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Abstract— This paper discusses the assumption of Gaussian
noise in the blood oxygenation dependent (BOLD) contrast for
functional MRI (fMRI). In principle, magnitudes in MRI images
follow a Rice distribution. We start by reviewing differences
between Rician and Gaussian noise. An analytic expression is
derived for the null (resting state) distribution of the difference
between two Rician distributed images. This distribution is shown
to be symmetric, and an exact expression for its standard
deviation is derived. This distribution can be well approximated
by a Gaussian, with very high precision for high SNR, and
high precision for lower SNR. Tests on simulated and real MR
images show that subtracting the time series mean in fMRI
yields asymmetrically distributed temporal noise. Subtracting
resting state time series from the first, results in symmetric and
nearly Gaussian noise. This has important consequences for fMRI
analyses using standard statistical tests.

Index Terms— Rician noise, Gaussian noise, functional MRI,
BOLD signal, noise distribution, statistical analysis.

I. I NTRODUCTION

Functional magnetic resonance imaging (fMRI) measures
activity in different areas of the brain under different experi-
mental conditions (e.g., active, rest). In the medical imaging
literature, magnitudes in MR images are assumed to follow a
Rice distribution [1]–[7], first studied by Rice [8, p.100-103].
Most statistical analyses of fMRI images test the difference
between experimental conditions against anull distribution,
which applies when no task is performed. Parametric statis-
tical fMRI analysis often assumes Gaussian noise [9]–[14],
but findings contradicting this assumption have already been
reported by Hanson et al. [15], and tests for the distribution
of the residual (noise) signal in fMRI data sets have been
developed [16].

In this paper, we examine the properties of Rician noise,
and the distribution of resting state images that are made
by pairwise subtraction of MR images. Most standard tests,
such as thet-test, F -test, and thez-test, rely on Gaussian
distributed noise. Petersson et al. [17] argue that with Gaus-
sian spatial smoothing, many degrees of freedom and the
multivariate central limit theorem, these tests are valid in
functional neuroimaging, but they warn that low-count PET
data show departures from normality. Similar effects can be
seen in functional MR images. The Rician probability density
function is very asymmetric if the signal is weak compared to
the noise, so for low signal intensities and with a low signal-
to-noise ratio (SNR), Rician noise and Gaussian noise behave

very differently and the Rician distribution has to be taken into
account in order to prevent biased statistical results.

This problem is important for fMRI, because the scans may
have relatively low SNRs, and the values of the BOLD contrast
are very small compared to the noise. This is especially true
for data with high temporal and/or spatial resolution: this will
inevitably lead to lower SNR values.

The remainder of this paper is organised as follows. Sec-
tion II introduces the Rician noise model for MR images.
Section III derives analytical expressions for the probability
distribution of the difference between two MR images, which
are verified in a series of tests on synthetic noise images.
Section IV investigates the noise distributions in MR template
images contaminated with noise and in a real fMRI time series,
and discusses implications for the design of fMRI experiments.
Section V contains some general conclusions.

II. N OISE IN MR IMAGES

During image acquisition in an MR scanner, magnetic fields
are transmitted in pulses varying in frequency and phase.
Voxel locations are selected by frequency and phase, and
the resulting data consist of complex values. The frequency
space in which these data are represented is known as thek-
space. The values in the real and imaginary parts of the image
are Gaussian distributed. Thek-space data are transformed
to a Cartesian space via an inverse Fourier transform (IFT).
The noise distribution in the resulting image is still Gaussian,
because the IFT is a linear transform.

Most applications of MR imaging only use the magnitudes
of the signal, because those magnitudes represent a physical
property of the scanned object [18]. LetA(x) represent the
magnitude of the MR image at voxel locationx in the absence
of noise. The magnituder(x) of the signal at voxel location
x in the magnitude image is:

r(x) =
√

(A(x) + n1(x))2 + n2(x)2,

n1(x), n2(x) ∼ N(0, σ2),
(1)

wheren1(x) and n2(x) are the real and imaginary parts of
the noise andN(0, σ2) is the Gaussian distribution with mean
zero and standard deviationσ.

