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Abstract

We propose the use of force directed graph layout as an explorative tool for connectivity-based brain parcellation
studies. The method can be used as an heuristic to find the number of clusters intrinsically present in the data (if any)
and to investigate their organisation. It provides an intuitive representation of the structure of the data and facilitates
interactive exploration of properties of single seed voxels as well as relations among (groups of) voxels.

We validate the method on synthetic datasets and we investigate the changes in connectivity in the supplementary
motor cortex, a brain region whose parcellation has been previously investigated via connectivity studies. This region
is supposed to present two easily distinguishable connectivity patterns, putatively denoted by SMA (supplementary
motor area) and pre-SMA.

Our method provides insights with respect to the connectivity patterns of the premotor cortex. These present a sub-
stantial variation among subjects and their subdivision into two well separated clusters is not always straightforward.

Keywords: Diffusion imaging, tractography, connectivity, brain parcellation, supplementary motor cortex.

1. Introduction
Classification of structural and functional regions in

human brain cortex is a key aspect of neuroscience
(Passingham et al., 2002). Under the hypothesis of a re-
lation between brain structure and brain function, sev-
eral techniques for cortex parcellation are available in
the literature. The golden standard for cortex structural
analysis is based on cyto- or myeloarchitectonical stud-
ies of post mortembrains (Brodmann, 1909; Vogt and
Vogt, 1919; Vogt et al., 1995), which allow parcella-
tion of brain cortex based on variations of density and
size of cell bodies at the microscopic level. Functional
identification of several brain areas was achieved by us-
ing anatomical landmarks such as sulci (Geyer et al.,
1996; Amunts et al., 1999), or using modernin vivo
explorative techniques such as fMRI and PET, which
improved and broadened the possibility to locate func-
tional brain areas.
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One of the imaging techniques providing insight in
anatomical brain connectivity is Diffusion Tensor Imag-
ing (DTI). This is a magnetic resonance modality for
measuring white matter connectivityin vivo, bridging
the gap between structural studies andpost mortem
anatomical analysis (Klein et al., 2007). DTI is a non-
invasive method that allows quantitative assessment of
directional information of water self-diffusion in bio-
logical tissues. Measuring the anisotropic self-diffusion
of water, induced by the fibrous nature of white mat-
ter, allows one to infer the directional arrangement of
bundles of axons (Basser et al., 1994; Pierpaoli et al.,
1996). The principal direction of water diffusion in each
white matter voxel is often used for tracking fiber bun-
dles; cf. (Mori et al., 1999; Basser et al., 2000) for a
reference on DTI and tracking techniques. Probabilistic
tractography (Behrens et al., 2003; Parker et al., 2003;
Koch et al., 2002) estimates fiber tracks using proba-
bility density functions that describe the local uncer-
tainty of fiber bundle orientation. This technique pro-
vides confidence bounds on the locations of connections
from a seed voxel to every other voxel of the brain. Such
connections define theconnectivity profileof that voxel
(Johansen-Berg et al., 2004). Probabilistic tractogra-
phy has been used to demonstrate different patterns of
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anatomical connectivity (Behrens and Johansen-Berg,
2005); it has also been used to compute parcellation of
brain regions based on connectivity information alone
(Johansen-Berg et al., 2004; Devlin et al., 2006; Anwan-
der et al., 2007; Croxson et al., 2005; Rushworth et al.,
2006; Johansen-Berg et al., 2008).

In this paper we visualise brain connectivity net-
works by making use of techniques from graph visu-
alisation (Herman et al., 2000; Marshall and Herman,
2001; van Ham and van Wijk, 2004). In particular,
we apply the force-directed graph layout (FDGL) tech-
nique, which models a graph as a physical system and
tries to find a layout for the nodes and edges of the
graph such that the total energy of the system is mini-
mal. We show that FDGL algorithms are well suited for
connectivity-based analysis of brain cortical areas. Re-
lations among the connectivity profiles of seed voxels
are used to define a graph layout where voxels (graph
nodes) are drawn closer to each other when their con-
nectivity profiles are more similar. This technique al-
lows us to investigate the presence and the number of
clusters in a dataset by analysing the positions of the
graph nodes and by counting the groups of nodes drawn
close to each other. Insights on the strength of similar-
ity among voxels and among groups of voxels are also
possible, and hypotheses on the reliability of the results
can be verified in a follow-up analysis by mapping the
density on the original anatomy, i.e.,beforeclustering
the data. This approach can be used as an heuristic for
determining the number of clusters to be used in a (sub-
sequent) clustering algorithm.

