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The cumulant expansion for linear stochastic difference equations introduced in part I is applied 
to the general case, where the equation contains multiplicative, additive and initial value terms which 
are all random and statistically interdependent. Also the two-time correlation functions of the solution 
are discussed. Finally the expansion for the probability density functions is studied. In the case that 
the coefficient matrix constitutes a Markov process, an exact equation for the joint probability density 
function of the solution of the difference equation and the random coefficient matrix is derived. From 
this equation the moments of the solution can be obtained in a simple way. As an application we 
consider the growth of a biological population with two age classes in a random environment, which 
itself is modelled by a two-state Markov chain. The exact results are compared with those of the 
cumulant expansion and with previous findings of Tuljapurkar. 

1. Introduction 

This is the second par t  o f  our  t rea tment  o f  vector  s tochast ic  difference equat ions  

o f  the form 

u(t)  = A(t ,  o9)u(l - 1) + f ( t ,  o9) (tel ,  o+) , (1.1a) 

U(to) = u0(og), (1. lb)  

where u(t) is a vector,  A(t ,  og) and  f ( t ,  og) a r a n d o m  mat r ix  and vector,  

respectively,  and  u0(og) a r a n d o m  initial  condi t ion .  F o r  any  integer a, I ,  denotes  

the set o f  integers {a,a + l, a + 2  . . . .  }. The stochast ic  na ture  o f  the above  

quant i t ies  is indica ted  by the pa rame te r  oget2, where (f2, 27, P )  is a p robab i l i t y  

space. Averages  with respect  to the p robab i l i t y  measure  P are  indica ted  by angu la r  
brackets  ( . . . ) .  

In pa r t  11) (hereafter  referred to as I) we considered (1.1) in the homogeneous  

case ( f - 0 )  and  u0 non - r andom.  We assumed A(t ,  o9) to be o f  the form 

A(t ,  o9) = Ao(t) + ~A,(t, o9), (1.2) 

where Ao(t) is a de terminis t ic  mat r ix ,  A~(t, og) a r a n d o m  mat r ix  with shor t  
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correlation time zc, and ct a small parameter. Then a systematic perturbation 
expansion was developed, assuming that azc '~ 1. The result was that the average 
of u(t) obeys itself a first order difference equation (assuming that A0 is 
nonsingular), 

(u(t)~ = {A0 + K(t/to)}(u(t - 1)~, (1.3) 

where the matrix K(t/to) is an infinite sum of  terms which contain the so-called 
time ordered cumulants of As(t). If  t - to >> zc this matrix is independent of to. In 
the case of a singular A0 the derivation of (1.3) has to be modified, but it was found 
that, taking into account terms up to order a2 only and after a transient time, 
(u(t)~ obeys again an equation of the form (1.3). 

In this paper we consider again (1.1) in the general case where A, f and u0 are 
all random and mutually correlated (section 2). Our treatment closely follows our 
previous study of stochastic differential equations 2,3) (henceforth abbreviated as 
s.d.e.), so we will only emphasize those points where essential differences 
compared to the latter case occur. 

In section 3 we consider the correlation function (u(t)(~u(t '))  of u(t), where 
(~) denotes a Kronecker product. Homogeneous as well as inhomogeneous 
equations are discussed. 

We also derive an expansion for the probability density functions of u(t) 
(subsection 4.1). An application to a one-dimensional case which results in the 
well-known lognormal distribution is given in subsection 4.2. If  the matrix A in 
(1.1) is a Markov process and f is identically zero, an exact equation for the 
probability density function of the joint process {u(t), A (t)} is derived, from which 
also exact expressions for the moments of u(t) can be inferred (subsection 4.3). 

In the final section 5, an example from population biology is examined. Here 
one has a model for populations with distinct age (size . . . .  ) classes in a random 
environment. We take a population with two age classes and model the environ- 
ment by a two state Markov chain. The cumulant expansion to second order in 

is applied to this model to obtain the average number of individuals in each age 
class (subsection 5.1). We compare the results with those of Tuljapurkar 4'9) 
(subsection 5.2) and exact results (subsection 5.3) obtained by application of  the 
method of subsection 4.3. 

2. The expansion in the general case 

In this section we extend the cumulant expansion of  part I to the in- 
homogeneous equation (1.1) with random initial condition. There are three 
correlation times of importance now, the autocorrelation time of Al(t), and the 
cross correlation times of A~(t) with f ( t)  and with Uo. We assume all these to be 
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finite and denote the largest of  them by z¢. The result will be obtained by 
transforming (1.1) with sure initial condition first to a homogeneous equation, for 
which the expansion developed in I is applicable and subsequently extracting from 
the result a difference equation for ( u ( t ) )  itself (subsection 2.1). In subsection 2.2 
the case where in addition the initial value u0(og) is random, is handled by reducing 
it to an inhomogeneous equation with sure initial condition. 

2.1. The inhomogeneous case 

We first consider (1.1) with nonrandom u0. Define an interaction representation 
(denoted by superscripts (1)) via 

u(t)  = ~o(t / to)U°)( t )  (tEIto+l), (2.1a) 

A~)(t)  = ~ol(t / to)A~(t)~Ao(t  -- l/t0), g( t )  = ~o~( t / to ) f ( t ) ,  (2. lb) 

where Ao(t ) is assumed to be non-singular on It0÷1. Here we define for an arbitrary 
matrix A ( t )  the matrizants 

~A(t/to) = ~  FI A(s ) ,  X ~ l ( t / t o ) = ~  (-I A - l ( s )  (telto+O, (2.2a) 
s=to+l S=to+l 

3£ A(to/to) = ~'21(to~to) = 1, (2.2b) 

where W j- 1 only exists if A is non-singular. Here 7 ~ and 7 ~ are time- and anti-time 
ordering operators (latest times to the left and right, respectively). Then (1.1) leads 
to 

Au(°(t  - 1)= V(t)u(l)(t -- 1)+ g ( t ) ,  (2.3a) 

u°)(to) = Uo, (2.3b) 

where A denotes the difference operator (Af ( t )  = f ( t  + 1) - f ( t )  for arbi traryf( t ) ) ,  
and 

V(t)  = ~tA ~°(t) . (2.4) 

Now define the enlarged state vector 

w(t )  = (u(')(t)'~ 
\ z(t) ) '  

where z ( t )  is a scalar function with constant value 1. From (2.3) one obtains for 
w(t )  

Aw( t  -- 1)= B ( t ) w ( t  - 1), 

where B( t )  is the matrix 

B. . [ V ( t )  ] g(t)'~ 

w(t0) = (~° ) ,  (2.5) 

(2.6) 
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The symbol 0 denotes a matrix or vector with all elements zero. Applying the 
result of section 2 of I we have 

A (w(t  - 1)) = Ks(t/to)(W(t - 1)),  (2.7) 

where 

/ '-' ) 
Ks(t/to) = B(t): ~ 1-I {1 +/~(s)}: (2.8a) 

s=t0+l  p 

and 

/~(t) = B(t){1 - B ( t ) ) - ' ,  (2.8b) 

which exists if ~ is small enough. The colons in (2.8a) indicate that one should 
first expand the expression between them in powers of B and subsequently take 
the partially time ordered cumulant* ( . . . ) p  of each term. Any p-cumulant which 
contains m matrices B can be expressed in the moments of B of order ~<m, 
according to the rules given in the appendix of I. The reason for writing 1 + B(s) 
in (2.8a) instead of (1 - B ( s ) ) - l  is that in this form the analogy with the case of 
s.d.e. 2'3) is most clearly displayed, which is useful in extending the result of I, as 
will become clear in this and the next section. 