The magnitude signal in each voxelx is Rician dis-
tributed [1]–[3], that is,Prob[r ≤ r(x) ≤ r + dr] =
pA(x),σ(r), where pA,σ(r) is the Rician probability density
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with parametersA andσ defined by:

pA,σ(r) =

{
0, r < 0

r
σ2 e

− (A2+r2)
2σ2 I0

(
A r
σ2

)
, r ≥ 0,

(2)

where

Ik(z) =
1
π

∫ π

0

ez cos(θ) cos(kθ) dθ (3)

is the modified Bessel function of the first kind of orderk,
k∈N. Figure 1 shows the Rician probability density function
(PDF) for varying values ofA andσ. The shape of the PDF
changes with both parameters. The distribution forA = 0 is
called theRayleigh distribution. For high SNRs, the Rician
distribution approaches a Gaussian distribution [3].
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Fig. 1. (a) Rician PDFs forσ2=1 and A ∈ {1, . . . , 6}. (b) Rician PDFs
for A=1 andσ2

r∈{1, . . . , 6}. (c) Rician PDFs forσ2=4 andA∈{1, . . . , 6}.
(d) Rician PDFs forA=4 andσ2

r∈{1, . . . , 6}.

The meanµr =
∫∞
0
r pA,σ(r)dr of the Rice distribution is

given by [8, p.100-103, Appendix 4B]:
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√
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) +

z2
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}
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wherez = A/σ is the SNR, andIk, k = 0, 1 is defined in

(3). The standard deviationσr =
√∫∞

0
r2 pA,σ(r)dr − µ2

r of
the Rice distribution satisfies the relation [3]:

σr =
√
A2 + 2σ2 − µ2

r. (5)

As A/σ goes to infinity, these formulas yieldµr → A, σr →
σ, that is, the mean approaches the noise-free intensity and
the standard deviation approaches the corresponding value of
the underlying noise distributionN(0, σ2).

MR noise was modelled by computing the intensity distri-
bution as in (1). To make a Rice-distributed noisy image from
a real-valued noise-free imagef(x), we used the following
procedure for each voxel locationx:

1: n1(x), n2(x) ∼ N(0, σ2),
2: r(x) =

√
[f(x) + n1(x)]2 + n2(x)2.

Again, the noisy image is denoted byr(x). The local SNR
is controlled through the ratiof(x)/σ, where f(x) and σ
determineµr andσr as described in (4) and (5), respectively.

III. M ATHEMATICAL ANALYSIS OF F MRI NOISE

A. Statistical testing in fMRI

In fMRI analysis, one searches for activation in certain brain
areas via statistical hypothesis testing. The null hypothesisH0

states that there is no activation, other hypotheses correspond
to several kinds of activation. Most fMRI analysis methods,
such as statistical parametric mapping [13], use the general
linear model (GLM). The GLM treats fMRI responses as the
outputs of a linear time-invariant (LTI) system using a number
of temporal basis functionsf1(·), . . . fM (·), calledexplanatory
variables. The GLM has the form

Yk,s = βk,1 f1(ts) + · · ·βk,M fM (ts) + ek,s, (6)

whereYk,s is the observed data at voxelk, k = 1, . . . , N and
time indexs, s = 1, . . . , T ; fm(ts) is value of themth basis
function at timets,m = 1, . . . ,M ; theβk,m are weight factors
of each temporal component at each voxel (to be determined
from the measurements); andek,s is the error (noise) at voxelk
and time indexs. In matrix form, the GLM may be succinctly
written as

Y = Xβ + e, (7)

where Y is a T × N matrix, X is the T × M design
matrix containing thefm(ts) values, β is T × N weight
matrix, ande is the T × N residual matrix containing the
part of the signal not modelled by any component inX.
Statistical parametric tests often assume that the error values
in e are independent and identically normally distributed, i.e.,
ek,s ∼ N(0, σ2

k), where the standard deviation may depend on
the voxel location.

In brain activation studies, one considers an equation of the
form (6) for both the activated and the rest (null) condition. Let
Y q

k,s denote the observed signals under conditionq (0=“rest”,
1=“active”). Then a test statistic is formed at each voxel, e.g.,
a t-statisticTk defined by

Tk =
Y

1

k − Y
0

k

S2
k ·

2
M

(8)

where Y
q

k is the temporal average per voxel andS2
k is the

pooled variance estimate, i.e.,

Y
q

k =
1
T

T∑
s=1

Y q
k,s

S2
k =

1
2M − 2

1∑
q=0

T∑
s=1

(Y q
k,s − Y

q

k)2

Under the assumption of Gaussian noise, i.e.,eq
k,s ∼ N(0, σ2

k),
Y q

k,s is normally distributed with meanµq and standard devi-
ation σk, and also the differencesY q

k,s − Y
q

k are normally
distributed. This implies thatTk ∼ t2M−2, i.e., Tk has a
t-distribution with 2M − 2 degrees of freedomunder the
null hypothesisH0 : µ0 = µ1, i.e., no mean effect of
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activation occurs. For this reason the distribution ofTk under
this hypothesis is called thenull distribution. Voxels where this
hypothesis can be rejected are therefore designated as activated
voxels. The significance of a certain observed voxel value is
expressed by a so-calledp-value, which is the probability
of that voxel’s intensity being attributable to mere chance.
A p-value is calculated as the area under the graph of the
t-distribution to the right of a given intensity value on the
horizontal axis. A lowp-value (say lower than 0.05) indicates
that the measured value is probably not due to mere chance,
i.e., that it is a real activation.

