
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 12, DECEMBER 2007 2943

Volumetric Attribute Filtering and Interactive
Visualization Using the Max-Tree Representation

Michel A. Westenberg, Jos B. T. M. Roerdink, Senior Member, IEEE, and
Michael H. F. Wilkinson, Senior Member, IEEE

Abstract—The Max-Tree designed for morphological attribute
filtering in image processing, is a data structure in which the nodes
represent connected components for all threshold levels in a data
set. Attribute filters compute some attribute describing the shape
or size of each connected component and then decide which com-
ponents to keep or to discard. In this paper, we augment the basic
Max-Tree data structure such that interactive volumetric filtering
and visualization becomes possible. We introduce extensions that
allow 1) direct, splatting-based, volume rendering; 2) representa-
tion of the Max-Tree on graphics hardware; and 3) fast active cell
selection for isosurface generation. In all three cases, we can use
the Max-Tree representation for visualization directly, without
needing to reconstruct the volumetric data explicitly. We show that
both filtering and visualization can be performed at interactive
frame rates, ranging between 2.4 and 32 frames per seconds. In
contrast, a standard texture-based volume visualization method
manages only between 0.5 and 1.8 frames per second. For isovalue
browsing, the experimental results show that the performance
is comparable to the performance of an interval tree, where our
method has the advantage that both filter threshold browsing
and isolevel browsing are fast. It is shown that the methods using
graphics hardware can be extended to other connected filters.

Index Terms—Connected filters, mathematical morphology,
Max-Tree, nonlinear filtering, volume visualization.

I. INTRODUCTION

ATTRIBUTE filters are a subset of morphological con-
nected filters, a class of shape-preserving filters used in

image processing [1]–[8]. Examples of such filters are area
openings and closings, which remove image detail smaller than
a particular area [9]. More general are the attribute openings,
which accept or reject image details based on size criteria [10].
Similarly, it is also possible to filter on shape, rather than on size
criteria. This idea has been formalized as so-called shape filters
[11], [12], which have been extended to 3-D and have been
applied to the problem of vessel enhancement in angiographic
volume data sets [13].

These filters are different from the morphological erosion-
and dilation-based operations in that they do not make use of
structuring elements, but rather retain or discard connected com-
ponents as a whole. An example of an attribute filter applied to
a grey scale volume is shown in Fig. 1. The left image shows
an isosurface visualization of the original data, and the right

Manuscript received January 16, 2007; revised August 6, 2007. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Philippe Salembier.

The authors are with the Institute of Mathematics and Computing Science,
University of Groningen, Groningen, The Netherlands (e-mail: m.a.westen-
berg@rug.nl; j.b.t.m.roerdink@rug.nl; m.h.f.wilkinson@rug.nl).

Digital Object Identifier 10.1109/TIP.2007.909317

Fig. 1. Attribute filtering of a volume with a filter that selects noncompact
structures: (left) original data; (right) filtered data. Rendering is done with an
isosurface, and for both images, an isolevel threshold t = 13 was used.

image shows an isosurface visualization of the result of filtering
the data with an attribute filter that is selective for noncompact
structures [13]. For both images, the same isovalue was
used. A computationally efficient implementation of these fil-
ters is based on a data structure called the Max-Tree [14].

In previous work, we have developed a volumetric filtering
method based on attribute filters, and we have combined it with
a basic volume visualization method [15]. In that work, we have
shown that filtering can be done at interactive rates; however,
this was not the case for visualization. The reason is that we
first reconstructed the filtered volume data, and then applied a
visualization method. The purpose of this paper is to extend the
Max-Tree data structure, such that filtering and visualization
can be done directly from this extended Max-Tree. We will show
that this can be done at interactive rates. Since there is often
no a priori “right” filter threshold, such interactive feedback
is essential. As visualization methods, we employ both direct
volume rendering and isosurface rendering. The direct volume
rendering approaches most useful for our application are splat-
ting [16] and 3-D hardware texture mapping [17]. For isosurface
visualization, the extensions proposed in this paper allow fast se-
lection of cells that intersect the isosurface (active cells) when
varying the attribute filter threshold and also when varying the
isovalue threshold.

The organization of the paper is as follows. Section II de-
scribes previous work on attribute filters, the Max-Tree data
structure, and volume-rendering methods. We introduce three
new attributes in Section III. In Section IV, we introduce the
augmented Max-Tree and the visualization methods that make
use of the augmented data structure. We compare the results of
our new method with that of some standard approaches in Sec-
tion V. Finally, Section VI discusses the results and possible
future extensions.

1057-7149/$25.00 © 2007 IEEE

Authorized licensed use limited to: University of Groningen. Downloaded on September 27,2021 at 08:30:26 UTC from IEEE Xplore. Restrictions apply.

2944 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 12, DECEMBER 2007

II. PREVIOUS WORK

A. Attribute Filters and the Max-Tree

An efficient implementation of attribute filters relies on com-
puting both the hierarchy of connected components in the data
set and some attribute for each component. The Max-Tree was
introduced to separate the computation of these from the actual
filtering process [14].

Max-Trees are closely related to contour trees [18]–[21]. In
particular, the join trees used to compute contour trees are es-
sentially the same as Max-Trees, especially when they are aug-
mented to include attribute information in each node [22]. A key
difference between the Max-Tree and the join tree is that, in the
latter case, it is usually assumed that all nodes in the grid of data
have a unique (grey) value. By contrast, Max-Trees were de-
signed to administrate flat zones, i.e., connected sets of vertices
with the same grey value. Contour trees themselves are equiv-
alent to level-line trees [23], which can be constructed from a
Max-tree and a Min-Tree of the same image.

1) Construction: Let be the volume domain, and
the grey scale volume. We implicitly assume the

existence of a grid on , and we use a 26-connected voxel
neighborhood.

A Max-Tree is a tree where the nodes represent sets of flat
zones of . A set is called a flat zone if for all ,
there exists a path from to along which the function value
is constant, and the set is maximal in size. The threshold set

of is the set of points that remain after thresholding at
level , i.e.,

(1)

A peak component at a grey level can then be defined
as the th connected component of the threshold set . A
Max-Tree node represents one or more flat zones at grey
level contained in a single peak component at the same level.
A simple 1-D example for a signal with nine elements is shown
in Fig. 2(a). The signal also has nine flat zones, since none of
the signal elements is connected to another element of the same
value. The values range between zero and three; therefore, there
are four threshold sets, of which only contains two con-
nected components.