For convenience we define for an arbitrary matrix A (t), 

Qa(t/to) = Y:, +A(t/to), (2.9) 

where ~:l+A is given by (2.2a) (with A replaced by 1 + A). Making use of the 
identity 

aA(t/to)= 1 + ~ QA(t/s)A(s), (2.10) 
s=t0+l  

where the sum in the r.h.s, of (2.10) is by definition zero if t = to, we can express 
Ks in the form 

t - 1  

Ks(t/to)= ( B ( t ) ) +  ~ (B(t): Qn'(t - l/s){1 - B ( s ) } - ~ : B ( s ) ) p .  (2.11) 
s=t0+l  

After expanding the expression within the brackets ( . . . )p  in (2.11) in powers of B, 
one gets products of the form (pi,p2 . . . .  0, 1, 2 . . . )  

B(t)BP'(tl). . . B(tm)ymB(s) 

= (V(t)-V-! t'~'--6"-V-! t-"-~-~-V-!s-)--. V(-t-)-V! q-~ '- "0" V(  !~-~-~-g(s)), (2.12) 

using the form (2.6) of the matrix B. Combining eqs. (2.11) and (2.12) with (2.7) 

* Often abbreviated as p-cumulant. 
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we find the following equation for the average of u~l)(t): 

A (u°)(t - 1)) = Kv(t/to)(U°)(t - 1)) + Gv(t/to), 

where 

t -1  

Kv(t/to) = (V( t ) )  + 
s=t0+l 

(2.13) 

and 

t - I  

Gv(t/to) = (g( t ) )  + ~, 
S=to+l 

(V(t): Qe(t - l/s)(1 - V(s))-l: V(s))p (2.14a) 

(V(t): Q¢(t - l/s)(1 - V(s))-~:g(S))p. (2.14b) 

Thus, the only difference between (2.14a) and (2.14b) is that in Gv all terminal 
factors are g(s) instead of V(s) as in Kv. The formal expressions (2.14) should 
again be expanded in powers of V and subsequently the p-cumulants have to be 
computed. For the validity of these expansions we again require that atZc ~ 1, that 
is both the autocorrelation time of V(t) and the crosscorrelation time of V(t) with 
g(t) should be short. If  this is the case then again both Kv and Gv in (2.14) are 
independent of t o if t - to >> z¢. If V(t) and g(t) are statistically independent, and 
moreover* ( g ( t ) ) =  0, then Gv(t/to)= 0. This can be checked via the decom- 
position of the p-cumulant in t-cumulants (appendix of I). 

Let us give the result (2.13) to second order in the original representation, 
regarding A1 a n d f t o  be of the same order of magnitude and assuming t - to >> zc ~: 

( u ( t ) ) = [ A o  + ct(Al(t))+ct2 ~=1 ~ ( ( A ' ( t ) { A ~ ° - l A ' ( t - z ) } ) ) A ° ~ l ( u ( t -  1)) 

+ Oc(t)) + ~, ((Al(t){A~-lf( t  - z )} ) ) .  (2.15) 
r=l  

This equation is valid for a time-independent, nonsingular unperturbed matrix A 0 
in (1.2). If  A0 is singular, we can proceed as follows. Define an enlarged state vector 
w(t) as before. Then (1.1) with sure initial condition leads to 

w(t) = [B0 + B~(t)]w(t - 1), (2.16a) 

where 

{/0 :: 0.) Bo=[-~-'(-O- j, B,=[. 0 i'-O'-]" (2.16b) 

Clearly B0 is singular. Therefore we can apply eq. (5. I 0) of I to (2.16) and extract 

* This point was overlooked in ref. 2. 
t Double brackets denote ordinary cumulants.  
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from it an equation for ( u ( t ) ) .  One can easily convince oneself that again (2.15) 
applies, but with the matrix Ao ~ in the first line replaced by ~A 0,uJ-~a~, where the 
prescription to calculate the latter matrix can be found in section 5 of I. 

Remark .  The matrix B 0 in (2.16b) is singular even if A0 is nonsingular. However, 
the case where A0 is nonsingular was handled by first transforming to the 
interaction representation before introducing the enlarged state vector. Obviously 
this is impossible in the singular case. 

2.2. Random initial conditions 

To deal with the case of a random initial condition u0(oJ) we transform (2.3) 
to an inhomogeneous equation with zero initial condition. Define 

v( t ) = u°)( t ) - Uo(Og ) . (2.17) 

Then (2.3) becomes 

A v ( t - 1 ) = V ( t ) v ( t - 1 ) + V ( t ) u o + g ( t ) ,  v(t0)=0 (2.18) 

and the result of the previous subsection is immediately applicable. So 

A ( v ( t  - 1)) = Kv(t / to)(V( t  -- 1)) + Gv(t/to) + I'v(t/to), 

where Kv and Gv are the same as in (2.14) and I~, is obtained from Gv by replacing 
g(s )  by V(s)uo. For ( u ( ° ( t ) )  itself then follows 

A (u(l)(t - 1)) = Kv(t/to)(U<~)(t - 1)) + Gv(t/to) + Iv( t / to) ,  (2.19) 

where 

Iv(t/to) = ( V( t  )(Uo - (Uo) ) ) 

t - 1  

+ ~ (V(t): Q~(t - 1/s)(l - V(s))-~: [V(s)(u0- (u0))])p. (2.20) 
s=t0+l 

As in the case of a s.d.e. 2) one shows that Iv ( t / to )= 0 if u0 is nonrandom or 
statistically independent of V, and in general 

l ( t / t o ) = O  i f t - t 0 > > r ¢ .  

Transforming back to the original representation, and neglecting terms of third 
or higher order, one finds an equation like (2.15) with two additional in- 
homogeneous terms, which can be obtained by replacing f ( . )  in the second line 
of (2.15) by Al( ')(uo- (Uo)). If  A0 is singular one again has to modify the result 
in the same way as before. 
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3. The correlation function 

Until now only one-time averages of the solution u(t) of (1.1) were considered. 
In this section we develop an expansion for multi-time averages. We restrict 
ourselves here to a derivation of the two-time correlation function 
C,(t, t’) = (u(t)@(t’)). The method is the same as used for s.d.e.3). Higher order 
correlation functions can be handled in an analogous way (compare appendix A 
of ref. 3). First the homogeneous case is discussed, and subsequently the 
inhomogeneous case, both with sure initial condition. The case of a random initial 
condition is not discussed. It can be reduced to the inhomogeneous case as in 
subsection 2.2. 