The Rician distribution which applies to MRI data has a
heavier right tail than a Gaussian, sop-values based on a
Gaussian noise assumption with the standard deviation of the
Rice distribution will be too low, introducing false positives.
Hanson et al. [15] found similar deviations, using gamma
distributions instead of a Rician PDFs.

As we have seen, it is thenull distribution which is needed
to computep-values. From the discussion above, it is apparent
that a sufficient condition for the usual statistical analysis to
hold is that thedifference signalat each voxel corresponding
to the case of no activation has a Gaussian distribution.
Therefore, our object of study in the remainder of this paper
is the distribution of the noise in difference images of Rician-
distributed MRI images without activation. As we will see,
this distribution is indeed very close to a Gaussian, albeit
with a standard deviation different from that of the initial Rice
distribution.

B. Null distribution of the difference fMRI signal

The difference of two noisy versionsr1(x) and r2(x),
containing Rician noise, of the same underlying imagef(x),
is not Rician distributed. Let the null images(x) be defined
as s(x) = r2(x) − r1(x). Its probability density function
(PDF) is denoted byCA,σ(s), where we writeA instead of
f(x) andσ is the standard deviation of the underlying noise
distribution, cf. (1). ThenCA,σ(s) is the probability that the
value of the differences(x) falls in an infinitesimal interval
arounds: CA,σ(s) = Prob[s ≤ s(x) ≤ s+ ds]. We will refer
to CA,σ(s) as the null distribution.

Since it is easy to see thatCA,σ(s) is symmetric, i.e.,
CA,σ(s) = CA,σ(−s), we have the following expression valid
for arbitrary values ofs ∈ R:

CA,σ(s) =
∫ ∞

0

∫ ∞

0

pA,σ(r1)pA,σ(r2)δ(r2 − r1 − |s|)dr1dr2

=
∫ ∞

0

pA,σ(r1) pA,σ(r1 + |s|)dr1. (9)

whereδ(r) denotes the Dirac delta function. That is,CA,σ(s)
is the cross-correlation of two identical Rice distributions. The
meanµs and standard deviationσs of the null distribution
CA,σ(s) are given by:

µs = 0, σs =
√

2σr (10)

whereσr is the standard deviation of the Rice distribution, see
(5). For the derivation, see section A of the appendix. In the

caseA = 0, the PDF ofr1, as well as that ofr2, is:

p0,σ(r) =
r

σ2
e−

r2

2σ2 . (11)

For the Rayleigh case (A = 0), the integral in Eq. 9 can be
explicitly evaluated. The resulting expression forC0,σ(s) is

1
2σ
e
−s2

4σ2

[
|s|
2σ
e
−s2

4σ2 +
√
π

2

(
1− s2

2σ2

)
erfc

(
|s|
2σ

)]
, (12)

where erfc(z) = 2√
π

∫∞
z
e−t2dt is the complementary error

function [19]. For the derivation of this formula, we refer to
section B of the appendix.

The following experiments investigate how well the PDF
CA,σ(s) can be approximated by a Gaussian distribution.

C. Numerical approximation by a normal distribution

The distributionCA,σ(s), see (9), was numerically approx-
imated by a Gaussian via the Levenberg-Marquardt curve-
fitting algorithm. The fit was carried out on an interval
centered around zero with negligible function values outside
this interval. Fig. 2 shows the PDFCA,σ(s), as well as the
Gaussian fitted to this distribution, for a number of values of
A andσ. The plots show an excellent fit.
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Fig. 2. The exact null distributionCA,σ(s) (solid), the fitted Gaussian
(dashed), and the difference betweenCA,σ(s) and the Gaussian (dotted). Note
that the fitted Gaussian is hardly distinguishable from the exact distribution.