The Max-Tree can be constructed by a recursive flooding
procedure that makes use of a hierarchical FIFO queue to
process the voxels in correct order [14] or by relying on
Tarjan’s union-find algorithm [24], [25]. In this paper, we use
the queue-based approach.

2) Filtering: Filtering removes Max-Tree nodes based on
some property defined by an attribute value of a node

, from a universe (typically, or) on which an order ex-
ists. Given a threshold value from this universe, the algorithm
decides whether to preserve, or remove a node. Two classes of
strategies exist 1) pruning strategies, which remove all descen-
dants of , if is removed; and 2) nonpruning strategies, in
which the parent pointers of children of are updated to point
at the oldest “surviving” ancestor of .

Salembier describes four different rules for the algorithm
to filter the tree: the Min, the Max, the Viterbi, and the Direct

Fig. 2. (a) Input 1-D signal and corresponding peak components. (b) Signal
and corresponding peak components after filtering in the case that the attribute
valuesA(P) andA(P) do not satisfy the filter criterion. (c) Max-Tree of the
input signal and mapping between signal elements and Max-Tree nodes.

decision. The first three are pruning strategies. In addition,
Wilkinson and Urbach [11] introduced another nonpruning
strategy, called the Subtractive decision. The decisions of these
rules are as follows.

Min A node is removed if or if one
of its ancestors is removed.

Max A node is removed if and all
of its descendant nodes are removed, as well.

Viterbi The removal and preservation of nodes is
considered as an optimization problem. For
each leaf node, the path with the lowest cost to
the root node is taken, where a cost is assigned
to each transition. In this paper, we do not
consider this rule. For details see Salembier
et al. [14].

Direct A node is removed if ;
its pixels are lowered in grey level to the
highest ancestor which meets the criterion, its
descendants are unaffected.

Subtractive As above, but the descendants are lowered by
the same amount as itself.

Fig. 2(b) shows the results of filtering the signal in Fig. 2(a)
using the subtractive decision rule.

3) Restitution: In a single pass through the destination
volume, each voxel is assigned the new grey level of the cor-
responding node in the Max-Tree. It is this phase that we skip
and replace by a visualization phase in this work.

B. Volume Rendering

Volume rendering is the process of generating 2-D images
from 3-D data. It is pervasive in many application areas, such as
medical imaging, biology, and computational fluid dynamics.
Basically, two approaches exist: surface fitting methods and di-
rect volume rendering methods [26].

Surface fitting methods extract constant-value surfaces rep-
resenting the boundary between materials. By taking different
threshold values, distinct isosurfaces can be extracted from the

Authorized licensed use limited to: University of Groningen. Downloaded on September 27,2021 at 08:30:26 UTC from IEEE Xplore. Restrictions apply.

WESTENBERG et al.: VOLUMETRIC ATTRIBUTE FILTERING AND INTERACTIVE VISUALIZATION 2945

volume data by fitting geometric primitives such as triangle
meshes to the boundaries that match the threshold [27].

Direct volume rendering methods [28] do not make use of in-
termediate graphical primitives, but make a direct mapping from
the volume data onto the view plane. A standard method, called
X-ray rendering, is to integrate the data values along the line of
sight. Maximum intensity projection (MIP) takes the maximum
value encountered along this line. This method is used often to
visualize magnetic resonance angiography (MRA) data. Most
other methods require a classification step, in which colors and
opacities are assigned to ranges of data values. The opacities are
used to make some parts transparent in order to reveal the inter-
esting parts.

Much effort has been spent on speeding up the fundamental
volume rendering techniques, see [29] for an overview. For iso-
surface visualization, an expensive step is to select the active
cells, i.e., those cells that intersect the isosurface. There are two
basic approaches: range-based search methods and seed set gen-
eration methods. The range-based methods use an interval
of the range of the scalar field values of a cell, where is its min-
imum value and its maximum. Given an isovalue threshold ,
a cell is intersected by the isosurface if . A popular
range-based method is the interval tree [30], which is a balanced
binary search tree that stores the intervals, and which can be
queried efficiently. The seed set generation methods construct
a small group of cells, the seed set, which includes at least one
active cell for each possible isosurface. Starting from the seed
set, adjacent isosurface cells are found by propagation methods
[20], [31], [32].

Acceleration techniques for direct volume rendering often in-
volve ways to skip empty space, for example, by storing the data
in an octree [33]. There also exist transform domain approaches,
based on a wavelet decomposition of the data [34], [35] or a
Fourier representation [36], [37]. The best rendering speed is
currently provided by specialized hardware, such as VolumePro
[38], or texture mapping on standard PC graphics cards [17],
[39].

Practically all acceleration methods have one problem in
common: the underlying data structures cannot be updated
easily if the volume data change as a result of, for instance,
filtering. In general, the data structure has to be completely
rebuilt, imposing large delays between filtering and rendering.
The standard hardware-based texture mapping approach is also
not directly usable, since the whole volume has to be transferred
from main memory to graphics card memory, a step which is
expensive. In the next section, we will introduce extensions
to the basic Max-Tree that will allow us to visualize the data
directly from the Max-Tree representation.

III. ATTRIBUTES

Any attribute of a connected component can be used with the
Max-Tree. If it is required that the Max-Tree building phase
is short, it should be possible to compute the attribute incre-
mentally. An example is the volume of a connected compo-
nent, which can easily be updated voxel by voxel. Other exam-
ples are the length of the diagonal of the bounding box or the
minimum enclosing box; the radius, diameter, or volume of the

smallest enclosing sphere; the moment of inertia; the perimeter,
or criteria derived from the perimeter, such as complexity, sim-
plicity, compactness, eccentricity, jaggedness, etc. [10], [14].
However, if the Max-Tree building process can be done off-line,
this restriction does not hold, and any shape or size attribute
can be used. Examples are radius of the largest inscribed circle,
skeleton length, etc.