3.1. The homogeneous case 

We start again with the homogeneous equation in the interaction represent- 
ation, 

Llu(‘)(t - 1) = V(t)rP(t - l), u”‘(&J = u, ) (3.1) 

where V(t) is defined in (2.4). The formal solution can be written as 

u”‘(t) = Q&hho (3.2) 

using definition (2.9). The average (~(i)(t)) obeys (2.7) with B replaced by V, and 
from it one obtains 

where KY is defined (for arbitrary l’) by 

K&/f,,) = (V(t): Q& - l/fO):)P. (3.4) 

The definition of P is analogous to (2.8b). From (3.2) and (3.3) one obtains the 
identity 

(3.5) 

where the time ordering operator in the r.h.s. acts on the first time variable of Kp 
Now replace V(t) by a matrix function C(t) with finite support on I,,,. Then (3.5) 
yields 

p fi (1 +C(s)j = i= fi (1 + K&Y/~,)}. 
> 

(3.6) 
s=10+1 P&J+1 



160 J.B.T.M. ROEKDINK 

Next we write the correlation function Cal)(t, t + z) as 

(u~l)(~u~l)(t + ~)~ = ( Q v ( t / t o ) ( ~ O v ( t  + Z/to)~Uo(~Uo 

= (Qv( t / to )Qv . ( t  + Z/to))Uo(~U o (~ = 1, 2 . . . .  ) ,  (3.7) 

where we define for arbitrary matrix or vector C 

C'  = C @ 1 ,  C" = 1 @ C .  (3.8) 

Here 1 denotes the unit matrix of  the same dimension as C. Making use of the 
fact that C' ( t )  and C"( t ' )  commute for all t and t '  we have 

I I~i t+~ }1 Q~.(t/to)Qz,(t + Z/to) = T {1 + V'(s)} I-I {1 + v" ( s )  
[_s=t0+l s=t0+l 

= T f l  {1 + C(s)} = Q¢(~/ to) ,  (3.9) 
s=t0+l 

with 

C(s )  = {O(t - s )V ' ( s ) (1  + V"(s))  + O(t + z - s )V"(s )}O( t  - t o - 1). (3.10) 

The discrete stepfunction 0 is defined by 

1, t = 0 , 1 , 2  . . . . .  (3.11) 
O ( t ) =  O, t = - l , - 2  . . . . .  

Now we can apply (3.6) to (3.9). From (3.10) it follows that 

IV'(s){1 + V"(s)}+ V"( s ) - -  17(s), to < S  <~ t ,  
C(s )  = ~ V"(s), t < s ~< t + ~, (3.12) 

[0,  otherwise. 

Our next aim is to express K~(s/to) in terms of the ordered cumulants of I 7 and/or 
V". Since this point was not carefully treated in ref. 3 we consider it here in more 
detail. For example, calculate the third order p-cumulant (C(s )C(s i )C(s2) )p ,  
where t + z > s > sL > t >/s2. Using the decomposition in t-cumulants ~) one has 

( C ( s ) f ( S l ) C ( s 2 ) ) p  = ( C ( s ) C ( s l ) C ( s 2 ) ) t -  ( C ( s ) C ( s z ) ~ t ( C ( S l ) )  . (3.13) 

The definition of  the t-cumulant ( . . . ) t  is given in the appendix of  I. The important 
point here is that in all terms contributing to a given t-cumulant the order of the 
time variables is the same (in contrast to a p-cumulant, see (3.13)). Using (3.12) 
we can therefore write (3.13) as 

(C(s )C(s l )C(s2 ) )p  = (Vt t (s )gt t (s l )17(s2)~t-  (Vtt(s)17(s2))t(VCt(Sl)~ • (3.14) 

Now we cannot write (3.14) as (V"(s)V"(s017(s2))p, since according to the rules 
in I only time-variables are permuted if one compares the different terms 



LINEAR STOCHASTIC DIFFERENCE EQUATIONS II 161 

contributing to the p-cumulant, but not the matrices themselves. For this reason 
we introduce here a new partially ordered cumulant, denoted by <...>~, which can 
be obtained by the same rules as the p-cumulant, except that the matrices 
themselves are permuted, and not only their time variables (i.e. each matrix keeps 
its original time variable). So (3.14) becomes 

< C(s)C(s,)C(s2)>p = < V"(s) V"(s,) I7(s2)>~. (3.15) 

If all matrices involved are the same functions of time, the two types of  partially 
ordered cumulants are identical. Moreover, the distinction only becomes apparent 
in third or higher order cumulants. 

Now the reasoning leading to (3.15) can be repeated for all higher order 
cumulants contributing to Kc in (3.6). Therefore we conclude that 

[Ke(s/to), to < s <<. t ,  
K~(s/to) = ~Mv(s; t/to), t < s  <<. t + z ,  (3.16) 

[0, otherwise, 

where (for arbitrary V) we define Mv by 

My(s; t/to) = < V"(s): Qc.(s - 1/t)O~(t /to): >~ . (3.17) 

Again for arbitrary C 

t~(t) = C(t){l - C(t)} -~ (3.18) 

and Ke is defined in analogy with (3.4). Note that in the case of  Ke we can use 
p- or 15-cumulants since only one type of  matrix, viz. I7, is involved. The colons 
in (3.17) mean again that one should first expand in powers of  V" and 17 before 
computing the ~-cumulants. 

Combining (3.6) and (3.16) we get 

i F  ] <Q¢(oO/to)> = ]P I1 {1 + My(s; t/to)} f 1-I {1 + Ke(s; to)} 
s= t+ l  J L  S=to+l 

= QMo(t + T/t)Qxe(t/to). (3.19) 

From (3.7), (3.9) and (3.19) one arrives at the following expression for the 
correlation function C~, 

C~,~(t, t + z) = QMv(t + z/t)ax;(t/to)(Uo(~Uo). (3.20) 

Adhering to our general strategy we now rewrite the result (3.20) in the form 
of a first order difference equation. 

3.1.1. The difference equation for  C, 
First the partial difference operators A~ and At are introduced, defined by their 
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action on an arbitrary function f ( t ,  t + z): 

A f ( t , t  + z) =f( t ,  t + z + 1)--f( t ,  t + z ) ,  

dr( t ,  t + z) = f ( t  + 1, t + z + 1 ) - f ( t ,  t + z) .  (3.21) 

OIJerating with AT on (3.20) the following equation can be inferred, making use 
of (3.19) 

A~C~(,)(t, t + z) = Mv(t + z + 1; t/to)Ce,(t, t + z) ,  (3.22) 

where the matrix Mv is given by (3.17). This difference equation in z has to be 
solved subject to the initial condition C~l)(t, t ) =  (u( ' ( t )(~u(°( t)) ,  which in its 
turn can be obtained from the cumulant expansion for one-time averages (part 
I) as the solution of  

A,C~,,(t, t) = K~(t + 1/to)C~,(t, t) . (3.23) 

The initial condition corresponding to (3.23) is Ca,(to, to) = Uo(~Uo. 
In contrast to the case of a s.d.e. 3) we have not been able to find a closed 

equation for C~,) when acting with the difference operator At on (3.20). 
3.1.2. The result to second order 

