant = y’ , (3.29) 

where y’ denotes the value of the constant. As a-+0, z, varies with a as (~‘/a), so 
in zeroth order we will find back the result (3.14) if we choose equal numerical 
values for the constants y in (3.9) and y’ in (3.29). Now the matrices Ki in (3.3) 
are of order 

KE-a”-‘(d)’ (t -top,J. (3.30) 

This estimate is valid after a transient time. This implies that the matrices K(i), 
KC”, . . . in (3.2) depend on 6 only (for small times they depend on 6 and a 
separately). The same holds on the new time scale z (defined in (3.10)): if we take 
r - r,, $6 in the final result, the functions KC’) depend only on 6 (as we will show 
at the end of this subsection). So for the rest of the derivation we assume that the 
KC’) are equal to their asymptotic values for to+ - co. Introduce o(t) by (3.10) and 

Put 

(u(r + a)) = (u(r)) + a(ti(r)) + fa2(ti(z)) + Lo(a3). (3.31) 
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Inserting this in (3.2) we get 

04, + 4) - (W) 
a 

= (C(z)) + $a((i;(z)) + 0(a2) 

= [Kc’) + aKc2) + U(a2)](u(z)) , 

Now also expand (u(r)) itself in powers of a 

(u(z)) = (do’(z)> + a(d’)(z)) + U(a’) . 

Substitute this in (3.32) and collect terms with the same power of a 

@(a’): (~+~)(z)) = ZP(d”)(z)) . 

This is our previous result (subsection 3.2). 

@(a’): (tP(z)) + +(ti(“)(~)) = W(ZF(T)) + IG2)(fAo)(~)) . 

Using (3.34) we obtain 

(zP(r)) = JP(rP’(r)) + (K”’ - ~K~“}(V’“‘(r)) . 

Combining (3.34) and (3.35) we find for (I) itself 

(ti<r)) = ZP(v(r)) + a{K”)- ~Kql))(v(z)) + 0(a2), 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

where a term of 0(a2) was included in the second term on the r.h.s. of (3.36) to 
get a closed expression in (v(r)). Of course one can obtain higher corrections by 
taking Kc3), K”, . . . into account, but we will not go into this here. 

If y’ is small, so that we can neglect terms of order (Y’)~ and higher, the result 
(3.36) for the example of the previous subsection yields for K(l) and G2) 

K”‘=(t(O)+a f (tYt)<(t--s)))=Y’, 
s=l 

K”‘= -a f ((5(t)5(~-s)))(5(t-~))=O. 
S=l 

This we can again reproduce by the introduction of the continuous time Markov 
process F(t) as follows 

m 

K(l) = (f(r)) + a 
s 

dr, (( &-ct)~(-<t - rJ>> 7 (3.37) 

0 
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provided we make the identification 

C = (Y/l&) 7 (3.39) 

where ic is the correlation time of f(t). The lowest order result (3.34) coincides 
with (3.14) if we choose the same numerical values for y in (3.9) and y’ in (3.29). 

It remains to be shown that the matrices KC’) contain no terms of order a if 
r-r,$>‘. Now (take z,=O) 

K$” = a2 i P’1 = ay’(t _ pl) = ay’ 

7, = I 
[,-e-r/i.jl+:~j+~(a’)]. 

So if r&y’, KY’ = ay ’ + 0(a3). Higher orders are checked similarly, so 
KC’) = R”‘(y’) + Lo(a’). We don’t have to do it for KC*) because (3.32) shows that 
only the part of order a0 contributes to (3.35). 

4. Example 

In this section we illustrate the results of section 2 by a simple example which 
has an exact solution for comparison. 

We start with a definition*‘): 

Dejinition 

An m-dependent stochastic sequence {r,,} is a sequence of stochastic variables 

which satisfies 

(&. . . &&+n.. .tj) = (ti.. tfk)(tk+,‘. . tj) if n >m. 

The simplest case is a O-dependent process (no correlations at all) for which the 
cumulant functions of section 2 are 

K, = (r,); K,,, =O, m 22. 