Previously, Wilkinson and Westenberg [13] proposed a scale-
invariant attribute based on the moment-of-inertia tensor of each
object for vessel enhancement filtering. The moment-of-inertia
tensor of an object can be defined as

(2)

with

(3)

(4)

(5)

(6)

(7)

and

(8)

in which stands for the volume of , and , , and
denote the centre of mass coordinates. The term in
the diagonal terms corrects for the moment-of-inertia contribu-
tion of each of the individual voxels, which are considered to
be small cubes. This correction is necessary for two reasons:
1) it ensures scale invariance more precisely, and 2) it prevents
division-by-zero errors caused by zero eigenvalues. Tensor is
essentially the covariance matrix multiplied by the number of
voxels in . It can be computed for each node of the tree by
computing , , , , , , , ,

, and volume. Each of these is easily updated incrementally.
Several moment-invariants can be computed from the mo-

ment-of-inertia tensor. The noncompactness attribute
used for vessel enhancement [13] is defined as

(9)

It can be shown that this is a 3-D counterpart of the first moment
invariant of Hu [40], and it was previously proposed outside the
filtering context in [41]. Other 3-D moment invariants are dis-
cussed in [42]. Here, we derive other moment-invariants which
have a straightforward geometric interpretation from the eigen-
values of . Let , , and be the three (real)
eigenvalues of , sorted such that

(10)

Authorized licensed use limited to: University of Groningen. Downloaded on September 27,2021 at 08:30:26 UTC from IEEE Xplore. Restrictions apply.

2946 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 12, DECEMBER 2007

Intuitively, is the variance along the major axis, multi-
plied by the volume of the object, and likewise for the other two
eigenvalues. Therefore, the ratios

(11)

and

(12)

are measures of elongation and flatness, respectively. Further-
more, the lengths of the principal axes can be estimated
as

(13)

Finally, the sparseness can be computed as

(14)

i.e., it is the ratio of the volume expected given its principal
axes, over the actual volume. It attains a minimum of 1 for solid
spheres and ellipsoids, is equal to about 1.127 for solid rectan-
gular blocks, and becomes higher as the object becomes either
hollowed out or tree-like.

IV. AUGMENTED MAX-TREE

In the usual implementation of the filtering phase, the Max-
Tree structure is modified by removing nodes from the tree. In
order to be able to reuse the same Max-Tree for filtering with
different values for the threshold parameter , nodes should not
actually be removed from the tree. Therefore, we explicitly store
the grey value of a node in an extra field. We introduce the
notation to denote this current grey value. The current
grey value is initialized as , i.e., the original grey
value of the node, and it is updated during filtering. The filtering
phase now uses the original grey value of a node , and stores
the grey value resulting after filtering as .

We will replace the restitution phase, since reconstructing the
complete volume is not convenient for visualization purposes.
Instead, we introduce a few extensions that allow us to use the
Max-Tree representation directly for visualization.

A. Splatting

Splatting is a visualization method that traverses the voxels
and calculates the projection and contribution of a voxel to the
pixels in the view plane [16]. In the method, the underlying con-
tinuous function is reconstructed from the discrete volume data
by convolution with a reconstruction filter, followed by a map-
ping to the view plane by superposition of building blocks called
footprints. The footprints are the result of integrating the recon-
struction kernels along the line of sight. For orthographic pro-
jection, the footprints are the same for all voxels, and have to be
computed only once for a given viewing direction.

MIP and X-ray rendering can be implemented very efficiently
[35], [43], since the voxels can be processed in arbitrary order.
Though it is possible to perform semi-transparent rendering by

depth sorting the voxels, we restrict our splatting implementa-
tion to MIP and X-ray rendering, since splatting is to be used as
a previewing method. A more sophisticated rendering algorithm
is presented in Section IV-B.

Before we can describe the rendering algorithm, it is neces-
sary to establish a mapping from Max-Tree nodes to voxels.
During the construction phase, we fill a list with voxel co-
ordinates in a lexicographical order according to grey value and
Max-Tree node index. In each Max-Tree node, two extra fields
are maintained: an offset in the list , and the number of voxels
that belong to that node. In essence, the list is just a flattened
representation of the hierarchical queues, which are used in the
flooding procedure.

The rendering algorithm starts at the root node, and traverses
the tree to the leaves. At each node , the current grey value

is inspected, and if (the background color),
the voxels belonging to the node are looked up in the list . For
all voxels, we calculate the projection of the center of each
voxel on the view plane. For MIP, only contributes to the
pixel closest to . For X-ray rendering, we distribute the contri-
bution linearly to the four pixels closest to . The final step is to
close holes that appear for nonaxial views. For X-ray rendering,
this is done by convolving the image with the splatting footprint
[35]. Since linear interpolation does not combine very well with
MIP [44], we use morphological sampling [45], and it has been
shown that the footprints from classical splatting have to be re-
placed by a morphological closing in the view plane [43].

B. Hardware-Assisted Volume Rendering

Modern graphics cards support 2-D or 3-D texture mapping
functionality, which can be used to implement volume rendering
based on texture slicing [17], [39].

Volume rendering by 3-D texture mapping works as follows.
The volume data are loaded as a 3-D texture in texture
memory on the graphics hardware. Modern cards usually have
256-MB or 512-MB memory available. Next, polygons parallel
to and at increasing distances from the view plane are gener-
ated. Resampling is then performed at the intersections of these
polygons and , a process during which trilinear interpolation
is used. The resulting scalar values are then mapped to color
and opacity by a transfer function that is also stored on the
hardware as a 1-D texture. This is called a dependent texture
lookup: the interpolated scalar value is used as an index in
the transfer function texture. Finally, the polygons are blended
in a back-to-front order to make the final image. The whole
process takes place in hardware, and it can be implemented
in a straightforward way in OpenGL and a so-called fragment
program. A fragment is simply a pixel with associated color and
depth value. In OpenGL, it is possible to replace the standard
fragment operations, such as texture mapping, color operations,
fog calculations, for example, by a fragment program that
performs some other operation.

A bottleneck in the approach above is volume reconstruction
from the Max-Tree and transfer of the volume data from main
memory to the graphics card. For a moderately-sized data set
of voxels, this can take in the order of 500 to 5000 ms,
depending on the hardware and the size of the Max-Tree. This

Authorized licensed use limited to: University of Groningen. Downloaded on September 27,2021 at 08:30:26 UTC from IEEE Xplore. Restrictions apply.

WESTENBERG et al.: VOLUMETRIC ATTRIBUTE FILTERING AND INTERACTIVE VISUALIZATION 2947

is more than one order of magnitude slower than the Max-Tree
filtering phase (see also Section V). We, therefore, propose a
slightly different approach.