Here we give the result of the cumulant expansion to second order in ~, after 
transforming back to the original representation (1.1) via (2.1) and (2.4) (thus in 
particular assuming that det A0 4: 0). One finds from (3.22) 

t + z + l) = [A~ + ~(A~(t + z + 1)) C.(t, 

tWT  

+~2 Z ( ( A ; ( t  + z + 1){(A'~)'+'-~A~(s)}))(A;-') '+*+~-s 
s = t o + l  

-k-~t 2 ~ <(A'I'(/-~-'C + 1){(A'o)t-SA~(s)}))(A;-l) t+l-s] 
s =  to+ l 

x Cu(t, t + z) (3.24) 

and from (3.23) 

C.(t, t) = [A~A'~ + ot(A'((t))A'~ + ~A'o(A'~(t)) + ctE(Ai(t)A~(t)) 

t - - I  
t n tt t t t - - l - - s  t t - - I  t - - s  +~z x { ( ( (Al ( t )Ao+A,( t )Ao) (Ao  At(s))))(Ao ) 

S = / o + l  
"1 

• ,t t¢ • t t t - - l - - s  ,¢ , , - - 1  t - - s } |  + (( (A, ( t )Ao + A,(t)Ao)(Ao A,(s))>>(Ao ) ] 
× C.(t - 1, t -- 1). (3.25) 
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The case that A0 is singular can be handled by a combination of  the methods 
in I, section 5 and in ref. 3, section 8. Again one can show that in this case the 
matrix A0-' in (3.24) and (3.25) has to be replaced by A- t  0,N as defined in section 
5 of I. The resulting equations are only valid after a transient time large compared 
to zc, which implies that in (3.24) and (3.25) one should put to = - o o .  

3.2. The inhomogeneous case 

To study the correlation function in the inhomogeneous case, we start again 
with (2.3) and consider eq. (2.5) for the enlarged state vector w(t). Applying the 
result of the previous subsection, one finds from (3.22) 

A~Cw(t, t + z) = MB(t + z + 1; t/to)C~.(t, t + z) (3.26) 
with 

Mn(t + r + 1; t/to) = (B"(t + t + 1): Q#,(t + r/t)Q)'(t/to):>o, (3.27) 

where B is defined in (2.6), and /~  as in (3.12). The quantity MB in (3.27) can be 
expressed as an infinite sum of terms which involve (summations over) products 
of joint moments of  B'  and B". Each such product can be written as a Kronecker 
product. For example 

I I t I 
(B"(t,)B'(t2)><B'(ts)B"(t,)> = {B(t2)B(ts)}@{B(fi)B(t4)}, (3.28) 

where we used horizontal brackets instead of  angular brackets to indicate which 
matrices belong to the same moment. 

To obtain an equation for the correlation function of u t~) from (3.26) we use 
the same method as in ref. 3, section 4. For the components of  ( w ( t ) @ w ( t  + t)> 
one has (suppose that the dimension of V(t) in (2.3) is n): 

n + l  

A~(wi(t)wk(t + t)> = ~ (Mn)o.k,(wj(t)w~(t + t )> ,  (3.29) 
jd= 1 

where the time indices of  Ms are suppressed. A matrix element (.)~.k~ is calculated 
by first expressing MB in the joint moments of B'  and B", writing each term as 
a Kronecker product, say D ( ~ E ,  and taking the matrix element according to 

(D @E)u.k t = DuEkl. (3.30) 

Each matrix D or E is either the unit matrix of dimension n + 1, or a (summation 
over a) product of  one or more matrices B(.) on which a certain averaging 
operation is performed, as in (3.28). We saw already that a product of  B-matrices 
has the form (2.12). Therefore the matrices D and E in (3.30) have the following 
structure, if they contain at least one matrix B: 

{D'" : D(2,  {E,?_.i.e_?,.) 
D =~,--O-'i '-b--), E = \ - ~  : 0 - 7 ,  
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where D °) and E (~) are the same as D and E which each matrix B(.) replaced by 
V(.), while D (2) (or E (2)) is obtained by replacing the last matrix V(ti) in D (1) (or 

E °)) by g(ti). 
Now restrict the range of  i and k in (3.29) to values between 1 and n. The 

summation over j and l can be split up in four regions: {1 ~<j ~< n; 1 ~< l ~< n}; 
{1 <<.l <<.n;j = n  + 1}; {1 <~j < . n ; l = n  + 1}; {j = l = n  + 1}. If we take only a 

typical term (3.30) into account, (3.29) yields 

A,<u~t)(t)u~,')(t + z)> = ~ ~'ijn(t)~'°)/"(t'et~u(')tt,~k, \ - j  t , , t + v)> 
j , l= 1 

+ ~ D}Z)E~)<ult)(t + x)> + ~ D~)E?)<u}°(t)> + D~2)E~ z) (3.31) 
t=t j=t 

or in vector notation 

A+C~,>(t, t + z) = G(1'I)Ca,~(t, t + z) + G(2'l)(u°)(t + ~)> 
+ G(,,2)(u(,)(t)> + G(2,2), (3.32) 

where 

G oJ) = D(~)(~E O) (i , j  = 1, 2). 

If  the matrix D or E in (3.30) is the (n + 1)-dimensional unit matrix, we have that 
D °) or E (t) is equal to the n-dimensional unit matrix, ,while D (2) or E (2) is a null 
vector. So for each term in G (t'l) there is a corresponding contribution to G (2'~), 
G °,2) and G (2'2) (unless D (2) and/or E (2) is zero) which can be obtained by replacing 

the last matrix V(t i)  in D (°, E (') or both by a vector g(Q,  respectively. For  example 

if 

G °'') = ( V ( / 3 ) Q {  V(t,) V(t2) } > = < V"(tO V"(tz) V'( /3)> , 

then 

G (2,t) = (g(t3)(~) { V(t,) V(tz)}> = < V"(t,) V"(t2)g'(t3)>, 

G(' ,  2) = < V ( t 3 ) Q {  V( t , )g ( t2 ) }>  = < V " ( t l ) g " ( t 2 ) V ( t 3 ) > ,  

G (2'2) = (g(t3)(~{ V(tt)g(t2)}> = ( V"(tt)g"(t2)g(t3)>. 

From these formulas one sees that it is not necessary to write the expression G (''') 
first as a Kronecker product. To obtain G (2''), G °'2) and G (2'2) one may just as well 
start from G (m) in terms of  products of moments (or t-cumulants, but not 
O-cumulants) of  V' and V", and replace in each term the last matrices V'(.), V"(.) 
or both by g'(.), g"(.) or both respectively*. However, there is the additional 

contribution to ,~ • • If  a term of G (t'') contains no matrix V' (or V"), there is no corresponding ~(2 ,) 
and G (2"2) (or G (1'2) and G(2'2)). 
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prescription that any matrix C'  or C" (where C can be a matrix or vector) 
succeeding a matrix g '  or g" has to be replaced by C. 

