BOLD noise assumptions in fMRI
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Abstract—This paper discusses the assumption of Gaussianvery differently and the Rician distribution has to be taken into
noise in the blood oxygenation dependent (BOLD) contrast for account in order to prevent biased statistical results.
functional MRI (fMRI). In principle, magnitudes in MRI images This problem is important for fMRI, because the scans may

follow a Rice distribution. We start by reviewing differences .
between Rician and Gaussian noise. An analytic expression isNave relatively low SNRs, and the values of the BOLD contrast

derived for the null (resting state) distribution of the difference are very small compared to the noise. This is especially true
between two Rician distributed images. This distribution is shown for data with high temporal and/or spatial resolution: this will
to be symmetric, and an exact expression for its standard jnevitably lead to lower SNR values.
deviation is derived. This distribution can be well approximated The remainder of this paper is organised as follows. Sec-
by a Gaussian, with very high precision for high SNR, and . . o . .
high precision for lower SNR. Tests on simulated and real MR tON Il introduces the Rician noise model for MR images.
images show that subtracting the time series mean in fMRI Section Il derives analytical expressions for the probability
yields asymmetrically distributed temporal noise. Subtracting distribution of the difference between two MR images, which
nearly Gaussian noise. This has important consequences for tMRI g 040 v/ investigates the noise distributions in MR template
analyses using standard statistical tests. . . . . . . .
images contaminated with noise and in a real fMRI time series,
Index Terms—Rician noise, Gaussian noise, functional MRI, and discusses implications for the design of fMRI experiments.
BOLD signal, noise distribution, statistical analysis. Section V contains some general conclusions

I. INTRODUCTION II. NOISE INMR IMAGES

Functional magnetic resonance imaging (fMRI) measuresDuring image acquisition in an MR scanner, magnetic fields
activity in different areas of the brain under different experare transmitted in pulses varying in frequency and phase.
mental conditions (e.g., active, rest). In the medical imagingxel locations are selected by frequency and phase, and
literature, magnitudes in MR images are assumed to followtlze resulting data consist of complex values. The frequency
Rice distribution [1]-[7], first studied by Rice [8, p.100-103]space in which these data are represented is known &s-the
Most statistical analyses of fMRI images test the differencpace. The values in the real and imaginary parts of the image
between experimental conditions againshwl distribution ~are Gaussian distributed. Thespace data are transformed
which applies when no task is performed. Parametric statts-a Cartesian space via an inverse Fourier transform (IFT).
tical fMRI analysis often assumes Gaussian noise [9]-[14The noise distribution in the resulting image is still Gaussian,
but findings contradicting this assumption have already bebacause the IFT is a linear transform.
reported by Hanson et al. [15], and tests for the distribution Most applications of MR imaging only use the magnitudes
of the residual (noise) signal in fMRI data sets have bearf the signal, because those magnitudes represent a physical
developed [16]. property of the scanned object [18]. Ldi(x) represent the

In this paper, we examine the properties of Rician noisgjagnitude of the MR image at voxel locatianin the absence
and the distribution of resting state images that are madgnoise. The magnitude(x) of the signal at voxel location
by pairwise subtraction of MR images. Most standard tests,in the magnitude image is:
such as the-test, F-test, and thez-test, rely on Gaussian
distributed noise. Petersson et al. [17] argue that with Gaus- r(x) = \/(A(:B) +ny(2))? + no(x)?, (1)
S|an_sp?1t|al smoothlng: many degrees of freedom an_d 'Fhe n (@), na(z) ~ N(0,02),
multivariate central limit theorem, these tests are valid in
functional neuroimaging, but they warn that low-count PEWheren;(x) and ny(x) are the real and imaginary parts of
data show departures from normality. Similar effects can Iee noise andv (0, o) is the Gaussian distribution with mean
seen in functional MR images. The Rician probability densitgero and standard deviatien
function is very asymmetric if the signal is weak compared to The magnitude signal in each voxal is Rician dis-
the noise, so for low signal intensities and with a low signatributed [1]-[3], that is,Prob[r < r(x) < r + dr] =
to-noise ratio (SNR), Rician noise and Gaussian noise behavg,) ,(r), wherepa ,(r) is the Rician probability density




with parametersd and o defined by:

0, r<0
pA,U(T) = (a2+r2) 2
e = L (5F), =0,
where L
Ii(z) = = / <9 cos(k0) d (3)
™ Jo

is the modified Bessel function of the first kind of order

Again, the noisy image is denoted byx). The local SNR
is controlled through the ratigf(x)/o, where f(x) and o
determineu,. ando,. as described in (4) and (5), respectively.

IIl. M ATHEMATICAL ANALYSIS OF FMRI NOISE
A. Statistical testing in fMRI

In fMRI analysis, one searches for activation in certain brain
areas via statistical hypothesis testing. The null hypothEsis

keN. Figure 1 shows the Rician probability density functio$tates that there is no activation, other hypotheses correspond
(PDF) for varying values ofd ando. The shape of the PDF to several kinds of activation. Most fMRI analysis methods,

changes with both parameters. The distribution o= 0 is

such as statistical parametric mapping [13], use the general

called theRayleigh distribution For high SNRs, the Rician linear model (GLM). The GLM treats fMRI responses as the

distribution approaches a Gaussian distribution [3].
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Fig. 1. (a) Rician PDFs for?=1 and A € {1,...,6}. (b) Rician PDFs

for A=1 ande2€{1,...,6}. (c) Rician PDFs for?=4 and A€{1,...,6}.
(d) Rician PDFs forA=4 ando2€{1,...,6}.

The mearu, = f0°° r pa,.(r)dr of the Rice distribution is Y
given by [8, p.100-103, Appendix 4B]:

2 2 2 2
= a\/je‘f 1 { [1 + 22} Io(5) + 211(24)}’ @

wherez = A/o is the SNR, andly, &k = 0,1 is defined in
(3). The standard deviatian. = \/f0°° 72 pao(r)dr — u2 of
the Rice distribution satisfies the relation [3]:

or = /A2 +202% — 2. (5)

As A/o goes to infinity, these formulas yield. — A, o, —

o, that is, the mean approaches the noise-free intensity and B
the standard deviation approaches the corresponding value of k=

the underlying noise distributioV (0, o2).

MR noise was modelled by computing the intensity distriJnder the assumption of Gaussian noise, éﬁg, ~

outputs of a linear time-invariant (LTI) system using a number
of temporal basis functionf (-), ... fa(+), calledexplanatory
variables The GLM has the form

Yis =01 fi(ts) + - Brnm far(ts) + ens,

whereY}, , is the observed data at voxel k =1,..., N and
time indexs, s = 1,...,T; fn(t,) is value of them™ basis
function at timet;, m = 1,..., M; the g, ,, are weight factors

of each temporal component at each voxel (to be determined
from the measurements); angl, is the error (noise) at voxe

and time indexs. In matrix form, the GLM may be succinctly
written as

(6)

Y = XB+e, @)

whereY is aT x N matrix, X is the T' x M design
matrix containing thef,,(ts) values,8 is T x N weight
matrix, ande is the T x N residual matrix containing the
part of the signal not modelled by any componentXh
Statistical parametric tests often assume that the error values
in e are independent and identically normally distributed, i.e.,
er,s ~ N(0, a,i), where the standard deviation may depend on
the voxel location.