We construct a 1-D array , in main memory, containing all
Max-Tree nodes with no specific ordering. Then, we make a
volume data set that for each voxel contains the index of
the corresponding Max-Tree node in the array , rather than
the node’s grey value. The volume is transferred once to the
graphics hardware. From the array , we derive a 1-D texture

that contains the current grey values of the Max-Tree nodes.
This texture is updated and transferred to the graphics hardware
each time filtering is applied (see Update in Alg. 1). Transfer-
ring will be much faster than transferring the whole volume
data set, since in general the size of is much smaller than the
number of voxels. The rendering phase now requires one extra
dependent texture lookup to obtain the grey value at a specific
point when resampling . Sampling a voxel of yields an
index, which is used to find the grey value of in . A second
dependent texture lookup occurs during the application of the
transfer function, see Draw in Alg. 1.

Algorithm 1 Pseudo code for texture-based volume rendering

Update()

// denotes current grey value of node

for to length do

end for

Transfer to graphics hardware

Draw()

for all slice planes do

for all fragments in do

in point // Fetch node index

// Fetch current grey value

end for

Blend with frame buffer

end for

Due to limitations of the hardware, the actual implementa-
tion is somewhat more involved than sketched above. The first
restriction is that textures can only have dimensions that are
powers of two. Secondly, it is not possible to store integer-
valued volume data directly, since the hardware only supports
RGBA (red, green, blue, and alpha) components with eight bits
per component. Furthermore, the size of a 1-D texture is usu-
ally also limited to about 4096. Therefore, we factorize the in-
teger indices into RGB triplets: becomes a 3-D RGB tex-
ture and is turned into a 3-D texture. For example, consider
a Max-Tree that contains 38868 nodes. Then, will have di-
mensions , and the node with integer index 2698

is factorized as . This way of storing
Max-Tree node indices limits the maximum number of nodes to

. We cannot use the alpha component, since 4-D textures
are not supported.

During resampling, we have to take care that contains in-
dices, so that trilinear interpolation cannot be used directly. This
problem is solved by a fragment program which performs the
interpolation. The input to the fragment program is the 3-D co-
ordinate of the sample point at which we need the grey value.
The first step is to determine the coordinates of the eight voxels
in closest to by simple rounding operations. This yields the
indices to be used to access to obtain the current grey values
of these voxels. These grey values are then trilinearly interpo-
lated to obtain the grey value at . Finally, the transfer function
is applied.

Since trilinear interpolation requires eight dependent texture
lookups, it is computationally expensive. Therefore, we have
also implemented a fragment program that performs nearest
neighbor interpolation, i.e., it just finds the grey value of the
voxel closest to . This requires only one dependent texture
lookup, at the cost of reduced image quality.

C. Isosurfacing

To extract an isosurface efficiently from the Max-Tree repre-
sentation, we need a few more extensions, which we introduce
below. First, consider the following observations.

Let a cell be identified by the corner voxel with the min-
imum coordinate values within the cell. Define the root path of
a node as the path through the tree that starts in and
ends in the root node, and which contains all nodes encoun-
tered on the descent. In case of a 26-connected neighborhood,
two important properties hold: 1) all eight corner voxels of any
given cell are part of the same root path in the Max-Tree, since
they are all neighbors of each other; 2) filtering in the Max-Tree
does not change the grey-level order of Max-Tree nodes along
a root path. To see that the first property holds, consider the fol-
lowing cases for two arbitrary voxels and of a cell . If they
have the same grey value, i.e., , they belong to
the same flat zone and, thus, the same Max-Tree node . If

, both voxels belong to the same connected com-
ponent in the threshold set , and is part of a flat zone of
a child node of the Max-Tree node . In case ,
the parent-child relation of and is inverted. The fact that the
second property holds follows directly from the filtering rules
discussed in Section II. Because of these properties, just one
Max-Tree node defines a cell’s minimum value and just
one other Max-Tree node its maximum value. It is impor-
tant to realize that, after filtering, the same nodes still define
the cell’s minimum and maximum value, even though the ac-
tual grey values of the nodes themselves may have changed.

We construct two label volumes, and , which store
for each cell the Max-Tree node containing its minimal and
maximal neighboring node, respectively. Note that, if the orig-
inal volume has size , there are

cells. Next, we define edge cells as those cells
for which . These are the cells that possibly
contain an isosurface.

Authorized licensed use limited to: University of Groningen. Downloaded on September 27,2021 at 08:30:26 UTC from IEEE Xplore. Restrictions apply.

2948 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 12, DECEMBER 2007

Fig. 3. Simple augmented Max-Tree. The top row shows a 4 � 4 image with
4 grey levels, and the (3 � 3) arrays containing V and V , respectively.
Below these, the augmented Max-Tree is shown, in which each node (except
for the root) contains a pointer to an array of edge cell coordinates assigned to
it (origin is upper left). Because there are four cells with V = C there are
four cell coordinates in its edge cell array. Note that they are sorted in increasing
order of the grey level of the corresponding node in V .

The idea now is to store each edge cell in the Max-tree node
. We store these edge cells in ascending order of the cur-

rent grey value of their minimum neighboring Max-Tree node.
Initially, the current grey level equals the original grey level

. Because all lower neighbors of a Max-tree node
must belong to the same root path, and because the filtering re-
tains the order of nodes in a root path, we may sort the edge cells
assigned to each node in ascending order of . Fig. 3
shows an example of the augmented Max-Tree for a simple
4 4 image.

The memory overhead of edge cell administration is
, where denotes the number of Max-Tree nodes and

the total number of cells. Assuming that denotes the number
of bytes required to store an integer or a pointer to a Max-Tree
node, the exact memory overhead is bytes:
contains pointers to Max-Tree nodes, and each Max-Tree
node contains an array of indices of edge cells and the size of
this array. Note that is usually much smaller than the number
of voxels, but these numbers can become equal in the worst case.

Given an isolevel query value , it is now straightforward to
select the cells for which maximum and minimum grey values
straddle this threshold (active cells). Because the leaves of the
Max-Tree contain regional maxima, it is possible to descend
from each leaf for which the current grey level is higher than
. At each node that is visited, the algorithm checks whether

it has not yet been processed and whether the current grey level
. If so, the edge cells of are processed in ascending

order, while the minimum filtered grey level of its minimum
. When ready, the node is marked as processed,

and the algorithm descends to the parent, until the root node is
reached. The pseudo code for active cell selection is shown in
Algorithm 2.