We can repeat the above procedure for each term of MB. Thus if all terms are 
included, C~t~ still obeys an equation of the form (3.32). If g = 0 in (2.3), (3.32) 
should reduce to (3.22), so one can identify 

G (1'1) = Mv(t + z + 1; t/to) , (3.33) 

where My is given by (3.17). To obtain G (1'2), G (2'1) and G (2,2) one should expand 
G °'l) in the joint moments of V' and V" and subsequently apply the rules given 
in the preceding paragraph. The matrix G 0,~) contains the moments of V(.) alone, 
G (2'1) and G 0,2) those of V(.) with one g(.), and G (2'2) those of V with two g's. 

If we regard V and g to be of the same order of magnitude, we find that the 
matrices G ~i~ in (3.32) to second order are given by 

t+~ 

G (''')= (V"( t  + z  + 1) )+  E ( ( V " ( t  + z  + 1)V"(s))) 
s=t0+l 

+ ~ ( ( V " ( t  +~ + 1)V'(s))) ,  (3.34a) 
S=to+l 

G (2'1) = ~ ( ( V " ( t  + T + 1)g'(s))) ,  (3.34b) 
S=to+ l 

t+~ 

G (1'2)= (g"(t  + z  + 1)) + E ( ( V " ( t  + z  + 1)g"(s))) 
s=t0+l 

+ ~ ( (g" ( t  + z + 1)V(s))) ,  (3.34c) 
s=t0+l 

G (2'2) = ~[ ( (g" ( t  + z + 1)g(s))) .  (3.34d) 
s=t0+l 

By means of (2.1) and (2.4) one can transform (3.32) and (3.34) back to the 
original representation in the case of a nonsingular A 0. If  A 0 is singular only G 0't) 
has to be modified as indicated in the previous subsection. 

4. Probability density functions 

In this section we investigate the applicability of the cumulant expansion to find 
the probability density function (p.d.f.) of the solution u(t, 09) of (1.1). To this end 
we first derive an analog of the "stochastic Liouville equation" in the case of an 
s.d.e.2). The derivation is only formal in the sense that possible difficulties 
concerning existence, differentiability etc. of the p.d.f, are ignored. The method 
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can be extended to obtain multi-time probability density functions (compare 
appendix A of ref. 3), and also to nonlinear difference equations. 

In subsection 4.1 the expansion for the p.d.f, is derived. Subsection 4.2 shows 
a one-dimensional example which results in the well known lognormal distribu- 
tion. Finally we consider in subsection 4.3 the case that the matrix A( t )  in (1.1) 
constitutes a Markov process. This case is exactly solvable for arbitrary cor- 
relation time of A (t). In particular an exact equation for the first moment of the 
solution u(t) is derived. 

4.1. The cumulant expansion of  the p.d.f. 

We start by defining a density p(u, t)* in phase space by 

p(u, t) = 6(u( t )  - u) - f i  6(ui(t ) - uj) . (4.1) 
j=l 

Now apply the difference operator to p(u, t) and use the integral representation 
of the delta function to obtain 

Ap(u, t) = A - ~  dk eik'('(')-") 

- ( 2 ~ )  ~1 .,~ dk eik. (=(t) - U)(eik. zlu(t) _ _  l) 

[( 1 ) n ~  " , -nm~j--=0 ~(ikj)mj ] = dk e"'{'{t)-=)i~=l (Auj(t)) mj - p(u, t) 

=1 mF0 mj7 Ou• eikj(uJ(t)-uJ)(Auy(t)) mj -- p(u, t) . 

Finally use the definition (4.1) and eq. (1.1) for A u f i ) t  to get 

Ao(u,t)= ~I=, m.= mj-t. ~ ~(uj(t)-u')(Au'(t))m' --p(u,t) 

,, mi [{(A(/+ 1) - 1)u + f ( t  + 1)}rap(u, t)] (4.2) 

=- L(u, t, og)p(u, t) , 

where we have introduced the abbreviated notation 

m = m  t + m  2 + . . . m . ,  m. t = m t . t . . . m . ,  t, 

(x)" = x~"~ . . .  x,", for any vector x ,  
6= Om~ am. 

c~u" g..' ~u,", 

* In this second vectors will be printed in bold-face type. 
t In the nonlinear case one should substitute at this point a nonlinear function fj(u, t ) =  Auj(t). 
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and the asterisk on the summation symbol indicates that one should sum over all 
nonnegative integer values of  ml, m2 . . . . .  m, not all equal to zero. The stochastic 
differential operator L is defined by the second line of  (4.2). 

Now the cumulant expansion of I (section 2) can be applied to (4.2). Using the 
fact that 

(p(u ,  t ) )  = P(u, t) (4.3) 

gives the probability density to find uj(t) between the values uj and uj + du: at time 
t ( / = l  . . . . .  n), we find 

Ae(u ,  t -- 1) = KL(t/to)P(u, t - 1), (4.4) 

where K t is the deterministic differential operator 

( [ KL(t/to)= L(u,  t): T 1"1 {1 + £ ( u , s )  : (4.5) 
s=t0+l p 

and again £ is defined as in (2.8b). 
If A ( t )  in (1.1) contains an unperturbed matrix A0, one can apply the method 

given above to eq. (2.3) in the interaction representation. This yields the 
probability density P°)(v, t) of  u~)(t). From this one obtains P(u, t) by* 

P(u, t ) =  P(I)(A otU, t ) lAo 1 

assuming A 0 is nonsingular. I fA 0 is singular one cannot expect the present method 
to work, since in this case the unperturbed evolution does not conserve the number 
of phase points and a continuity equation like (4.2) cannot be valid. 

4.2. Example 

As an illustration consider the scalar equation 

u(t)  = {1 + ct~(t)}u(t - 1), 

u(0) = u0, (4.6) 

where {~(t)} is a stationary process with autocorrelation time z c, and such that 
1 + 0re(t) takes only positive values. Moreover assume u0 > 0. Then it is easier to 
take logarithms: 

y ( t )  = y ( t  - 1) + r/(t),  (4.7) 

where 

y ( t )  = In u(t) ,  r/(t) = ln(l + ~ ( t ) ) .  

* Compare section 21 of ref. 7 for the case of an s.d.e. 
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So r/(t) is of  order  0t. Again we introduce 

P0 ' ,  t) = 6 (y( t )  - y ) ,  

and consider the Fourier  t ransform* of  p: 

~(k, t)= f dy eikyp(y, t)= f dy eikyf(y(t -- 1) + r / ( t ) -  y )  

= e ik.O)~ ( k ,  t - 1 ) .  

So 

A/~(k, t -- 1) = (e ikq(̀ ) - -  1)fi(k, t - 1). (4.8) 

This equat ion is of  the form considered in par t  I. Applying the results of  section 
2 of  I, we obtain 

A (/~(k, t - 1)) = K~(~(k, t - 1) ) ,  (4.9) 

where 

K. = e ik"(') - 1) + E (((eik"(t) - 1)( e~"(O -- 1 ) ) )  + d)(o~ 3) 
tl=l 

"~2 ° ik(,(t)) +-57-., (,2) + ~ ((,(,)~(o)))(ik)2 + o(~) 

= e x p  i k ( , )  +--~--.t ( Q l 2 ) ) + 2  ((~/(z)r/(O))) - 1. (4.10) 
x=l 

Hence (we neglect the mismatch of  u0 (ref. 7)) 

(t~(k, t ) )  = (1  +K~)'eiky0, y 0 = l n u 0 .  