In brain activation studies, one considers an equation of the
form (6) for both the activated and the rest (null) condition. Let
. denote the observed signals under conditjaf®="rest”,

1 “actlve ). Then a test statistic is formed at each voxel, e.g.,
a t-statisticT}, defined by

—0
L

Yk
Ty = o

(8)

where Y}, is the temporal average per voxel asg is the
pooled variance estimate, i.e.,

ve_ 2 3 v
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s=1
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N(0, Uk)

bution as in (1). To make a Rice-distributed noisy image fromq is normally distributed with meap, and standard devi-

a real-valued noise-free imaggx), we used the following
procedure for each voxel locatiaet

1 ny(x),n2(x) ~ N(0,02),

2. r(x) = V/[f(®) + 1 (2)]? + na(2)?.

atlon ok, and also the difference¥)’ — Yk are normally
distributed. This implies thafl}, ~ th 9, 1.e., T, has a
t-distribution with 20 — 2 degrees of freedonunder the
null hypothesisHy : pg 11, 1.e., no mean effect of



activation occurs. For this reason the distributioriipfunder caseA = 0, the PDF ofry, as well as that of-, is:
this hypothesis is called thaull distribution Voxels where this ro a2
hypothesis can be rejected are therefore designated as activated Poo(r) = 52° 277 (11)

voxels. The significance of a certam_ obs_erved voxel v_a]ue S the Rayleigh case(= 0), the integral in Eq. 9 can be
expressed by a so-calleptvalug which is the probability explicitly evaluated. The resulting expression € . (s) is
of that voxel's intensity being attributable to mere chance. plcitly ' g exp @

A p-value is calculated as the area under the graph of the 1 == Isl = n VT 1 i " Is| (12)

t-distribution to the right of a given intensity value on the 206 7 20—6 7 2 T 952 erie 2 /|’

horizontal axis. A lowp-value (say lower than 0.05) indicates o oo g2,

that the measured value is probably not due to mere chanpereerfe(z) = —= [~ e~"dt is the complementary error

i.e., that it is a real activation. function [19]. For the derivation of this formula, we refer to
The Rician distribution which applies to MRI data has &€ction B of the appendix. _

heavier right tail than a Gaussian, gevalues based on a 1he following experiments investigate how well the PDF

Gaussian noise assumption with the standard deviation of fhe.-(s) can be approximated by a Gaussian distribution.

Rice distribution will be too low, introducing false positives.

Hanson et al. [15] found similar deviations, using gamm@. Numerical approximation by a normal distribution

distributions instead of a Rician PDFs. o The distributionC4 ,(s), see (9), was numerically approx-
As we have seen, itis theull distributionwhich is needed jateq by a Gaussian via the Levenberg-Marquardt curve-
to computep-values. From the discussion above, it is appareﬁ&ing algorithm. The fit was carried out on an interval

that a sufficient condition for the usual statistical analysis {Qntered around zero with negligible function values outside
hold is that thedifference signaht each voxel correspondingihis interval. Fig. 2 shows the PDE 4 ,(s), as well as the

to the case of no activation has a Gaussian distributioy;ssian fitted to this distribution, for a number of values of
Therefore, our object of study in the remainder of this papef 5,4, The plots show an excellent fit.

is the distribution of the noise in difference images of Rician-

distributed MRI images without activation. As we will see, J T ] s
this distribution is indeed very close to a Gaussian, albeit o1
with a standard deviation different from that of the initial Rice Bz B Zoo

distribution. A=0

B. Null distribution of the difference fMRI signal o

The difference of two noisy versions,(xz) and ro(x), 02
containing Rician noise, of the same underlying imgge), o1
is not Rician distributed. Let the null image(x) be defined A=2 *; ) ]
as s(x) = ro(x) — ri(x). Its probability density function ' o
(PDF) is denoted by’ ,(s), where we writeA instead of o=1 o=3 o=5
f(x) and o is the standard deviation of the underlying noise

0.05

distribution, cf. (1). ThenC4 ,(s) is the probability that the y £
value of the difference(x) falls in an infinitesimal interval o
arounds: C 4 ,(s) = Prob[s < s(x) < s+ ds]. We will refer ~A=8 | VN [ S/ - o N
to C4,,(s) as the null distribution. d § g
Since it is easy to see that's ,(s) is symmetric, i.e.,

CA,G‘(S) = CA.a(—S), we have the following expression validFig. 2.  The exact null distributiorCA(g)(s) (solid), the fitted Gaussian
; , . (dashed), and the difference betwegn  (s) and the Gaussian (dotted). Note
for arb|trary values of € R: that the fitted Gaussian is hardly distinguishable from the exact distribution.