Algorithm 2 Pseudo code for active cell selection

// Isolevel query value is ; denotes current grey value
of node .

for all nodes do

end for

root.processed true

for all leaves do

while (not) and do

while and
do

add to active cell list

end while

end while

end for

The final step is to process the active cell list, and perform
triangulation within each cell. This is done by analyzing the
marching cubes cases [27], and constructing a triangulation
accordingly. The normals of the corner voxels of the cell
are re-computed each time the isolevel or filter threshold
changes. The triangulated isosurface is sent to the graphics
hardware by means of OpenGL vertex arrays.

V. RESULTS

To measure the performance of our method, we used two
data sets available publicly from http://www.volvis.org and
a third one from http://www9.informatik.uni-erlangen.de/Ex-
ternal/vollib. The data sets are foot (courtesy Philips Research,
Hamburg, Germany), a rotational b-plane X-ray scan; aneurism,
a CT scan (courtesy Viatronix, Inc., USA); and piggy bank,
also a CT scan (courtesy M. Bauer, Computer Graphics Group,
University of Erlangen, Germany). Visualizations of these data
sets are shown in Fig. 4, and the data set details are listed
in Table I, including the Max-Tree construction time and the
number of Max-Tree nodes. All timings were performed on
a PC with 8 GB of memory, two dual core 2.4-GHz Opteron
280 CPUs, and two NVIDIA GeForce 7900 GTX graphics
cards equipped with 512-MB memory each. Only one CPU and
one graphics card were used for the timings.

We measured the computation time of the Volume attribute
and the attributes defined in Section III. Table II lists the results.
We did not include the timing results of the flatness (12) and

Authorized licensed use limited to: University of Groningen. Downloaded on September 27,2021 at 08:30:26 UTC from IEEE Xplore. Restrictions apply.

WESTENBERG et al.: VOLUMETRIC ATTRIBUTE FILTERING AND INTERACTIVE VISUALIZATION 2949

Fig. 4. (a) Isosurface visualization of the piggy bank data set. (b) MIP rendering of the foot data set. (c) MIP rendering of the aneurism data set, filtered by a
criterion based on the noncompactness attribute (thresholded at � = 2:0).

TABLE I
DATA SET DETAILS. THE SECOND AND THIRD COLUMN LIST THE NUMBER

OF VOXELS AND THE DYNAMIC RANGE OF THE DATA. THE FOURTH

AND FIFTH COLUMN LIST THE NUMBER OF MAX-TREE NODES

AND THE MAX-TREE CONSTRUCTION TIME IN SECONDS

TABLE II
TIMINGS (IN MILLISECONDS) OF THE VOLUME, NONCOMPACTNESS, AND

SPARSENESS ATTRIBUTES. ELONGATION AND FLATNESS ATTRIBUTES

TAKE ABOUT THE SAME TIME AS THE SPARSENESS ATTRIBUTE

AND HAVE NOT BEEN INCLUDED, THEREFORE

elongation (11) attributes, because they showed the same perfor-
mance as the sparseness (14) attribute. This was expected, since
the computation time in these three attributes is dominated by
the eigenvalue calculation.

Fig. 5 contains timing results for browsing the filter threshold
in the range [0, 25] for the elongation attribute (11), and subse-

quent direct volume rendering (MIP). All times are given in mil-
liseconds. The plots compare splatting directly from the Max-
Tree (Section IV-A) with our texture-based volume rendering
approach (Section IV-B) for both nearest neighbor (MTNN)
and trilinear interpolation (MTTL). We have also included a
standard texture-based volume rendering approach in which the
volume is reconstructed before it is sent to the graphics hard-
ware (STBV). In all cases, the window size for displaying the
final image was 400 400 pixels, and the number of slice planes
for texture-based volume rendering was fixed to 300. Table III,
in addition, lists the average times to perform filtering, trans-
fers of data to the graphics hardware, and drawing time for the
texture-based volume rendering methods. From the table, it is

clear that filtering can be done at interactive rates. We must
note here that the filtering time depends only on the number
of Max-Tree nodes, and that it is independent of the choice of
the filter criterion, which only affects the number of voxels in
the filtered data set. Splatting and STBV are both highly depen-
dent on the number of voxels that remain after filtering. Our ap-
proaches MTNN and MTTL show an almost constant behavior
over the whole range. We can see that volume reconstruction
and transfer in STBV is very costly, and that our method per-
forms much better, because much less data has to be transferred.

In Table IV, we show the average frame rates (the number
of times per second all data can be drawn to the screen) of all
direct volume rendering methods. These rates were measured
twice with over a full rotation around the axis in increments of
one degree. The first timing was performed with to mea-
sure performance on the raw data sets. For the second timing,
we used a different criterion for each data set: for foot, the elon-
gation attribute worked well on the bones, the flatness attribute
revealed the coins in piggy bank, and the noncompactness at-
tribute enhanced the vessels in aneurism. The threshold was
set to a value that yielded a first interesting result, i.e., the mo-
ment components that do not satisfy the filtering criterion start to
disappear. Splatting works only well for very low voxel counts.
As expected, STBV is the fastest, because it requires only one
dependent texture lookup during drawing. Our approach also
shows high frame rates for nearest neighbor interpolation, and
it is still quite fast for trilinear interpolation. During a rotation, or
other user interaction such as zooming and panning, we, there-
fore, use nearest neighbor interpolation, and switch to trilinear
interpolation when interaction ceases. Nearest neighbor interpo-
lation has lower image quality (see Fig. 6), but it is acceptable
during user interaction.

We also compared the performances of our isosurface ex-
traction method and the interval tree. In the experiment, we in-
creased the isovalue threshold from the lowest data value to
the maximum data value in steps of one or ten, depending on
the dynamic range of the data. The performance measurement
was carried out on the filtered data sets listed in Table IV. The
interval tree had an overall somewhat better performance, which
is not surprising, since it is optimized for the purpose of isovalue
browsing. However, if we take interval tree construction time

Authorized licensed use limited to: University of Groningen. Downloaded on September 27,2021 at 08:30:26 UTC from IEEE Xplore. Restrictions apply.