Let us now consider the scalar difference equation 

(4.1) 

du(t - 1) = ar(t)u(t - 1) (t EZ,) , (4.2) 

u(O) = &l, 

where r(t) = aor + a,[(t - 1), and {C(t)},“= _ co is a i.i.d. random sequence with 
mean zero and variance cr*. Then {c(t)} is a O-dependent process, and {l(t)) is 
l-dependent. The only non-zero t-cumulant of r is: 

@(t)t(t - I)), = a,uoa (t = 2,3,. . .) . (4.3) 



K4 = K(42) = c(“(<(t)c(t - l)t(t - l)t(t - 2,), 

= - c(“(5(t)5(t - 1)),(5(t - 1)5(t - a>, = - B’Y 

K6 = Kk3’ + KS’ (4.4) 

= a6{(5(t)((t - l)[(t - l)C(t - 2)5(t - 2)5(t - 3)), 

+ (5(05(t - 1)4(t - 1)5(t - 1)5(t - 2)5(t - 20,) 

= a6((5(t)5(t - l)),@ - l)tJ(f - 2)),(W - 2)t(t - 3)>, 

+ (5(t)W - l)),(W - 1)5(t - 2)),(W - 1)5(t - 2))J = 2P3 9 

where 

p = a%,u,c72 . (4.5) 

These results are valid if t 2 4. In the same way one finds 
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The K-functions are: 

K zm+,=O (WI =o, 1,2 ,... ), 

K, = ~2(50)50 - l)), = B > 

Kg = 
-W”, t > 4, 

-4p4, t=4, 
(4.6) 

because the term 

({(t)5(1 - l)),(W - 1)5(t - 2)),(@ - 2)<(t - 3))M - 3)<(t -40, 

is absent when t = 4 (subsection 2.3). 

As a check of these results, we transfer the scalar equation (4.2) with 

autocorrelated noise to a vector equation with uncorrelated noise which can be 

solved exactly. That is, define the vector 

u(t) 
x(t) = [(t)u(t) ( > (t Ez,); &I = r(;uo 1 ( > (4.7) 

which obeys the equation 

LlX(t - 1) = M(~(t))X(t - 1) (t EZ,) ) (4.8) 

where M(c) is the matrix 

(4.9) 
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Since (c(t)) is a i.d.d. sequence, we have 

A (x(t - 1)) = (M(C(N)(X(t - 1)) . (4.10) 

Because the initial condition X0 in (4.8) is random (it contains c(O)), there will in 
general be inhomogeneous terms in (4.10). In this case they vanish since X0 is 
statistically independent of M(c(t)), t = 1,2,. . . (see part II). From (4.9) and 
(4.10) we find for (u(t)) the second order difference equation 

(@ + 2)) - (,(t + 1)) -B+(t)> = 0 (fE&) 7 (4.11) 

(u(O)) = uo, (u(1)) = u, (4.12) 

with solution 

(U(f)) = (1 + 4&-“717 - l’?‘)UO) 

where 

I, = ;{ 1 + (1 + 4fi)“2} . 

From (4.13) we can derive a difference equation for (u(t)) 

A(& - 1)) = K(t)(u(t - 1)) 

with 

(4.13) 

(4.14) 

(4.15) 

K(t) = - n+n_(n: - #V_)-‘(P+Y -n!L-‘) . 

Expanding K(1) in powers of uz (i.e. in powers of j?) we find 

i 

p(l-B+2+55p3...), t>4, 
K(f)= p(1-fi+2/?*-4f13...), t=4, 

in agreement with the previous results (4.4) and (4.6). 

(4.16) 

5. The singular case 

In this final section we discuss the necessary modifications of the theory in the 
preceding sections when the difference equation is of the form 

u(t) = (A0 + A,(& w)}u(t - l), tez,,+ 1 , (5.1) 

UOO) = uo 3 

where the deterministic matrix A, is singular. We restrict ourselves here to a 
re-derivation of the result up to U(a2). As a first step we apply a variant of 
Terwiel’s method2’) to derive an exact difference equation of order t - to for the 
average (u(t)). 
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The method runs as follows: apply the averaging operators 9 and 9, as defined 
in (2.14) to both sides of (5.1) and express all occurring quantities in 9% and 9~: 

Su(t) = (A, + a9A,(t))9u(t - 1) + cc.P’A,(t)z?U(t - 1) ) (5.2a) 

L!?U(Z) = {A, + c&!d,(t))~u(t - 1) + cLK4,(t)9’u(t - 1) . (5.2b) 

Now (5.2b) is an inhomogeneous difference equation for _%?u(t) with initial 
condition _%!u(O) = 0. Its formal solution is 

2u(t) = cL%t,(t)~u(t - 1) 

(5.3) 

Inserting this in (5.2a) and using the definition of 9’ we find 

(u(0) = {A,+ +,(0)}(u(~ - 1)) + a2((M)A,(t - l)))(U(Z - 2)) 

which is an exact equation for the average of u(t). Neglecting all terms of order 
a3 and higher, (5.4) reduces to 

(@)> = (A + a(A(f)))(r& - 1)) 

r-1 
+uzs=;+, ((A,(t)A~-‘-“A,(s)))(u(s - 1)). 

If A, is nonsingular we can put 

(5.5) 

(u(s - 1)) = A;-‘(@ - 1)) + O(a) (5.6) 

in (5.5) because we neglected terms of 0(t13) already. This gives back our previous 
approximation (2.33). 