oc=1 oc=3 oc=5

oo o0
Cac@) = [ [ pactripan(ra)des = ri = ls)arsars N
o Jo Table | presents some quantitative results. It shows, for
_ /OO P (1) pas(r + |s|)dr ) various values ofA and o, (i) the exact standard deviation
, oA r oy = /20, of the null distribution (10), wheres, was

. . computed according to (4)-(5)ji) the width %2 of the
whered(r) denotes the Dirac delta function. That $4 ,(s) Gaussian fitted t@' , (s); and (i) the mean square error of

is the cross-correlation of tW.O !dent|cal Rice dIStr.Ibu?[IOH.S. Tht%e difference betwee@', ,(s) itself and the fitted Gaussian.
mean u, and standard deviatioa, of the null distribution ;

Ca(s) are given by: The difference between the wid##f2uss of the fitted Gaussian
7 ' and the exact valuer; is very small, especially for high
(s = 0, 0, =20, (10) SNR (i.e.,A/0). Sinceo, approa_chesr_ for_ h_igh SNR (see
section 1), o, approachesy/2s in this limit. The mean
whereo,. is the standard deviation of the Rice distribution, sesquare error should decrease when the SNR increases; this
(5). For the derivation, see section A of the appendix. In the confirmed by the experimental results. The null distribution



TABLE |
ACCURACY OF GAUSSIAN FITS TO THEPDFC 4 , FOR VARIOUS VALUES
OF A AND 0. SHOWN ARE THE EXACT STANDARD DEVIATION 04

distributed, and this is rejected if thevalue of the KS test
statistic is below).05. For a number of intensitied, images of
different sizes were tested, and for each size and intensity, the
test was repeated 32 times. Table Il shows the meaalues

of the KS test statistics for each size, with intensity= 1 and

A = 5. As a reference, 32 images of the same size containing

COMPUTED FROM(10), THE WIDTH ¢ G2USS OF THE FITTED GAUSSIAN,
AND THE MEAN SQUARE ERROR OF THE DIFFERENCE BETWEEN THE
EXACT DISTRIBUTION AND THE FITTED GAUSSIAN.

A o o oGauss  orror N(0,1) noise were also tested, and their megawmalues are
0 1 09265 09103  0.0080 in the right column. This table shows that deviations from
0 3 27795 27315 0.0045
0 5 46325 45526 0.0035
2 1 12933 13071 0.0030 TABLE I
2 3 3.0463 3.0085 0.0035 p-VALUES PRODUCED BY THEKS TEST FOR THE DIFFERENCE BETWEEN
2 5 48079 47291  0.0033
8 1 1.4086 1.4086 0.0000 IMAGES WITH RICIAN DISTRIBUTED NOISE WITH SIGNAL AMPLITUDES
8 3 4.0552 4.0780 0.0008 A =1AND A = 5, AND FOR IMAGES OF THE SAME SIZE WITH
8 5 61567 6.2188 0.0013 N(0,1)-NOISE.
size | p-value (A=1) p-value (A=5) p-value N(0,1)
2% 2 0.6573 0.5607 0.4569
S : . 4x4 0.5761 0.5565 0.4249
does not have a heavy tail (it is slightly lighter than a Gaussian 8 %8 05511 05493 04894
of width o, see below). Function values outside the interval 16 x 16 0.5801 0.5564 0.5854
H e [P . 32 x 32 0.5833 0.5378 0.5946
used in the fitting procedure represent a negligible portion 64 % 64 0.5629 0.4869 0.4816
of the distribution. Thereforep-values from statistical tests 128 x 128 0.5270 0.5426 0.5147
based on Gaussian noise with an estimated standard deviation 235 2 | 0439 0.5554 0.5225
. ) . 512 x 512 0.3210 0.5219 0.4006
oSauss will be very accurate, and (because of the light tail) 1024 x 1024 0.0587 0.5236 0.5037

where there is a difference, the estimates will be conservative.