Table I presents some quantitative results. It shows, for
various values ofA and σ, (i) the exact standard deviation
σs =

√
2σr of the null distribution (10), whereσr was

computed according to (4)-(5); (ii ) the width σGauss of the
Gaussian fitted toCA,σ(s); and (iii ) the mean square error of
the difference betweenCA,σ(s) itself and the fitted Gaussian.
The difference between the widthσGauss of the fitted Gaussian
and the exact valueσs is very small, especially for high
SNR (i.e.,A/σ). Sinceσr approachesσ for high SNR (see
section II), σs approaches

√
2σ in this limit. The mean

square error should decrease when the SNR increases; this
is confirmed by the experimental results. The null distribution
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TABLE I

ACCURACY OFGAUSSIAN FITS TO THEPDFCA,σ FOR VARIOUS VALUES

OF A AND σ. SHOWN ARE THE EXACT STANDARD DEVIATION σs

COMPUTED FROM(10), THE WIDTH σGauss OF THE FITTEDGAUSSIAN,

AND THE MEAN SQUARE ERROR OF THE DIFFERENCE BETWEEN THE

EXACT DISTRIBUTION AND THE FITTED GAUSSIAN.

A σ σs σGauss error
0 1 0.9265 0.9103 0.0080
0 3 2.7795 2.7315 0.0045
0 5 4.6325 4.5526 0.0035
2 1 1.2933 1.3071 0.0030
2 3 3.0463 3.0085 0.0035
2 5 4.8079 4.7291 0.0033
8 1 1.4086 1.4086 0.0000
8 3 4.0552 4.0780 0.0008
8 5 6.1567 6.2188 0.0013

does not have a heavy tail (it is slightly lighter than a Gaussian
of width σ, see below). Function values outside the interval
used in the fitting procedure represent a negligible portion
of the distribution. Therefore,p-values from statistical tests
based on Gaussian noise with an estimated standard deviation
σGauss will be very accurate, and (because of the light tail)
where there is a difference, the estimates will be conservative.

D. Tail of the null distribution

An important property of the PDFCA,σ(s) for statistical
fMRI analysis is the tail behaviour (as|s| approaches infinity)
of the distribution under the null hypothesis, because this
determines thep-value corresponding to a certain threshold,
cf. section III-A.

For the limiting cases of low and high SNR, i.e.,A = 0
andA/σ large, we mathematically analysed the behaviour of
the PDFCA,σ(s) when |s| becomes very large. The details
are presented in section C of the appendix. We find that both
in the Rayleigh case (A = 0) and for large values ofA/σ,
the tails of the distribution (9) are lighter than the tail of a
Gaussian distribution:

CA,σ(s) ∼ constant· 1
|s|

e−
(|s|−A)2

2σ2 , s→∞, (13)

where the constant depends onA andσ. This is a Gaussian
tail of width σ multiplied by a factor1/ |s|, which means that
the distribution approaches zero even faster than a Gaussian
distribution of widthσ. This implies that ifp-values based on
a Gaussian are used, the test is slightly conservative, and will
not give extra false positives.

E. Statistical tests of normality

An image of a uniform underlying intensity with Rician
noise has a spatially stationary noise distribution. The distribu-
tion of the difference between two such images is symmetric.

To test whether this distribution is close to Gaussian, the
Kolmogorov-Smirnov (KS) test was employed as follows. We
created two images of a uniform intensityA with Rician
distributed noise, and computed the difference between the
noisy images. The KS test was applied to the difference image.
The null hypothesis of the KS test is that the data are normally

distributed, and this is rejected if thep-value of the KS test
statistic is below0.05. For a number of intensitiesA, images of
different sizes were tested, and for each size and intensity, the
test was repeated 32 times. Table II shows the meanp-values
of the KS test statistics for each size, with intensityA = 1 and
A = 5. As a reference, 32 images of the same size containing
N(0, 1) noise were also tested, and their meanp-values are
in the right column. This table shows that deviations from

TABLE II

p-VALUES PRODUCED BY THEKS TEST FOR THE DIFFERENCE BETWEEN

IMAGES WITH RICIAN DISTRIBUTED NOISE WITH SIGNAL AMPLITUDES

A = 1 AND A = 5, AND FOR IMAGES OF THE SAME SIZE WITH

N(0, 1)-NOISE.

size p-value (A=1) p-value (A=5) p-valueN(0, 1)
2 × 2 0.6573 0.5607 0.4569
4 × 4 0.5761 0.5565 0.4249
8 × 8 0.5511 0.5493 0.4894

16× 16 0.5801 0.5564 0.5854
32× 32 0.5833 0.5378 0.5946
64× 64 0.5629 0.4869 0.4816

128× 128 0.5270 0.5426 0.5147
256× 256 0.4390 0.5554 0.5225
512× 512 0.3210 0.5219 0.4006

1024× 1024 0.0587 0.5236 0.5037

normality can only be detected in very large images with low
intensities: for high intensities, they are too small to measure.