2950 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 12, DECEMBER 2007

Fig. 5. Timing (ms) for browsing � in the range [0, 25] for all datasets. Elongation (11) was used as a filter criterion. (a) Piggy bank; (b) foot; (c) aneurism.

TABLE III
AVERAGE TIMES (IN MILLISECONDS) FOR BROWSING THE FILTER THRESHOLD

� IN THE RANGE [0, 25]. THE SECOND COLUMN LISTS THE FILTERING TIME.
THE THIRD COLUMN LISTS THE TIME TO TRANSFER THE LOOKUP TABLE

T TO THE GRAPHICS HARDWARE, AND THE FOURTH AND FIFTH COLUMN

SHOW THE DRAWING TIMES FOR MTNN AND MTTL, RESPECTIVELY.
THE LAST TWO COLUMNS LIST THE TIME TO RECONSTRUCT AND

TRANSFER THE FILTERED VOLUME DATA TO THE GRAPHICS HARDWARE

AND THE DRAWING TIME FOR STBV, RESPECTIVELY

TABLE IV
AVERAGE FRAME RATES MEASURED OVER A FULL ROTATION AROUND

THE z AXIS. FOR EACH DATA SET, ANOTHER ATTRIBUTE WAS USED (SEE

TEXT FOR DETAILS). WE FILTERED AT � = 0 (RAW DATA) AND � SET

TO A VALUEFOR WHICH THE FIRST INTERESTING RESULT WAS OBTAINED

Fig. 6. Comparison between (left) nearest neighbor interpolation and (right)
trilinear interpolation.

into account, which ranges between 0.9 and 56.0 s for our data
sets, our approach that extracts an isosurface directly from the
Max-Tree is more suitable when a user wants to perform both
isovalue browsing and browsing.

Fig. 7 illustrates the effect of applying various attributes to the
piggy bank data set. We used isosurfaces to visualize the results.

The coins inside the piggy bank, which, incidentally, are made
of chocolate in order to prevent scattering artifacts from the CT
scanner, can be separated well by using the flatness attribute and
a high threshold , see Fig. 7(a). The piggy bank is
standing on a wooden block, see Fig. 7(b). The wood structure
is well preserved by the sparseness attribute and a threshold of

. There is a hole in the piggy bank’s belly, covered by a
lid containing two springs that keep it in place. By filtering away
nonelongated structures, these springs can be separated out (see
Fig. 7). The elongation attribute was used with a threshold of

. Since our approach enables changing of attributes
and thresholds at interactive rates, the images in Fig. 7 could be
made within a few minutes. It would have been difficult and time
consuming to achieve the same results without the visualization
methods proposed in this paper.

We would like to refer the reader to our web page (http://
www.rug.nl/informatica/onderzoek/programmas/svcg/demos),
which contains a number of movies and a demo program. These
demonstrate the interactivity offered by our method well.

VI. DISCUSSION

In this paper, we have proposed methods for interactive fil-
tering and visualization of volume data sets based on a class of
shape preserving filters. We have briefly reviewed such filters
and explained how they can be implemented efficiently using
Max-Trees, and we have also introduced new attributes based
on 3-D moment invariants similar to those in [41] and [42]. The
Max-Tree approach splits the filtering task in three stages. The
first stage is a preprocessing step that involves the construction
of a tree, while the second stage performs actual filtering using
this tree. The third stage is reconstruction, which we have re-
placed by a visualization step. Building the tree takes several
seconds for small volumes, and in the order of minutes for larger
volumes.

We have proposed several extensions to the Max-Tree data
structure that allow efficient visualization. Direct volume
rendering based on splatting has turned out to be a viable
approach when the data are sparse. For more dense data, a
better performance is obtained by performing the rendering
on graphics hardware. For this purpose, we have introduced
a method to represent the Max-Tree as a lookup table on the
graphics hardware. Then, filtering only requires an update
of this lookup table, which is much faster than a traditional
approach of volume reconstruction and subsequent transfer to
the graphics hardware. We have also introduced extensions that

Authorized licensed use limited to: University of Groningen. Downloaded on September 27,2021 at 08:30:26 UTC from IEEE Xplore. Restrictions apply.

WESTENBERG et al.: VOLUMETRIC ATTRIBUTE FILTERING AND INTERACTIVE VISUALIZATION 2951

Fig. 7. Piggy bank filtering results for various attributes. (a) Flatness attribute reveals the coins (filter threshold � = 100:0, isolevel threshold t = 20). (b) Base
of the piggy bank is made of wood, as the sparseness attribute shows (� = 6:5, t = 10). (c) Elongation attribute makes the two springs inside a plug in the belly
of the piggy bank visible (� = 5:0, t = 150).

allow fast isolevel queries in the Max-Tree data structure. The
performance comes close to the performance of the interval
tree; however, our method has the advantage that both filter
threshold browsing and isolevel browsing are fast. The interval
tree cannot be used for both these purposes, since it requires a
large amount of preprocessing time to construct the tree.

In the current comparison, the MTNN and MTTL methods
come out best, but their drawback is that they require the entire
label volume to be stored on the graphics card. This means
that very large volumes cannot be visualized in this way. Both
splatting and isosurfacing are feasible if graphics memory is
insufficient, though splatting only works at adequate speeds if
the volume is sparse, and isosurfacing is also only possible at
interactive rates if the active cell count is low. For angiographic
datasets, sparse volumes are obtained by filter threshold settings
near the optimum.

In principle, both MTNN and MTTL could be extended to
other connected filters, such as the autodual filters of Monasse
and Guichard [23], or the even more general method of Soille
[46]. This is because any connected filter only ever merges flat
zones, or assigns new grey levels to them [47]. Thus, any con-
nected filter can be constructed by first labelling all flat zones in
a volume, computing a lookup table containing new grey levels
for every flat zone, and computing the new volume by simple
table lookup. If recomputing the lookup table can be done ef-
ficiently, it is possible to use a variant of MTNN or MTTL for
rapid visualization.

The attributes stored for each voxel in the Max-Tree could
be used in many different ways other than filtering. In partic-
ular, modifying color and opacity would be interesting ways to
manipulate the visual representation of these volumes. As the
Max-Tree provides a decomposition in connected components,
a classification scheme could assign each of the components a
different color, texture, or annotation. The speed of recomputa-
tion of these attributes, even if fairly complicated moment in-
variants are used, means such interaction can readily include
changing the attributes themselves, rather than just changing
visualization parameters such as transfer-function settings or
iso-surface levels.