normality can only be detected in very large images with low
D. Tail of the null distribution intensities: for high intensities, they are too small to measure.
An important property of the PDIE'4 ,(s) for statistical
fMRI analysis is the tail behaviour (ds| approaches infinity)
of the distribution under the null hypothesis, because this Parameter estimation in fMRI with the general linear model
determines the-value corresponding to a certain threshold,

of. section II-A. For fMRI analysis, the possibility of accurately estimating

the parameters of the noise is at least as important as using the

For the limiting cases of low and high SNR, i.e,= 0 i C
and A/o large, we mathematically analysed the behaviour 5‘9ht_ noise model. We te_sted the a_pphcablllty of th_e G.LM (see
section 111-A) by estimating the noise parameters in difference

the PDFC4 ,(s) when |s| becomes very large. The details ted in th in Sec. II-B. and
are presented in section C of the appendix. We find that pofpages created in the same way sis:) In Sec. 1i-b, an
in the Rayleigh caseA — 0) and for large values ofi/c, comparing them with the real underlying parameters.

the tails of the distribution (9) are lighter than the tail of a A Matrix e of error signals was created by making a time
Gaussian distribution: series of 128 difference images. The standard deviation of the

1 (ol a2 temporal noisg was computed in each voxel. Table Ill shows,
Cao(s) ~constant — e~ 2.7 | s — oo, (13) forthe same inputl ando as before, the measured temporal
5] standard deviatiom**™P, the mean standard deviatiery in
where the constant depends dnand o. This is a Gaussian the difference images (which equal®s,., see section 11I-B),
tail of width o multiplied by a factorl / |s|, which means that and the ratioo, /o*™P. It shows that the standard deviation
the distribution approaches zero even faster than a Gaussiaris very accurately predicted by the formula (10).
distribution of widtho. This implies that ifp-values based on

a Gaussian are used, the test is slightly conservative, and will TABLE Il
not give extra false positives. MEASURED TEMPORAL STANDARD DEVIATIONG*®™P, THE MEAN
STANDARD DEVIATION o5 IN THE DIFFERENCE IMAGES AND THE RATIO
O.S/O.tcmp'

E. Statistical tests of normality

s o.temp Os /O.temp
1.4280 1.4338 0.9959
4.2854 4.3017 0.9962
7.1352 7.1667 0.9956
1.8001 1.8071 0.9961
4.4708 4.4890 0.9959
7.2472 7.2815 0.9953
2.1579 2.1667 0.9959
5.7924 5.8157 0.9960
8.5195 8.5542 0.9959

An image of a uniform underlying intensity with Rician
noise has a spatially stationary noise distribution. The distribu-
tion of the difference between two such images is symmetric.

To test whether this distribution is close to Gaussian, the
Kolmogorov-Smirnov (KS) test was employed as follows. We
created two images of a uniform intensity with Rician
distributed noise, and computed the difference between the
noisy images. The KS test was applied to the difference image.
The null hypothesis of the KS test is that the data are normally

W OONNNOOOM
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G. Evaluation of the test results following parameters: modality T2, slice thickness 1 mm,

The statistical tests, the analytical results, and the numeri@QiS€ 0%, intensity non-uniformity 0%. Non-brain voxels were
computations, all show that the difference between two MEXCluded with the Brain Extraction Tool [21]. This noise-free
images whose intensities are Rician distributed, can be vérg -Weighted image (Fig. 3a) was contaminated by Rician
well approximated by a Gaussian distribution. The approxim30isé with a knowno (see Fig. 3b). A residual image was
tion is closest for high SNR, but is still very good for lowe@btained by subtracting the original MR image from the noisy
SNR. Given the parametersando of the Rician spatial noise MR image, and a null image was made using the procedure
in a series of MR images and defining null images as pairwiB&°Posed in section Ill, i.e., as the difference between two MR
difference images, the parameters of the Gaussian distribut/BIf{9€S containing Rician noise.