By inverse Fourier  t ransformat ion one obtains the p.d.f, o f  y(t), 

P(y,t)=(p(y,t))=(2~tr2t)-l/2expl--(Y-Y°-at)21 
2~72/ 

where 

0.2= ( ( q 2 ) )  + 2 ~ ( ( q ( x ) q ( O ) ) )  
7=1 

= ~2 ¢2))  + 2 ( (~(~)~(o)  + ~(~3). 
= 

(4.11) 

(4.12a) 

(4.12b) 

* One could also start from (4.4) neglecting terms of t~(~t 3) and take the Fourier transform of the 
resulting equation to obtain the solution. 
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Finally we find the p.d.f, o f  u(t) by 

d l n u  
e(u, t) = P( ln  u, t) du 

(ln(u/uo)--at) 2-] 
= (2xtrZt)-1/2/,/-1 exp 20.2 t j ,  (4.13) 

which is the lognormal  distribution. The result (4.13) holds if  t >> % and is correct  
up to (P(ct2). The fo rm o f  P(u, t) could have been anticipated,  since by (4.7) y(t) 
is a sum o f  weakly dependent  stochastic variables. So by the central  limit theorem 
the distr ibution o f  y is Gauss ian  for  large t. 

The mean  and variance o f  u(t) are given by 

<u(t)> = e("2/2+a)'u0, (4.14a) 

<<u2( t ) ) )  = e2(a2/2+a) t (e  ah  - -  1)u0 2 . (4.14b) 

Thus  <u(t))--*oo as t - - * ~ ,  but  also <<uZ(t)))--*oo. And  in fact the modus  u,, o f  

P(u, t) is 

Um= e~a-*2)'Uo , 0  if a < tr 2 . (4.14c) 

Tha t  is, a l though the average grows without  bound,  the probabi l i ty  to take on a 
non-zero  value m a y  go to zero for  certain values of  the parameters .  To  be more  
precise, for  the probabi l i ty  that  u(t) takes a value smaller than E > 0, one finds 4) 

P[u(t) < E] = Erflln(E/u0 -- at)/atl/2], 

where Er f  denotes  the error  function. So as t ~ oo 

I~  ' if  a > 0 '  
e[u(t)<E]= , if a = 0 ,  

[1,  i f a  < 0 ,  

independent  o f  a 2. 
Finally we remark  that  the same lognormal  distr ibution (4.13) is obta ined f rom 

the cumulan t  expansion* to dJ(ct 2) for  the s.d.e. 

= ct~(t)u. (4.15) 

In this case 

a = ,<¢>,  

co 

a 2 = 2ct 2 fdz<<~(t)~(t - z)>>. 
0 

* For the method, see ref. 2, section 7. 
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The lognormal distribution (4.13) is exact for all t when ~(t) is Gaussian white 
noise 5) (and if (4.15) is interpreted in the Stratonovich sense). 

4.3. The case where the multiplicative noise is a M a r k o v  cha& 

In this subsection we consider the stochastic difference equation 

u ( t )  = A ( ~ ( t ) ) u ( t  - 1), (4.16) 

where the matrix A is a function of  a Markov chain {¢(t)}?=-~o. The probability 
density ~(¢, t) of ~(t) obeys the master equation 

n(¢, t + 1) = ~ T ( ~ / ~ ' ) n ( ~ ' ,  t ) .  (4.17) 

The summation runs over all states of  ~, and T(¢/~')  is the transition matrix (if 
the state space of  ~ is continuous*, the summation in (4.17) becomes an integral). 
The joint process {u(t), ~(t)} is again a Markov process with joint p.d.f. P(u ,  ~, t) 
defined by 

P ( u ,  ~, t )  = ( , ~ ( u ( t )  - u ) ~ ( ~ ( t )  - 4 ) > .  

For p(u,  t ) =  6 ( u ( t ) -  u )  one has the equation 

Ap(u ,  t -- 1) = L(u ,  ~ ( t ) )p (u ,  t - 1), (4.18) 

where from (4.2) 

L ( u ,  ~ )  . . . .  y , , ( _ ) m  
O" 

,, mi c3u " [ { ( A ( ¢ ) -  l )u f f " . . . ] .  (4.19) 

Let ~ (¢, t) = 6 (¢ (t) - ¢). Then we can combine the continuity equation (4.18) for 
p(u,  t) with the master equation (4.17) as follows?: 

A P ( u ,  ¢, t - 1) = < p ( u ,  t )G(~ ,  t )>  - <p( , , ,  t - 1 )~ (~ ,  t - 1)> 

= < { A p ( u ,  t - I ) }~(# ,  t ) >  + < p ( u ,  t - l ) {Aa(¢ ,  t - I }> 

= <L(u,  ~( t ) )p (u ,  t -- 1)o'(~, t)> 

+ Z W ( # / ~ ' ) < p ( u ,  t - 1)a(#', t - 1)>, (4.20) 

where 

W ( ~ / ~ ' )  = T ( # / ~ ' )  -- 6¢,~,. (4.21) 

Here we used the fact that the process ~(t) evolves independent of  u( t ) ,  so if the 

* For an example, see ref. 6. 
f Compare the corresponding ease of an s.d.e, in ref. 7. 
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value of u at time t - 1 is fixed, the second term in the r.h.s, of (4.20) evolves in 
the same way as n(~, t) itself. However the evolution o fu( t )  does depend on ~(t), 
as is expressed by the dependence of L on ~(t). Using the above argument in the 
first term too, in addition to the fact that we can put ~(t) in L ( ~ ( t ) )  equal to 
(due to a(~,  t)), it follows that 

AP(u ,  ~, t - 1)= ( L ( u ,  ¢ )p(u ,  t -- 1)a(~, t ) )  + W P ( u ,  ~, t -- 1) 

= TL(u ,  ~ ) ( p ( u ,  t -- 1)tr(~, t - 1)) + W P ( u ,  ~, t - 1) 

= { T L ( u ,  ~) + W } P ( u ,  ~, t - 1), 

where W P ( u ,  ~, t) - E~, W ( ~ / ~ ' ) P ( u ,  ~', t), etc. Using (4.21) we finally arrive at 

P(u ,  ~, t) = T{1 + L(u ,  ¢)}P(u, ~, t - 1). (4.22) 

Now it is easy to obtain equations from which the moments of u ( t )  can be 
obtained. Define the marginal averages 

= fdu uP(u ,  ~, t ) .  (4.23) (u( t ) ) ,  

From (4.22) and (4.19) (of which only the term with m = 1 contributes) one has 

( u ( t ) ) ¢  = ~ T ( ~ / ~ ' ) { ( u ( t  - 1))¢ + ( A ( ~ ' ) -  1 ) ( u ( t -  1))~, / 

= ~ T ( ~ / ~ ' ) A  ( ~ ' ) ( u ( t  - 1))~,. (4.24) 

After solving this linear set of equations for (u~(t))¢, i = 1 . . . . .  n, the average of 
u can be obtained as 

(u( t ) )  = Z (u(t))¢.  