It might also be possible to perform progressive refinement
based on the component structure stored in the Max-Tree,

rendering the most important components first, and gradually
adding less important ones. Unlike other progressive refine-
ment methods, the shape preserving nature of connected filters
would mean that the rendered components would appear at full
resolution, rather than as a blurred version first [35], [43].

REFERENCES

[1] U. Braga-Neto and J. Goutsias, “Grayscale level connectivity: Theory
and applications,” IEEE Trans. Image Process., vol. 13, no. 12, pp.
1567–1580, Dec. 2004.

[2] U. Braga-Neto and J. Goutsias, “Object-based image analysis using
multiscale connectivity,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
27, no. 6, pp. 892–907, Jun. 2005.

[3] R. Jones, “Connected filtering and segmentation using component
trees,” Comput. Vis. Image Understand., vol. 75, pp. 215–228, 1999.

[4] V. Metzler, T. Aach, and C. Ties, “A novel object-oriented approach
to image analysis and retrieval,” in Proc. 5th IEEE Southwest Symp.
Image Anal. Interpret., 2002, pp. 14–18.

[5] G. K. Ouzounis and M. H. F. Wilkinson, “Mask-based second genera-
tion connectivity and attribute filters,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 2, pp. 990–1004, Feb. 2007.

[6] G. K. Ouzounis and M. H. F. Wilkinson, “Filament enhancement by
non-linear volumetric filtering using clustering-based connectivity,” in
Proc. Int. Workshop Intell. Comput. Pattern Anal. Synth., N. Zheng, X.
Jiang, and X. Lan, Eds., Xi’an, China, 2006, vol. 4153, pp. 317–327.

[7] A. Sofou, C. Tzafestas, and P. Maragos, “Segmentation of soilsec-
tion images using connected operators,” in Proc. Int. Conf. Image Pro-
cessing, 2001, pp. 1087–1090.

[8] C. S. Tzafestas and P. Maragos, “Shape connectivity: Multiscale anal-
ysis and application to generalized granulometries,” J. Math. Imag.
Vis., vol. 17, pp. 109–129, 2002.

[9] F. Cheng and A. N. Venetsanopoulos, “An adaptive morphological
filter for image processing,” IEEE Trans. Image Process., vol. 1, no.
1, pp. 533–539, Oct. 1992.

[10] E. J. Breen and R. Jones, “Attribute openings, thinnings and granulome-
tries,” Comput. Vis. Image Understand., vol. 64, no. 3, pp. 377–389,
1996.

[11] E. R. Urbach and M. H. F. Wilkinson, “Shape-only granulometries
and grey-scale shape filters,” in Proc. Int. Symp. Mathematical Mor-
phology, 2002, pp. 305–314.

[12] E. R. Urbach, J. B. T. M. Roerdink, and M. H. F. Wilkinson, “Con-
nected shape-size pattern spectra for rotation and scale-invariant clas-
sification of gray-scale images,” IEEE Trans. Pattern Anal. Mach. In-
tell., vol. 29, no. 2, pp. 272–285, Feb. 2007.

[13] M. H. F. Wilkinson and M. A. Westenberg, “Shape preserving filament
enhancement filtering,” in Proc. MICCAI, W. J. Niessen and M. A.
Viergever, Eds., 2001, vol. 2208, pp. 770–777.

[14] P. Salembier, A. Oliveras, and L. Garrido, “Anti-extensive connected
operators for image and sequence processing,” IEEE Trans. Image
Process., vol. 7, no. 4, pp. 555–570, Apr. 1998.

Authorized licensed use limited to: University of Groningen. Downloaded on September 27,2021 at 08:30:26 UTC from IEEE Xplore. Restrictions apply.

2952 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 12, DECEMBER 2007

[15] A. Meijster, M. A. Westenberg, and M. H. F. Wilkinson, “Interac-
tive shape preserving filtering and visualization of volumetric data,” in
Proc. 4th IASTED Conf. Comp. Signal Image Processing, Kauai, HI,
Aug. 12–14, 2002, pp. 640–643.

[16] L. A. Westover, “Footprint evaluation for volume rendering,” Comput.
Graph., vol. 24, no. 4, pp. 367–376, 1990.

[17] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware,” in Proc.
Workshop on Volume Visualization, Washington, DC, Oct. 1994, pp.
91–98.

[18] S. Morse, “Concepts of use in computer map processing,” Commun.
ACM, vol. 12, pp. 147–152, 1969.

[19] J. Roubal and T. K. Peucker, “Automated contour labeling and the con-
tour tree,” in Proc. AUTO-CARTO 7, 1985, pp. 472–481.

[20] M. J. van Kreveld, R. W. van Oostrum, C. Bajaj, V. Pascucci, and D.
Schikore, “Contour trees and small seed sets for isosurface traversal,”
in Proc. 13th Annu. ACM Symp. Computational Geometry, New York,
pp. 212–220.

[21] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in all
dimensions,” Computat. Geom., vol. 24, pp. 75–94, 2003.

[22] V. Pascucci and K. Cole-McLaughlin, “Efficient computation of the
topology of level sets,” in Proc. IEEE Visualization, Boston, MA, 2002,
pp. 187–194.

[23] P. Monasse and F. Guichard, “Fast computation of a contrast invariant
image representation,” IEEE Trans. Image Process., vol. 9, no. 5, pp.
860–872, May 2000.

[24] L. Najman and M. Couprie, “Building the component tree in
quasi-linear time,” IEEE Trans. Image Process., vol. 15, no. 11, pp.
3531–3539, Nov. 2006.

[25] C. Berger, T. Géraud, R. Levillain, and N. Widynski, “Effective compo-
nent tree computation with application to pattern recognition in astro-
nomical imaging,” presented at the IEEE Int. Conf. Image Processing,
San Antonio, TX, Sep. 2007.

[26] T. T. Elvins, “A survey of algorithms for volume visualization,”
Comput. Graph., vol. 26, no. 3, pp. 194–201, 1992.

[27] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3D surface construction algorithm,” Comput. Graph., vol. 21, no. 4, pp.
163–169, 1987.

[28] M. Levoy, “Display of surfaces from volume data,” IEEE Comput.
Graph. Appl., vol. 8, no. 3, pp. 29–37, Mar. 1988.