Now consider the case that A, is singular. Then one or more eigenvalues of A, 
are zero. It turns out to be convenient if we consider the Jordan canonical form’) 
Ai of the matrix A,: 

A;=SA,S-‘, (5.7a) 

where S is a nonsingular matrix. We can choose S in such a way that A$ takes 
the form (8 denotes a null-matrix) 

(5.7b) 
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where ,4f) (dimension n, x n,) is nonsingular and At’ (dimension n2 x n,, n2 2 1) 
contains all blocks with zero eigenvalues on their diagonal and is therefore 
singular. Now we distinguish between the following cases: 

i) All eigenvalues of A0 are zero (n2 = n, where n = dim A,,) 

Then (A$” = 0 and also A;; = 0. From (5.1) follows 

u(t)= i; 
[ 

fi {A,+c~A,(_s)) u(t-n), 
s=t--n+1 1 

where the matrix between brackets [. . .] is of order a and higher, since the term 
of order a0 is Al; = 0. So if we define v(t) by v(t) = u(tn), v(t) obeys 

v(t) = A;(t)v(t - l), 

where the matrix A; contains only matrices of order a or higher. Clearly in this 
case no perturbation expansion in c1 is possible. 

ii) At least one of the eigenvalues of A, is nonzero 

In this case there is a block matrix A,“) in (5.7b) which is non-singular. Now 
it is possible to derive a difference equation of the first order for (u(t)), which 
is valid after a transient time of order 7,. To derive the result, we first put (by using 
the matrix S in (5.7a)) 

G(t) = 
u’“‘(t) ( > l.P(t) ’ 

where UC”) and u@) have dimension n, and n2 and correspond to nonsingular and 
singular components of A, respectively. The matrix A, is transformed by S to a 
partioned matrix which we denote by 

where A$‘), At2), AP) and Aj4) are matrices of dimension n, x n,, n, x n2, n, x n, and 
n2 x n2, respectively*. In the same way we put 

SA,(t)A;-‘-“A,(s)S-’ = 

Then by eq. (5.5) we find for the components u(“) and u@) of u (which are 

*If A{‘) happens to be zero, u(“)(t) obeys a closed equation which can be treated by the method of 

section 2. 
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themselves again vectors in general) 

(~‘“‘W) = {At’ + a(.v(t)))(u’“‘(t - 1)) + ,(Af’(t))(zP’(t - 1)) 
I-I 

fals=g+, {((B”‘>>(@(s - 1)) + ((B(2)))(~(S)(~ - 1)))) (5.8a) 

(u”‘(f)) = (At’+ ~(A{4Yt))}(u’“‘(t - 1)) + a(Aj3)(t))(zP)(t - 1)) 
t-1 

Now 

+ u2 ,=F+, { (( B”)))(u(‘$ - 1,) + (( B’4’))(u(s)(s - l))} . (5.8b) 
0 

(4t - 1)) = Ah-“(24s - 1)) + U(a) ) 

so 

(dyt - 1)) = (A6”))‘-+(“$s - 1)) ) 

(uys - 1)) = (Ag))S-‘(zP)(t - 1)) 

and 

(U’“‘(f - 1)) = (&))‘-S(zP(S - 1)) . 

From the last equality it follows that in lowest order 

(u’“‘(t)) = (Ap)‘-‘ou”(t,) ) 

so 

(24”‘(t)) = 0 if t - to 2 n2. (5.9) 

Since A,(t) has a finite autocorrelation time rCt, the sums in (5.8) virtually extend 
only over those values of s such that It - 1 - s\ 6 r,. So if t - to - 1 2 n, f r, we 
have only a contribution if s - 1 - to 2 n2: (u@‘(s - 1)) z O(a). Therefore after a 
transient period the terms (u@)(, - 1)) under the sums in (5.8) can be put equal 
to zero, since they only contribute to order a3. 

Summarizing, we can effectively make the replacement 

in (5.8). 

tSee however the comment at the end of section 2.4. 
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Conclusion 

If A0 is singular, the result of the cumulant expansion for eq. (5.1) to order a * 
for times exceeding the transient time can be written as 

W> = 
[ 

A0 + c+W)) + oT**zi @MK%(~ - 9l))(a,:).] 

x (4t - 1)) 2 (5.10) 

where A,; (N for “nonsingular”) is obtained via the following prescription: 
transform A,, to Jordan canonical form (5.7). Put At) = 0, take the inverse of A$‘) 
and transform back to get A&.: 

(5.11) 

Remark 

If At) = 0, and [A,, A,] = 0, then (a”) = @(a ‘-‘0) and therefore one can put 

(u(“)) G 0 in (5.8). S o in this case only the equation for (UC”) remains. 