F. Parameter estimation in fMRI with the general linear model

For fMRI analysis, the possibility of accurately estimating
the parameters of the noise is at least as important as using the
right noise model. We tested the applicability of the GLM (see
section III-A) by estimating the noise parameters in difference
images created in the same way ass(x) in Sec. III-B, and
comparing them with the real underlying parameters.

A matrix e of error signals was created by making a time
series of 128 difference images. The standard deviation of the
temporal noise was computed in each voxel. Table III shows,
for the same inputA andσ as before, the measured temporal
standard deviationσtemp, the mean standard deviationσs in
the difference images (which equals

√
2σr, see section III-B),

and the ratioσs/σ
temp. It shows that the standard deviation

σs is very accurately predicted by the formula (10).

TABLE III

MEASURED TEMPORAL STANDARD DEVIATIONσtemp , THE MEAN

STANDARD DEVIATION σs IN THE DIFFERENCE IMAGES, AND THE RATIO

σs/σtemp .

A σ σs σtemp σs/σtemp

0 1 1.4280 1.4338 0.9959
0 3 4.2854 4.3017 0.9962
0 5 7.1352 7.1667 0.9956
2 1 1.8001 1.8071 0.9961
2 3 4.4708 4.4890 0.9959
2 5 7.2472 7.2815 0.9953
8 1 2.1579 2.1667 0.9959
8 3 5.7924 5.8157 0.9960
8 5 8.5195 8.5542 0.9959
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G. Evaluation of the test results

The statistical tests, the analytical results, and the numerical
computations, all show that the difference between two MR
images whose intensities are Rician distributed, can be very
well approximated by a Gaussian distribution. The approxima-
tion is closest for high SNR, but is still very good for lower
SNR. Given the parametersA andσ of the Rician spatial noise
in a series of MR images and defining null images as pairwise
difference images, the parameters of the Gaussian distribution
that describes the temporal noise can be accurately estimated.

(a) (b)

(c)

Fig. 3. (a) A noise-free T2-weighted MR image. (b) Image (a) with Rician
noise ofσ = 81.67 (SNR: 10 dB) (c) The histogram of a noise-free T2*-
weighted MR image (top) and of the same image with Rician noise ofσ =
81.67, SNR = 10 dB (bottom).

IV. T HE NOISE DISTRIBUTION IN FMRI

Images in an fMRI time series have a range of intensities,
so the noise distribution is a sum of Rician PDFs (sums of
Gamma PDFs have also been used, see [15] for an example).
For each intensityA in the image, the noise is distributed
differently (see Fig. 3c), and this will have an influence on
the parameter estimates of the GLM. Areas with a “true” grey
value of 0, like the space around the body, have Rayleigh-
distributed noise, and the areas with higher grey values have
more symmetric distributions, which are quite similar to a
Gaussian, and they are centered around the grey value at that
location. The total noise distribution is a mixture of all those
distributions. The question is whether the conclusions about
the noise in the difference image obtained in section II also
hold for noisy images with mixed distributions.

A. Shape of the noise distribution in MR images

A simulated MR image was acquired from the Brain-
Web Magnetic Resonance Imaging simulator [20] with the

following parameters: modality T2, slice thickness 1 mm,
noise 0%, intensity non-uniformity 0%. Non-brain voxels were
excluded with the Brain Extraction Tool [21]. This noise-free
T2*-weighted image (Fig. 3a) was contaminated by Rician
noise with a knownσ (see Fig. 3b). A residual image was
obtained by subtracting the original MR image from the noisy
MR image, and a null image was made using the procedure
proposed in section III, i.e., as the difference between two MR
images containing Rician noise.

The dissimilarity between a Rician distribution and a Gaus-
sian is largest for low signal intensitiesA. The previous
section showed that the difference between two images of a
uniform intensityA and Rician noise has zero mean and is
near-Gaussian distributed, also for low signal intensities. This
section examines the difference images when the noise-free
images contain more than one intensity. Figure 4 shows the
histograms of a noisy MR image, the difference between a
noisy MR image and the noise-free image, and the difference
between two noisy MR images, respectively. The histograms
were computed for a range of values forσ and are presented
together as surface plots. Asσ decreases, the histogram of the
noisy MR image changes from one Rayleigh-like PDF to a
number of near-Gaussian PDFs (see Fig. 4a). The histogram of
the noisy image after subtraction of the original is asymmetric
for high σ, and becomes more symmetric asσ decreases (see
Fig. 4b). The histogram of the difference images is symmetric
for all σ (see Fig. 4c).