Higher moments of u(t) can be obtained in a similar way. An application of eq. 
(4.24) will be discussed in the next section. 

5. Application: a biological population with two age classes in a random environment 

Recently 4's'9) equations of the form (1.1) have been used to describe the growth 
of a biological population in a random environment. The discrete time formu- 
lation is appropriate for a population with non-overlapping generations. More- 
over, the members of the population are assumed to be in one of n age (or 
size/stage) classes of equal length, hence the population is modeled by a vector 
difference equation. Linear equations are appropriate as long as density dependent 
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effects are unimportant. So if the original model is nonlinear, (1.1) can be viewed 
as its linearization around equilibrium, 

In the biological literature models of  type (1.1) have been widely used with a 
special matrix form of  A, a so called Leslie matrix. This is a matrix which has only 
non-zero elements on the first row (these are the fecundities of each age class) and 
the subdiagonal (these are the transition rates from one age class to the next). The 
vector of age classes (ul, u2 . . . . .  un) is chosen such that ul is the youngest age class, 
u2 the next youngest, etc. 

Here we consider the simplest case of a population with two age classes: 
u = (ul, u2). The corresponding difference equation is 

u(t )=A(t)u( t  -1 ) ,  A ( t ) = ( n ~  ° ml+o~(t)  ) .  (5.1) 

The matrix A is of  Leslie type, and only one element is random, due to the 
presence of a random perturbation 0t~(t). All constants m0, ml and I are positive. 
The model describes a situation where the birth rate of the older age class 
fluctuates, e.g. because it is more prone to diseases. 

We take {~(t)} to be a two state Markov chain (values _ 1) already introduced 
in I, subsection 3.2. Its transition matrix is 

(,vv) 
T = 0 < v < 1. (5.2) 

V I - - V  ' 

If one assumes the initial distribution n (~, 0) to be the equilibrium distribution, 
the first two moments of ¢(t) are 

(~(t))  = O, (¢(t)~(t')) = pl,-,'l, p = 1 - 2v. (5.3) 

This example has been studied before by Tuljapurkar 9) by means of  a different 
method. We compare our results (subsection 5.1) with his ones in subsection 5.2, 
and with the exact expressions (subsection 5.3) which can be obtained in this case 
by the method of  subsection 4.3. 

5.1. Results of the cumulant expansion 

To calculate the average of u(t) we use the approximate equation (2.15), which 
is valid if ctzc ,~ 1, where zc = - (lnlp I)- 1. So 

(u(t))  = K(u(t  -- 1)), t >> zc, (5.4) 

where 

K = Ao + ~2 ~ p~AlA~o-lA1Ao ~ + ¢p(~3) (5.5a) 
'r=l 
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and 

A°: ( 7  O1) ' Xl= (~ ~)" (5.5b) 

t __ m l  

where 

t __ 
m0 

l 2 1 { P 4_ 
( 4 + - 4 _ )  24+4_ (4++4_)  1 - p  

L 1 { _ (2~+ + 4:_) p 
(4+ 4_) 22+2_ 1 -- p 

p2+/2_ p2_/2+ 
+ 4 + 4 _  1 - -  p 2 + / 2 _  1 ------P2--_-j2+JJ " 

p2+/2_ 

1 - pA+/2_ 2+ 1 ~ 2 +  } , 
(5.9a) 

(5.9b) 

Since 14+1>14-1 we have to require [Pl <[2-/2+1 for the sums in (5.5a) to 
converge*. K has the same form as Ao, so the eigenvalues 2~: of K can be 
immediately inferred from (5.6) 

, l x/(m0 "F Gt2m~) 2 + 4(m I + a2m~)l} 2 +_ = ~{m0 + a2m~ +__ 

2//2+_m~ + lm~'~ 
= 2+_ __:, (. ( 5 . 1 0 )  

Inserting the expressions (5.9) for mg and m ~ in (5. lO), one finds after some algebra 

t~J-~-~ {2±(2+_ - 2~)(2+_ - p 2 ~ ) } - ,  (5.11) 2'+- = 2+- + Ct2 1 __ p 

For all p c ( -  1, 1) it is the case that 2+ > 2+, 2'_ < 2_. The solution of (5.4) is 

( u ( t ) )  = Kt (u (O) ) ,  

* In the second and third term of (5.9) the effective autocorrelation time is increased 
(T~ = -(InlP2+/2_l)-~), resp. decreased. See also ref. 10. 

The eigenvalues of Ao are 

2+_ + = ½{m0 _ ~/m 2 + 4mll} (5.6) 

and 
i ( t ( 2~  +~ - 2,+,) 2 + 2 _ ( -  2~ + 2'_) 

A{, = t(2+ - 2_) \ F(2~_ - 2;-) t2+2_( - 2~_-' + 2;- ' )}"  (5.7) 

From (5.6) it is seen that 2+ > 0, 2_ < 0 and 12+1 > [2_ I. Calculating the matrix 
products in (5.5a) and carrying out the summation we find 
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where K' is the same as (5.7) with 2_+ replaced by 2'_+. As t ~ o e  the terms with 
( 2 + )  t dominate. Qualitatively the asymptotic growth rate 2% is larger than 2+, 
increases with increasing variance ~2 of 4, and rapidly increases as p runs from 
- 1 to + 1, where positive p has a much larger effect than negative p (the condition 
ct% ,~ 1 implies that for fixed ~ only values of 1ol much smaller than ~t- ~ are 
allowed). Second moments can be obtained in the same way from (3.25). 

5.2. Comparison with previous results o f  Tuljapurkar 

Now our results are compared with those of Tuljapurkarg). His method applies 
to equations of the form (1.1) where 4 is an ergodic Markov chain with a finite 
number of states, so (5.1) falls within this class. Results are obtained for the 
asymptotic growth rate # of the total number of individuals uL(t)+ u2(t), which 
should correspond to our 2%. We now apply his general results to our example 
(5.1). 

The lowest order contribution to kt is #0)= 2", where 2* is the dominant 
eigenvalue of A0, i.e. 2+ in our notation. The first order correction #") vanishes 
(since (~(t)> = 0), and formula (A. 18) of ref. 9 gives the second order correction 
/a ~2). In the case of a 2 x 2-matrix A it yields 

1 v, b'@zS'(Dt@EL)ti @ti v, ?J'E,a,g;DLK 
~(2) = /].* 1 - -  V 1 ( ~ t U ) 2  "=~ /~* - -  ~'1~1 ( ~ ' a ) ( / . ~ ; a , )  ' ( 5 . 1 2 )  

Here vl is the serial autocorrelation time, i.e. p; xl is the second eigenvalue of A0, 
i.e. xl = 2_; ti and 6~ are the right eigenvectors of A0 corresponding to 2+ and 2 ,  
respectively; and g and gL are the corresponding left eigenvectors. Unprimed 
vectors are column vectors, primed ones are row vectors. The matrices Ej and DI 
are defined by (A. 17) as 9) 

E L = 7h(0)H0 + nI(1)H¢ D 1 = n(0)~b,(0)H0 + rc(1)~bl(1)H ~ . (5.13) 