We applied our method to the parcellation of
SMA (supplementary motor cortex) and pre-SMA, a
brain region that has been previously examined via
connectivity-based parcellation (CBP) (Behrens and
Johansen-Berg, 2005; Anwander et al., 2007; Klein
et al., 2007; Nanetti et al., 2009). On the basis of previ-
ous evidence in animal studies (Picard and Strick, 1996;
Luppino et al., 1993), a sharp transition in the con-
nectivity properties of SMA and pre-SMA is expected.
Nevertheless, neither a quantitative analysis of the dif-
ference between SMA and pre-SMA in terms of con-
nectivity patterns, nor the possibility of a smooth transi-
tion of connectivity patterns between the two functional
areas, has been investigated in the literature.

2. Related Work
Automatic parcellation of brain cortex, i.e., without

a priori knowledge of target regions, was introduced
by Johansen-Berg et al. (2004). The authors clustered
the connectivity profiles of the voxels of SMA/pre-SMA

and recovered the supposed location of the boundary
between the two areas. The cross-correlation matrix
(CCM) of the connectivity profiles of SMA/pre-SMA
voxels was reordered using a spectral reordering al-
gorithm (Barnard et al., 1995), which minimizes the
sum of the reordered matrix entries, multiplied by their
squared distance from the diagonal. If the data contain
clusters (groups of voxels with similar connectivity),
these will be visually distinguishable in the reordered
CCM (Johansen-Berg et al., 2004) and the investigator
can visually separate matrix compartments that identify
clusters with distinct connectivity patterns.

Connectivity-based brain parcellation of the premo-
tor cortex was replicated using k-means clustering on
CCM by Anwander et al. (2007), Klein et al. (2007)
and by Nanetti et al. (2009). In Anwander et al. (2007),
the possibility of the existence of more than two clusters
was investigated. In particular, k-means clustering with
k=3 was consistently found to divide the most poste-
rior area of the premotor cortex into two clusters which
were reported as possibly referring to the primary mo-
tor cortex (M1) and SMA. Klein et al. (2007) validated
the use of k-means clustering for the CBP of SMA and
pre-SMA with fMRI techniques. Nanetti et al. (2009)
showed how the application of k-means clustering to
the same dataset can lead to a variety of rather differ-
ent parcellations, depending on the initial placement of
the starting points of the algorithm.

The output of k-means clustering is strongly depen-
dent on the expected number of clusters, and it may pro-
vide misleading results if this number does not corre-
spond to the number of clusters intrinsically present in
the data. Compared to k-means clustering, spectral re-
ordering of CCMs has the advantage of not requiringa
priori knowledge of the number of clusters. Neverthe-
less, spectral reordered CCMs often do not show clear
separations into two (or more) compartments and visual
analysis of such matrices is not always straightforward.
Furthermore, any decision taken by the investigator on
the partitioning of the spectral reordered CCM is solely
based on the layout of the CCM itself and no anatomical
reference is taken into account.

3. Materials and Methods
3.1. Data acquisition and preprocessing

Diffusion-weighted (DW) images were acquired
from 13 healthy subjects (6 F, 7 M, mean age: 20,94;
sd 1,95; max 25, min 18) using a single-shot pulsed
gradient spin echo EPI sequence (SENSE factor = 3,
TR = 6 s, and TE = 77 ms) on a 3T MR scanner (In-
tera, Philips Medical Systems, Best, The Netherlands).
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For each subject 60 DW images were collected using 60
uniformly distributed gradient directions (Jones et al.,
1999), with a maximum gradient strength of 22 mT/m
and a b-value of 800 s/mm2. In addition, 7 non-DW
images (b = 0 s/mm2 ) were acquired before the DW
images and averaged on the scanner. Each image con-
sisted of 51 transverse slices with an in-plane resolution
of 1.875 x 1.875 mm2 and slice thickness of 2 mm (FOV
= 240 x 240 mm2 and data matrix size = 128 x 128). The
total scan time for one dataset was approximately 7 min.

Diffusion data were corrected for eddy currents and
head motion by affine registration to the non-weighted
image. Data from the skull was subsequently removed
and the non-weighted image was registered to the MNI
standard template (voxel size 2 mm3). All these steps
were performed using FSL (Smith et al., 2004; Woolrich
et al., 2008).

3.2. Tractography
After preprocessing, Bayesian estimation of diffu-

sion parameters was performed as in Behrens et al.
(2003) and implemented in FSL (Smith et al., 2004).
In order to perform probabilistic tractography of the
medial premotor region, we defined a seed region by
a binary mask at X(MNI)=-2, spanning from Y=-22
to Y=30 (MNI coordinates), and extending in the Z-
direction from above the cingulate sulcus to the dor-
sal crest of the medial wall; cf. Johansen-Berg et al.
(2004). This mask was then transformed into each sub-
ject’s DW space by means of an affine transformation
with nearest neighbour interpolation. Probabilistic trac-
tography was seeded for each voxel in the mask; five
thousand samples were drawn from the orientation dis-
tribution of each seed voxel to generate its connectivity
profile. Connectivity profiles were then binarised, set-
ting to unity any entry bigger than zero.