(a) (b) (c)

Fig. 4. (a) Histogram of a noisy MR image, (b) histogram of the difference
between a noisy MR image and the noise-free MR image, and (c) histogram
of the difference of two noisy MR images, for variousσ. Top: surface plots,
bottom: grey value maps.

B. Time series of MR images

A time series of 164 EPI scans was made on a 3 Tesla
Intera scanner (Philips Medical Systems, The Netherlands),
with repetition time TR = 3 s, volume size = 64×64×46
voxels of 3.5 × 3.5 × 3.5 mm3. No stimuli were presented,
and the null hypothesis of no activation was assumed to be
true throughout the experiment. Alignment of the images was
done with SPM´99 program [13].

The time series was split in two disjoint sets: TS1 (images
1 . . . 82) and TS2 (images83 . . . 164). The noise of TS1 was
centered around0 by subtracting the time series mean image
of TS1 from each image. Note: although this is a common
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procedure in fMRI analysis, this means treating Rician noise
as additive noise. To obtain an image with a symmetric noise
distribution, difference images were made by subtracting the
corresponding image of TS2 from each image of TS1.

Fig. 5. Histogram of the time series mean image of TS1.

The histogram of the time series mean image (see Fig. 5)
was used to divide the images into three intensity ranges: low
intensity (grey value0. . .300), medium intensity (grey value
301. . .600), and high intensity (grey value> 600).

−25 0 25 −50 −25 0 25 50 −50 −25 0 25 50

(a) (b) (c)

−50 −25 0 25 50 −100 0 100 −100 0 100

(d) (e) (f)

Fig. 6. Histograms of three intensity ranges of the images in the time
series. Top: time series TS1 after subtracting the time series mean: (a)
low intensity, (b) medium intensity, (c) high intensity. Bottom: time series
TS1 after subtracting the corresponding images of time series TS2: (d) low
intensity, (e) medium intensity, (f) high intensity.

Figure 6 shows the histograms of the grey values in the
resulting time series within the three ranges. Gaussians were
fitted to the histograms with the Levenberg-Marquardt curve-
fitting algorithm. For medium and high intensities, the time
series histograms show no significant asymmetries. For low
intensities however, the time series TS1 after subtracting the
mean has an asymmetric histogram, while the time series TS1

after subtracting TS2 has a symmetric histogram. The fits are
never perfect, except in the case of low intensities and after
subtracting TS2. In that case, the intensity distribution has one
predominant intensity (A = 0, see Fig. 5), and the difference
distribution is close to those in theA = 0 cases of the previous
section. In the other cases, the noise originates from voxels
with various intensities, and the noise distribution resembles
a mixture of Gaussians with meanµ = 0 and variousσ.

Because the amount of asymmetry in the medium and
high grey-value ranges is very small, the combination of
thresholding and subtracting the time series mean may solve

most of the problems concerning the Rician distribution of the
noise. However, the new method presented in this paper of
subtracting a second time series is preferable: it has proved
to yield symmetric noise distributions in all measurements
considered.

C. Implications for fMRI designs

The assumption of Gaussian noise in the analysis of fMRI
data should be used with care. Relying on the robustness of
the standard tests most often works, but it does does not solve
the problem of the asymmetric noise distribution. A recent
maximum-likelihood test based on the Rician distribution
shows to be as powerful as the GLM-based test with a high
SNR, but performs much better with a low SNR [22]. For using
the assumption of Gaussian noise, difference distributions like
the one presented here will be required. The example presented
here of using an extra data set for every experiment is difficult
for large studies, but this can be solved in a more practical
way: a relatively small set of ‘null data’ can be reused after
randomisation in the time dimension. The only change in
the formula for the GLM (7) is usingY −Y 0 instead ofY ,
with Y 0 the resting-state data set. It is trivial to see that this
does not change the way the estimates are computed, even if
different (more complex) design matricesX are used.

V. CONCLUSIONS

We have presented a noise model in BOLD fMRI that
takes into account the Rician distribution of MR noise known
from the literature. BOLD noise was defined as the difference
between two MR images with Rician noise. We investigated
the properties of the difference image under the null hypothesis
(no brain activation), which is needed to determinep-values in
a statistical analysis. The problem was studied in several com-
plementary ways: analytical calculation, numerical simulation,
statistical estimation, and experimental validation on real EPI
data. An analytic expression was derived for the statistical null
distributionCA,σ(s) as an integral in terms of two underlying
Rician probability densities with parametersA and σ. From
this basic formula, analytical expressions were derived for the
mean and standard deviation of the null distribution, as well as
for its tail, i.e., its asymptotic behaviour ass goes to infinity.