that describes the temporal noise can be accurately estimated "€ dissimilarity between a Rician distribution and a Gaus-
sian is largest for low signal intensitied. The previous

section showed that the difference between two images of a
uniform intensity A and Rician noise has zero mean and is
near-Gaussian distributed, also for low signal intensities. This
section examines the difference images when the noise-free
images contain more than one intensity. Figure 4 shows the
histograms of a noisy MR image, the difference between a
noisy MR image and the noise-free image, and the difference
between two noisy MR images, respectively. The histograms
(b) were computed for a range of values forand are presented
together as surface plots. Asdecreases, the histogram of the
noisy MR image changes from one Rayleigh-like PDF to a

number of near-Gaussian PDFs (see Fig. 4a). The histogram of
’L the noisy image after subtraction of the original is asymmetric
0 500 1000 1500 2000 2500 for high o, and becomes more symmetric aslecreases (see

Fig. 4b). The histogram of the difference images is symmetric
for all o (see Fig. 4c).

0 500 1000 1500 2000 2500

(©
Fig. 3. (a) A noise-free T2-weighted MR image. (b) Image (a) with Riciai/ =~ ‘ i =
noise ofc = 81.67 (SNR: 10 dB) (c) The histogram of a noise-free T2*- greyvake g o 9oy value
weighted MR image (top) and of the same image with Rician noise ef : :
81.67, SNR = 10 dB (bottom). \ \
IV. THE NOISE DISTRIBUTION IN FMRI (@) (b) ©)

|mages_in an ﬂV_'R| .time. series have arange of intensitieSg. 4. (a) Histogram of a noisy MR image, (b) histogram of the difference
so the noise distribution is a sum of Rician PDFs (sums bétween a noisy MR image and the noise-free MR image, and (c) histogram

Gamma PDFs have also been used, see [15] for an examg g]e glifference of two noisy MR images, for varioas Top: surface plots,
. . . . . . L ottom: grey value maps.

For each intensityAd in the image, the noise is distribute

differently (see Fig. 3c), and this will have an influence on

the parameter estimates of the GLM. Areas with a “true” grey

value of 0, like the space around the body, have Rayleigg— Time series of MR images

distributed noise, and the areas with higher grey values have i
more symmetric distributions, which are quite similar to a A time series of 164 EPI scans was made on a 3 Tesla

Gaussian, and they are centered around the grey value at tRigra scanner (Philips l\ﬂedical Systems, The_ Netherlands),
location. The total noise distribution is a mixture of all thos¥ith repetition time TR = 3 s, volume size = §64x46
distributions. The question is whether the conclusions abd{f€ls 0f3.5 x 3.5 x 3.5 mm®. No stimuli were presented,

the noise in the difference image obtained in section Il al@d the null hypothesis of no activation was assumed to be
hold for noisy images with mixed distributions. true throughout the experiment. Alignment of the images was

done with SPM"99 program [13].
) S ) The time series was split in two disjoint sets:T@nages
A. Shape of the noise distribution in MR images 1...82) and TS (images83...164). The noise of TS was
A simulated MR image was acquired from the Braineentered arouné by subtracting the time series mean image
Web Magnetic Resonance Imaging simulator [20] with thef TS; from each image. Note: although this is a common



procedure in fMRI analysis, this means treating Rician noisaost of the problems concerning the Rician distribution of the

as additive noise. To obtain an image with a symmetric noiseise. However, the new method presented in this paper of

distribution, difference images were made by subtracting tkabtracting a second time series is preferable: it has proved

corresponding image of TSrom each image of TS to yield symmetric noise distributions in all measurements
considered.