[29] C. R. Johnson and C. D. Hansen, Eds., The Visualization Handbook.
Burlington, MA: Elsevier Butterworth-Heinemann, 2005.

[30] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno,
“Speeding up isosurface extraction using interval trees,” IEEE Trans.
Vis. Comput. Graph., vol. 3, no. 2, pp. 158–170, Feb. 1997.

[31] T. Itoh, Y. Yamaguchi, and K. Koyamada, “Fast isosurface genera-
tion using the volume thinning algorithm,” IEEE Trans. Vis. Comput.
Graph., vol. 7, no. 1, pp. 32–46, Jan. 2001.

[32] H. Carr and J. Snoeyink, “Path seeds and flexible isosurfaces
using topology for exploratory visualization,” in Proc. Joint Euro-
graphics—IEEE TVCG Symp. Visualization, 2003, pp. 49–58.

[33] D. Laur and P. Hanrahan, “Hierarchical splatting: A progressive refine-
ment algorithm for volume rendering,” Comput. Graph., vol. 25, no. 4,
pp. 285–288, 1991.

[34] M. H. Gross, L. Lippert, R. Dittrich, and S. Häring, “Two methods for
wavelet-based volume rendering,” Comput. Graph., vol. 21, no. 2, pp.
237–252, 1997.

[35] M. A. Westenberg and J. B. T. M. Roerdink, “X-ray volume rendering
through two-stage splatting,” Mach. Graph. Vis., vol. 9, no. 1/2, pp.
307–314, 2000.

[36] T. Malzbender, “Fourier volume rendering,” ACM Trans. Graph., vol.
12, no. 3, pp. 233–250, 1993.

[37] M. A. Westenberg and J. B. T. M. Roerdink, “Frequency domain
volume rendering by the wavelet X-ray transform,” IEEE Trans. Image
Process., vol. 9, no. 7, pp. 1249–1261, Jul. 2000.

[38] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler, “The Vol-
umePro real-time ray-casting system,” in Proc. Siggraph, Los Angeles,
CA, Aug. 1999, pp. 251–260.

[39] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and A. Kaufman, “High-
quality volume rendering using texture mapping hardware,” in Proc.
Eurographics/SIGGRAPH Workshop on Graphics Hardware, 1998, pp.
69–76.

[40] M. K. Hu, “Visual pattern recognition by moment invariants,” IRE
Trans. Inf. Theory, vol. IT-8, pp. 179–187, 1962.

[41] F. A. Sadjadi and E. L. Hall, “Three dimensional moment invariants,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-2, pp. 127–136,
1980.

[42] C.-H. Lo and H.-S. Don, “3-D moment forms: Their construction and
application to object identification and positioning,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. PAMI-11, pp. 1053–1064, 1989.

[43] J. B. T. M. Roerdink, “Multiresolution maximum intensity volume
rendering by morphological adjunction pyramids,” IEEE Trans. Image
Process., vol. 12, no. 6, pp. 653–660, Jun. 2003.

[44] W. Cai and G. Sakas, “Maximum intensity projection using splatting
in sheared object space,” in Proc. Eurographics, 1998, vol. 17, no. 3,
pp. C113–C124.

[45] H. J. A. M. Heijmans, Morphological Image Operators. Boston, MA:
Academics, 1994.

[46] P. Soille, “Beyond self-duality in morphological image analysis,”
Image Vis. Comput., vol. 23, pp. 249–257, 2005.

[47] P. Salembier and J. Serra, “Flat zones filtering, connected operators,
and filters by reconstruction,” IEEE Trans. Image Process., vol. 4, no.
8, pp. 1153–1160, Aug. 1995.

Michel A. Westenberg received the M.Sc. degree in
computing science and the Ph.D. degree in mathe-
matics and natural sciences from the University of
Groningen (RUG), Groningen, The Netherlands, in
1996 and 2001, respectively.

From 2001 to 2004, he was a Postdoctorate with
the Institute for Mathematics and Computing Sci-
ence, RUG. From 2004 to 2005, he was a Humboldt
Research Fellow at the Institute for Visualization
and Interactive Systems, University of Stuttgart,
Germany, and was funded by the Alexander von

Humboldt Foundation (Germany). Currently, he is a Postdoctorate with the
Institute for Mathematics and Computing Science (RUG), where he works on
visualization methods in bioinformatics.

Jos B. T. M. Roerdink (SM’03) received the M.Sc.
degree in theoretical physics from the University of
Nijmegen, The Netherlands, in 1979, and the Ph.D.
degree from the University of Utrecht, The Nether-
lands, in 1983.

Following his Ph.D. degree and a two-year po-
sition (1983 to 1985) as a Postdoctoral Fellow at
the University of California, San Diego, both in the
area of stochastic processes, he joined the Centre for
Mathematics and Computer Science, Amsterdam,
The Netherlands, where he worked from 1986 to

1992 on image processing and tomographic reconstruction. He was appointed
to Associate Professor (1992) and Full Professor (2003), respectively, at
the Institute for Mathematics and Computing Science of the University of
Groningen, Groningen, The Netherlands, where he currently holds a Chair in
Scientific Visualization and Computer Graphics. His current research interests
include biomedical visualization, neuroimaging, and bioinformatics.

Michael Wilkinson (SM’06) received the M.Sc. de-
gree in astronomy from the Kapteyn Laboratory, Uni-
versity of Groningen (RUG), Groningen, The Nether-
lands, in 1993, and the Ph.D. degree from the Institute
of Mathematics and Computing Science (IWI), RUG
in 1995.

He worked on image analysis of intestinal bacteria
at the Department of Medical Microbiology, RUG.
This work formed the basis of his Ph.D. work at
the IWI, RUG. He was appointed as Researcher at
the Centre for High Performance Computing, RUG,

where he worked on biomedical simulations on parallel computers. During
that time, he edited the book Digital Image Analysis of Microbes (Wiley,
1998) together with F. Schut. After this, he was a Researcher at the IWI on
image analysis of diatoms. He is currently a Lecturer at the IWI, working on
mathematical morphology and computer simulation in biomedical contexts.

Authorized licensed use limited to: University of Groningen. Downloaded on September 27,2021 at 08:30:26 UTC from IEEE Xplore. Restrictions apply.