The null distributionCA,σ(s) was numerically approxi-
mated by a Gaussian function with the Levenberg-Marquardt
nonlinear curve-fitting algorithm. The approximation by a
Gaussian distribution was very good, with the accuracy in-
creasing with SNR (i.e.,A/σ). The standard deviation of the
fitted Gaussian was found to be in excellent agreement with
the exact standard deviationσs derived from the analytical
expressions.

The statistical properties of the noise were examined in two
ways. The Kolmogorov-Smirnov test was applied to difference
images of noise-only images with Rician distributed noise. A
second test using the general linear model (GLM) compared
the estimated noise parameters to the value predicted by the
model, and showed that the agreement is excellent.

From the analytical results, the numerical computations,
and the statistical tests, we concluded that the assumption



7

of Gaussian distributed noise used in the fMRI literature
could be justified. That is, the difference between two images
whose intensities follow a Rice distribution can be very well
approximated by a Gaussian distribution. The approximation
is closest for high SNR, but is still quite good for lower SNR.
Given the parametersA andσ of the Rician spatial noise in a
series of MR images, the standard deviation of the Gaussian
that describes the temporal noise can be accurately predicted.

The noise model was tested on simulated and real MR
images. In a test that contaminated noise-free MR templates
with Rician noise, MR noise was shown to have an asymmetric
distribution when it is –incorrectly– treated as additive noise.
As in the test with noise-only images, difference images of
noisy MR pictures were found to have a symmetric distri-
bution. The consequence for fMRI time series analysis is
that subtracting the time series mean does not get rid of the
asymmetry in temporal noise.

We tested thresholding the MR images as a fast and simple
alternative to the difference image approach: it can remove
asymmetry in the noise distribution to a large extent, depend-
ing on the robustness of the test that is used. Subtracting a
second time series from the time series being analysed yields
symmetric and close to Gaussian distributed noise.
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APPENDIX

MATHEMATICAL ANALYSIS OF THE NULL DISTRIBUTION

This appendix presents the derivations of the exact analyti-
cal results in Section III on the distribution of the difference
signal under the null hypothesis. Extensive use is made of
the concept of asymptotic expansions. We first provide a few
formal definitions. Letφ(x) andψ(x) be two functions defined
for x ≥ x0. One writesφ(x) = O

(
ψ(x)

)
, x → ∞, when

constantsK and x1 exist such that|φ(x)| ≤ K |ψ(x)| for
x ≥ x1. We call

∑∞
n=0 an φn(x) the asymptotic expansion of

a functionf when, for everyN ,
∣∣∣f(x)−

∑N
n=0 an φn(x)

∣∣∣ =
O

(
φN+1(x)

)
, and write

f(x) ∼
∞∑

n=0

an φn(x), x→∞.

Below, we only use the first term in the asymptotic expansion
of some special functions (error function, Bessel function),
and use the shorthand notation

f(x) ∼ a0 φ0(x), x→∞.

To make this precise, one has to refer to the full asymptotic
expansions, as can be found in Abramowitz and Stegun [19];
for easy reference, we refer to the relevant sections of this
handbook at the appropriate places.

A. Mean and variance of the null distribution

First, the meanµs is zero because of the symmetry of
CA,σ(s). Second, since the mean is zero, the variance of the
null distribution satisfies (see Eq. (9)):

σ2
s =

∫ ∞

−∞
ds s2C(s) =

=
∫ ∞

−∞
ds s2

∫ ∞

0

dr1
∫ ∞

0

dr2 pA,σ(r1)pA,σ(r2) δ(r2 − r1 − |s|)

=
∫ ∞

0

dr1
∫ ∞

0

dr2 pA,σ(r1)pA,σ(r2)
∫ ∞

−∞
ds s2δ(r2 − r1 − |s|)

whereδ(·) denotes the Dirac delta function. Sinceδ(r2−r1−
|s|) is zero except whenr2 − r1 − |s| = 0, we find

σ2
s =

∫ ∞

0

dr1
∫ ∞

0

dr2 pA,σ(r1)pA,σ(r2) (r1 − r2)2

=
∫ ∞

0

dr1
∫ ∞

0

dr2 pA,σ(r1)pA,σ(r2)
(
r21 + r22 − 2r1r2

)
=

∫ ∞

0

dr1 r21pA,σ(r1) +
∫ ∞

0

dr2 r22pA,σ(r2)−

2
(∫ ∞

0

dr1 r1pA,σ(r1)
) (∫ ∞

0

dr2 r2pA,σ(r2)
)

= 2 E(r2)− 2E(r)2 = 2σ2
r

Here E(. . .) denotes the average of the quantity within the
brackets. So we have found thatσ2

s = 2σ2
r , which directly

yields (10).