C. Implications for fMRI designs

The assumption of Gaussian noise in the analysis of fMRI
data should be used with care. Relying on the robustness of
the standard tests most often works, but it does does not solve
the problem of the asymmetric noise distribution. A recent
maximum-likelihood test based on the Rician distribution
shows to be as powerful as the GLM-based test with a high
SNR, but performs much better with a low SNR [22]. For using
the assumption of Gaussian noise, difference distributions like

) . ] . _ the one presented here will be required. The example presented
The histogram of the time series mean image (see Fig. Rdre of using an extra data set for every experiment is difficult

was used to divide the images into three intensity ranges: Ig¥¢ |arge studies, but this can be solved in a more practical
intensity (grey va_lud)_. ) .300_), medium intensity (grey value way: a relatively small set of ‘null data’ can be reused after
301...600), and high intensity (grey valug 600). randomisation in the time dimension. The only change in
the formula for the GLM (7) is usiny — Y instead ofY,

with Y the resting-state data set. It is trivial to see that this
does not change the way the estimates are computed, even if
different (more complex) design matric@§ are used.

= et T

T Ty
o] 500 1000 1500

Fig. 5. Histogram of the time series mean image of TS

V. CONCLUSIONS

We have presented a noise model in BOLD fMRI that
takes into account the Rician distribution of MR noise known
from the literature. BOLD noise was defined as the difference
between two MR images with Rician noise. We investigated
the properties of the difference image under the null hypothesis
(no brain activation), which is needed to determirealues in

) © 0 a statistical analysis. Th(_a problem was studied_in seyeral com-
plementary ways: analytical calculation, numerical simulation,
Fig. 6. Histograms of three intensity ranges of the images in the timgatistical estimation, and experimental validation on real EPI
series. Top: time series TSafter subtracting the time series mean: (a) . . . ..
low intensity, (b) medium intensity, (c) high intensity. Bottom: time serie§lata. An analytic expression was derived for the statistical null
TS; after subtracting the corresponding images of time series 1@ low  distribution CA,U(S) as an integral in terms of two underlying
intensity, (€) medium intensity, (f) high intensity. Rician probability densities with parametefsand o. From
this basic formula, analytical expressions were derived for the

Figure 6 shows the histograms of the grey values in tmeean and standard deviation of the null distribution, as well as
resulting time series within the three ranges. Gaussians wégeits tall, i.e., its asymptotic behaviour asgoes to infinity.
fitted to the histograms with the Levenberg-Marquardt curve- The null distribution C4 (s) was numerically approxi-
fitting algorithm. For medium and high intensities, the timenated by a Gaussian function with the Levenberg-Marquardt
series histograms show no significant asymmetries. For lownlinear curve-fitting algorithm. The approximation by a
intensities however, the time series T&fter subtracting the Gaussian distribution was very good, with the accuracy in-
mean has an asymmetric histogram, while the time serigs T@easing with SNR (i.e.A/c). The standard deviation of the
after subtracting TShas a symmetric histogram. The fits arditted Gaussian was found to be in excellent agreement with
never perfect, except in the case of low intensities and afthe exact standard deviation, derived from the analytical
subtracting T$S. In that case, the intensity distribution has onexpressions.
predominant intensity4 = 0, see Fig. 5), and the difference The statistical properties of the noise were examined in two
distribution is close to those in th& = 0 cases of the previous ways. The Kolmogorov-Smirnov test was applied to difference
section. In the other cases, the noise originates from voxeizages of noise-only images with Rician distributed noise. A
with various intensities, and the noise distribution resemblescond test using the general linear model (GLM) compared
a mixture of Gaussians with mean= 0 and various. the estimated noise parameters to the value predicted by the

Because the amount of asymmetry in the medium amdodel, and showed that the agreement is excellent.
high grey-value ranges is very small, the combination of From the analytical results, the numerical computations,
thresholding and subtracting the time series mean may sobvad the statistical tests, we concluded that the assumption




of Gaussian distributed noise used in the fMRI literaturA. Mean and variance of the null distribution

could be justified. That is, the difference between two imagesrirst, the meanu, is zero because of the symmetry of

whose intensities follow a Rice distribution can be very wel@AJ(S)_ Second, since the mean is zero, the variance of the

approximated by a Gaussian distribution. The approximatig|| distribution satisfies (see Eq. (9)):