Example 

(5.12) 

or 

u@‘(t) = (1 + a<(t))u(“)(t - 1) + u”‘(t - 1) ) 

u(“)(t) = aLf(t)zP(t - 1) . 

In this case we can first solve (5.13b) 

u(‘)(t) = a’tj(t)~(t - 1). . . c(l)u$) 

(5.13a) 

(5.13b) 

and substitute it in (5.13a). This gives an inhomogeneous equation for u(“): 

du@)(t - 1) = cr<(t)u(“)(t - 1) + a’-‘t;(t - 1). . . <(l)u$) , (5.14) 

where the inhomogeneous term is correlated with the multiplicative term al(t)*. 
But since the additive term is of order a’-’ we can ignore it after a few time steps. 
The remaining equation can be treated with the method of section 2, and the result 
coincides with that of (5.10). 

* In part II we will derive an exact expansion for the case of mutually correlated multiplicative and 
additive noise. 
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Appendix 

In this appendix we summarize the most important facts in relation to the 
cumulant expansion for linear stochastic differential equations. 

Consider the linear s.d.e. with sure initial condition 

ti(t) = aA (t)u(t) ) 61) 

u(t(J = u,. 64.2) 

It has the formal solution 

u(t)=[iexpidr&(s)]u, 

‘II 

with moment expansion 

(U(1)) = 1 + f [ ,=] o’idi, ji,, . . . ‘j’dt,(A(t,)A(t,). . . A(t,+,. 64.3) 

'0 '0 '0 

The cumulant expansion yields for the average the following result’3-‘5) 

(h(0) = U/r,)+(0) 9 (A.4) 

where the matrix K(t/t,) is a sure matrix with expansion 

m=l 

‘I %I -2 

K,,,(t/t,) = urn dt, dt, 
H I 

dt,-,(A(t)&,). . . A(&,-,)), . (‘4.6) 

'0 '0 '0 

By definition K,(t/t,) = a(A(t)). Th e cumulant functions K,(t/t,) are independent 
of to if t - to $ z,, where z, is the autocorrelation time of A(t). In general c(z, e 1 

is necessary. 
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The integrand of (A.6) is the so called “partially time-ordered cumulant” 
(p-cumulant), which is a certain combination of moments of A(.) with a specific 
ordering of the time variables (see ref. 15, section 2.1, for the precise definition). 
These p-cumulants can be expressed in another type of cumulant, the so called 
“totally time-ordered cumulant” (t-cumulant), denoted as (. . .)t. For m non- 
commuting quantities A,(t), A,(t,), . . . , A,_ ,(t, _ J, where t > t, . . . > r,_ 1, the 
t-cumulant (A,(t)A,(t,) . . . A,,_ 1 (tm_ ,))t is defined in terms of the moments (Ak(tk) 

abbreviated as k) 

(012. . . (m - I)), = ((0).9(1)9(2). . _ A?(m - 1))) (A.7) 

where L%? is the averaging operator defined in (2.14). The connection between 
p- and t-cumulants was given in appendix A of ref. 15. 

To take into account the possibility that in the p-cumulant some of the 
time variables ti may be identical we generalize the rules given in ref. 15 as follows. 
To obtain (A,(t)A,(t,) . . . A,,,_ ,(ti)),; where the m - 1 numerals { 1,2,2, . . . , 

. ..) I ,...) i} are chosen from a set S,(i, m - 1) as defined in section 2.3, use the 
following prescription: 

i) Write a sequence of m dots. 
ii) Write a zero on the first dot, and any distinct permutation of the m - 1 

numerals (some of which may be equal) in S,(i, m - 1) on the remaining 
dots. 

iii) Partition each of the distinct permutations of numerals into subsequences 
by inserting angular brackets (* * .), (denoting t-cumulants) in such a way 
that two successive numerals belong to the same subsequence if and only 
if the first one is smaller than the second. 

iv) For each partition consisting of p subsequences supply a factor ( - )“-I. 
v) Replace each numeral n on the kth dot by A,_ ,(t,). 

As an illustration we give here all the p-cumulants occurring in (2.23) in terms 
of the t-cumulants (which can in their turn be expressed in the moments via 
(A.7)): 

c-9, = (O)t, (Ol), = (Ol), , 

w9, = (012)t - (W( I>,; (01 I>, = - (Ol),( Q, 

@123), = (0123)t - (013),(2), - (02),(13), - (023),(l), 

- (OMWt + @3hW,(1), , 

W% = - @wtwt - o-w4 wt + (02),( 94 I>* , 
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@lwP= -(012)~(1)~-(01),(12),+(02),(1),(1),, 
Wl), = @0*(1)0)t. 
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