B. Exact form of the null distribution in the Rayleigh case

Substituting the form (11) of the Rayleigh distribution in
expression (9), we find

C0,σ(s) =
∫ ∞

0

dr
r

σ2
e−

r2

2σ2
r + |s|
σ2

e−
(r+s)2

2σ2 .

Putting r/σ = x, |s| /σ = q, A/σ = a, we find after some
algebra:

C0,σ(s) =
1
σ

∫ ∞

0

dx
{
(x+ q/2)2 − q2/4

}
e−(x+q/2)2−q2/4

Again, puttingy = x+ q/2:

C0,σ(s) =
1
σ
e−

q2

4

∫ ∞

q/2

dy
(
y2 − q2/4

)
e−y2

.

Writing τ = q/2, we can write this integral as the sum of
two terms, each of which can be expressed in terms of the
complementary error function:

C0,σ(s) =
1
σ
e−τ2

S2 −
1
σ
e−τ2

τ2 S0, (14)

where

S0 =
∫ ∞

τ

dy e−y2
=
√
π

2
erfc(τ)

S2 =
∫ ∞

τ

dy y2 e−y2
=

1
2
τ e−τ2

+
√
π

4
erfc(τ)

Substitution of these expressions in (14) yields

C0,σ(s) =
1
2σ

e−τ2
{
τ e−τ2

+
√
π

2
(1− 2τ2) erfc(τ)

}
.

Re-expressingτ in terms of the original variables (i.e., τ =
q/2 = |s| /(2σ)), we obtain formula (12).
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C. Tails of the null distribution

We consider the limiting case of low versus high SNR, i.e.,
A = 0 andA/σ large.
A = 0: This is the Rayleigh case, for which we have derived

an exact expression for the null distribution, see formula (12).
Whens is large, we can use the asymptotic behaviour of the
error function [19, section 7.1.23]

erfc(z) ∼ 1√
πz

e−z2
, z →∞ (15)

Substituting this in (12), we find (after rearrangement of
terms):

C0,σ(s) ∼ 1
2 |s|

e−
s2

2σ2 , s→∞,

which behaves as a Gaussian tail of widthσ multiplied by a
factor 1/ |s|.
A/σ large: Since A/σ is large, we apply the Gaussian

approximation of the Rice distribution:

pA,σ(r) ∼ 1√
2πσ2

e−
(r−A)2

2σ2

As shown in [3], this approximation is already accurate for
A ≥ 2σ. This formula is easy to derive by using the asymptotic
expansion of the Bessel functionI0 as given in [19, section
9.7.1]. Substituting this in (9), we get

CA,σ(s) ∼
∫ ∞

0

dr
1

2πσ2
e−

(r−A)2

2σ2 e−
(r+|s|−A)2

2σ2 .

Putting r/σ = x, |s| /σ = q, A/σ = a, we find after some
algebra:

CA,σ(s) ∼ 1
2πσ

∫ ∞

0

dx e−
(x−a)2

2 e−
(x+q−a)2

2

=
1

2πσ
e−

q2

4

∫ ∞

0

dx e−(x+q/2−a)2 .

Again, puttingy = x+ q/2− a:

CA,σ(s) ∼ 1
2πσ

e−
q2

4

∫ ∞

q/2−a

dy e−y2

=
1

2πσ
e−

q2

4

√
π

2
erfc(q/2− a).

In terms of the original variables:

CA,σ(s) ∼ 1
4
√
πσ

e−
s2

4σ2 erfc
(
|s| /2−A

σ

)
. (16)

Applying the asymptotic expansion (15) of theerfc function
for large argument, we find:

CA,σ(s) ∼ 1
2π(|s| − 2A)

e−
(|s|−A)2+A2

2σ2 .

Finally, since|s| is large, we can replace|s| − 2A by |s|,

CA,σ(s) ∼ constant· 1
|s|

e−
(|s|−A)2

2σ2 , s→∞.

which again behaves as a Gaussian tail of widthσ multiplied
by a factor1/ |s|.
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