is closest for high SNR, but is still quite good for lower SNR. 0o

Given the parameterd ando of the Rician spatial noise in ac? = / ds s?C(s) =

series of MR images, the standard deviation of the Gaussian 7~ - -

that describes the temporal noise can be accurately predicted./ 45 52/ dry / dra pa.o(r1)pa.e(ra) 8(rs — 1 — |s)
The noise model was tested on simulated and real MR /- 0 0 ’ ’

images. In a test that contaminated noise-free MR templates oodr °°dr (r1) (ra) Oods $26(ry — 1 — |s])
with Rician noise, MR noise was shown to have an asymmetric J, "% J, @"2PAc\PAcT2) | ¢ 2

distribution when it is —incorrectly— treated as additive nms@vhereé() denotes the Dirac delta function. Sinée — 1 —
As in the test with noise-only images, difference images TJD is zero except when, — 11 — |s| = 0, we find
noisy MR pictures were found to have a symmetric distri- oo oo
bution. The consequence for fMRI time series analysis isq?2 :/ drq / dro pao(r1)pac(re) (11 — re)?
that subtracting the time series mean does not get rid of the o °
asymmetry in temporal noise. _ 2, .2

\);Ve test)e/d thresﬁolding the MR images as a fast and simple _/0 an /0 dr2paa(r)pao(rs) (Tl T 2T1r2)
alternative to the difference image approach: it can remove *° 9

/ dryripa,c(r1) +/

o0
dror3pa o (r2)—

asymmetry in the noise distribution to a large extent, depend- 0 o

ing on the robustness of the test that is used. Subtracting a o0 o0

second time series from the time series being analysed yields 2 </0 dry T1PA70(71)> </0 dry rsz,o(r2)>
symmetric and close to Gaussian distributed noise. — 2E(r?) — 2E(r)? = 202
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APPENDIX
M ATHEMATICAL ANALYSIS OF THE NULL DISTRIBUTION Pluttltr)]g r/o =, |s|/o = q, A/o = a, we find after some
algebra:

This appendix presents the derivations of the exact analyti-g 1 o ,
cal results in Section Il on the distribution of the diﬁerencecoyg(s) — ,/ dz {(x + q/2>2 o q2/4} o (@+a/2)°—¢?/4
signal under the null hypothesis. Extensive use is made of a9 Jo
the concept of asymptotic expansions. We first provide a féfgain, puttingy = « + ¢/2:
formal definitions. Let)(x) andi(«) be two functions defined 1 2 [® s o )
for > zo. One writes¢(z) = O(¢(x)), = — oo, when Co,o(s) = S dy (v —q*/4) eV
constantsK and z; exist such thaf¢(z)| < K |[¢(x)| for ar
x> xz;. We callij’:0 an ¢, (x) the asymptotic expansion of

a function f when, for everyN, ‘f(x) - ZTZLO an, o ()| =

Writing 7 = ¢/2, we can write this integral as the sum of
two terms, each of which can be expressed in terms of the
complementary error function:

O(¢n+1(z)), and write 1 1
( ) Coo(s)= =€ Sy—=e T 725, (14)
o o o
f@) ~ > andn(x), z— oo where
n=0 ® 2 T
Below, we only use the first term in the asymptotic expansion So = /T dy ™ = TQIfC(T)
of some special functions (error function, Bessel function), oo ) . 1 . 7
and use the shorthand notation Sp = / dyy“e ¥ = 77 e T+ Terfc(r)
f(x) ~aggo(x), x— 0. Substitution of these expressions in (14) yields
To mak_e this precise, one ha§ to refer to the full asymptotic Co.o(s) = 1 e {76—72 + ﬁ(l —27?) erfc(T)} )
expansions, as can be found in Abramowitz and Stegun [19]; 20 2

for easy reference, we refer to the relevant sections of thiRe-expressing in terms of the original variable (i.e., 7 =
handbook at the appropriate places. q/2 = |s| /(20)), we obtain formula (12).



C. Tails of the null distribution
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