The matrices H,~ are defined by H,, -= A,~ - A o, where A,~ is the value of the matrix 
A in (5.1) corresponding to the mth value of the Markov chain. In our notation, 
Ho = aA1, HL = --etA1, corresponding to the values _ 1 of 4. The vectors ff and 
r71 are the right eigenvectors of the transition matrix T (eq. (5.2)) with components 
n(m), lh(m), m = 0, 1; 971 is the left eigenvector of T; ff corresponds to the 
eigenvalue 1, r7 L and ffl to the second eigenvalue p of T. The components of r7 sum 
to 1, and 97'1r71 = 1. From (5.2) one has 

r~=½({), r 7 1 = , ( 2 1  ) ,  9 7 L = ( 1 1 ) ,  (5.14) 

where the normalization conditions given above are satisfied. Now El and D1 can 
be calculated from (5.13) and (5.14), 

EL l = 5(Ho -- Hi) -= ~AI, D1 = ½(Ho - HI) = o~AI. 
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The (non-normalized) eigenvectors o f  A0 are 

Inserting all this in (5.12) we get in our  notat ion 

~,,2, = ~2 . j±  ~ (,7'@,7')(A,@A,)(,7®,~) p ~'A,,71,~;A,,~'/. 
/.,~+ 1 p (,7'a) 2 ~- ~ (,7',~)(,~;a,) J" 

Since 

5Alff = 2+1 = UAlff l, 6'lAlt7 = 2_1 

and 

~'f f  = 22+ + roll  = 2+(2+ - 2_), 

it follows from (5.15) that  

~212 { p P } 
~ 2 ) _  ~ + ( ~ 7 -  ; - )~  1 - p 1 - ~_/;+ 

ff[ffl = 22- + m l l  = 2_(2_ - -  2+),  

(5.15) 

5.3. C o m p a r i s o n  wi th  the  e x a c t  resu l t  

Finally we illustrate here the method of  subsection 4.3 and calculate the exact 
moments  o f  the solution of  (5.1). It is shown that the exact results up to (9(ct 2) 
agree with (5.11) and (5.16), which were obtained by per turbat ion theory. 

The marginal  moments  (u i ( t ) )¢ ,  i = 1, 2, ~ = __+ 1, as defined by (4.23), satisfy 
(4.24), where A is given in (5.1) and T in (5.2). This results in the following system 
of  linear difference equations 

( u ~ ( t ) ) +  = (1 - v ) { m o ( u l ( t  - 1))+ + (ml + ct)(u2(t - 1))+} 

+ v { m o ( u ~ ( t  - 1))_ + (ml  - c t )(Uz(t  - 1))_} ,  

( u l ( t ) ) _  = V { m o ( u l ( t  - 1))+ + (ml  + ~ ) ( U z ( t  - 1))_} 

+ (1 - v ) { m o ( u l ( t  - 1))_ + (ml  - c t ) (u2( t  - 1) )_} ,  

( u 2 ( t ) ) +  = (1 - v ) l ( U l ( t  - 1))+ + v l ( u ~ ( t  - 1 ) )_ ,  

( u 2 ( t ) ) _  = v l ( u ~ ( t  - 1))+ + (1 - v ) l ( u ~ ( t  - 1) )_ .  

By the in t roduct ion o f  the column vector U ( t )  = C o l { ( u , ( t ) ) + ,  ( u ~ ( t ) ) _ ,  ( u 2 ( t ) ) + ,  

- ~ 2 1 ; P 2  {2+ (2+  - 2_) (2+ - p 2 _ ) } - '  (5.16) 
l - p  

in complete agreement with the second order  correction to 2 ~_ as given by (5.11). 
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<u2(t)>_} we can write 

U ( t )  = M U ( t  -- 1), 

where the matrix M is given by 

this set in matrix form, 

(5.17) 

Before we proceed to calculate x+ and y+ we note that the solution of (5.17) 
involves four eigenvalues, whereas the solution of (5.4) involves only two 
eigenvalues. The reason is the following: the perturbation method of subsection 
5.1 (and 5.2) presupposes a small correlation time, i.e. small p (for higher orders 
in (5.5a) are neglected and the initial time to has disappeared). And if p is small, 
the roots #3.4 in (5.20) correspond to rapidly decaying transients which are 
neglected anyway in (5.4) (there is one exception, viz. a = 0: in this case (5.4) is 
exact; and indeed it is readily checked that the roots #~°)4 don' t  contribute to the 
solution of  (5.17) if ~ = 0, due to the special initial distribution, i.e. u(0) fixed and 

(0) in equilibrium). 

/ m 0 0 - - v )  mov (m l + o t ) ( 1 - v )  (ml--~)v  
|rod v "  m0(1 -- v) (rn I + ct)v (rnl -- 00(1 -- v) 

M = ~l(1 - v) Iv 0 0 (5.18) 

\Iv /(1 - v) 0 0 

To obtain the eigenvalues of M, we have to solve the secular equation 

/~, _ mo O + p)/j3 + #2{m~p _ lm,(1 + p2)} + I~{molm,p(1 + p)} 

+ 12p2(m21 -- 0t 2) = 0,  (5.19) 

where p is given in (5.3). If the eigenvalues and eigenvectors of M are determined, 
one can of course construct the complete solution of (5.17) under the initial 
condition <u~(0)>+ = <u~(0)>_ =½Ul(0), <u2(0)>+ = <u2(0)>_ =lu2(0), and from 
that the moments <u~(t)>, <uE(t)> via the prescription given in subsection 4.3. 
However, we restrict ourselves here to a calculation of  the eigenvalues of  M to 
(9(0t 2) and compare the results with (5.11) and (5.16). 

The four eigenvalues of M are easily obtained if ct = 0. In that case the secular 
equation (5.19) factorizes as 

(#2 _ #mo - /m~)(# 2 - #mop - lmtp 2) = O, 

so the unperturbed roo t s /~o ) , . . . ,  #~o) are given by 

(o) = 2+, ,,(0) = p2+,  1,2 _ ,'~ 3,4 

where 2+ is given by (5.6). The roots of  (5.19) for ct unequal to zero are now 
written to second order as 

//1,2 = )~+ -{- X_+ 0~2 "Jr- ~)(0t4) ,  ~3,4 = P~'+ + y+~2  at - (O(0t4). (5.20) 
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So for  compar i son  with the previous results we only calculate the correct ions 

to 2± in (5.20). Insert ing the expression for/Zl,2 in (5.19) and collecting all terms 
of  order  g2 one gets 

x± = 12p2142~ - m0(l + p )32~  + 2)._+{m02p - lml(1 + p2)} 

+ molmlp(1 + p) ] - I  • (5.21) 

First all quanti t ies in x± can be expressed in terms o f  2± and p via 

m 0 = 2 + + 2 _ ,  l m 1 = - 2 + 2 _  

as is easily verified f rom (5.6). After  some algebraic manipula t ions  we find 

x± = 12p212±(1 -- p)(2± -- 2:F)(2 ± -- p2~_)]-1 

in agreement  with (5.11) and (5.16). 
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