In the next step the CCM of the connectivity profiles
was calculated. The CCM is a symmetric square ma-
trix where the entry (i, j) is the Pearson’s correlation
between the binarised connectivity profiles of seed vox-
els i and j, and theith row of the CCM contains the
correlation of the binarised connectivity profile of the
seed voxeli with the binarised connectivity profiles of
all other voxels in the seed region.

3.3. Synthetic datasets
Six synthetic datasets were created for testing our

approach. Each set consisted of 250 binary vectors
simulating binarised connectivity profiles. The vectors
had 105 entries, 5‰ of which were non-zero entries
(connectivity profiles of voxels in pre-SMA/SMA cover
roughly 5‰ of the whole brain volume).

Figure 1: Six synthetic CCMs and the corresponding graph layouts.
Graph layouts are coloured by the user according to visuallydetected
clusters (A,B,C). Smooth variabilities in similarity are depicted us-
ing colour gradients (D,E,F). Bars below the CCMs show the clusters
replotted on the columns of the CCMs.

The six sets of vectors were created so that the cor-
responding CCMs corresponded to six qualitatively dif-
ferent cases: (i) two distinct compartments, correspond-
ing to the presence of two completely separated clus-
ters; (ii) two partially overlapping compartments, cor-
responding to the presence of a non-empty intersection
between two clusters; (iii) three pairwise overlapping
compartments; (iv) two big compartments connected
by a series of smaller overlapping compartments; (v)
three compartments pairwise connected by a continuum
of smaller overlapping compartments; (vi) a continuum
of small overlapping compartments, where each ma-
trix column (row) correlates only with its neighbouring
columns (rows).

The synthetic CCMs are shown in Fig. 1, where grey
values represent the strength of the correlation among
connectivity profiles, white representing high correla-
tion. Note that the synthetic CCMs were not spectrally
reordered, but they were created this way to facilitate
the visual analysis of the compartments.

4. Graph Layout
A graphG = (V,E) is defined by a setV of nodes and

a setE of edges, where an edge connects a pair of nodes.
We use undirected graphs, so if nodei is connected to
node j, then j is connected toi. A graphical represen-
tation of a graph is called a graph layout. Graphs are
usually depicted with their nodes as points in a plane
and their edges as arcs connecting the nodes.

There are different styles of representation, suited to
different types of graphs or different purposes of pre-
sentation. The arrangement of nodes and edges empha-
sises different characteristics of the graph, assists in the
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understanding of graph properties, and reveals patterns
in the data. Such graph drawing styles are known un-
der the heading of graph aesthetics (Di Battista et al.,
1999). FDGL is a consolidated visualisation method
whose purpose is to position the nodes and the edges
in an aesthetically pleasing way. Our main considera-
tion here is that proximity in the layout corresponds to
a certain similarity measure defined in the data space.

The purpose of FDGL is to find a position~pi for each
node i of the graph such that nodes corresponding to
highly correlated connectivity profiles are drawn near
each other. This is achieved by using a physical anal-
ogy. Nodes are modelled as particles on which forces
are acting. The optimal layout corresponds to the situa-
tion when the physical system is in equilibrium, i.e., the
energy of the system is minimal. Two forces act on each
node: a Hooke’s spring forceFA, attracting nodes, and a
Coulomb-like repulsion forceFR, repelling nodes. The
total forceFT(i) acting on a nodei is thus:

FT(i) =
∑

j

FA(i, j)
(~pi − ~p j)

|~pi − ~p j |
−
∑

j

FR(i, j)
(~pi − ~p j)

|~pi − ~p j |
(1)

whereFA(i, j) = CC(i, j)|~pi − ~p j | , FR(i, j) = CC(i, j)
|~pi−~p j |

2 , and
CC(i, j) is the cross-correlation between the connectiv-
ity profiles of seed voxelsi and j.

Force directed algorithms are known to be sensitive to
local minima. However, finding the global minimum is
not critical in our application. It suffices to reach a good
approximation of the global minimum such that the ini-
tial position of the nodes does not drastically influence
the outcome, thus providing a graph representation that
is roughly reproducible in all the experiments. To ap-
proximate the equilibrium we proceed via steepest de-
scent: starting from random positions, nodes are moved
along the directions of the resulting force until the total
potential energy is below a certain threshold value.

For evaluating the influence of the initial position of
the nodes on the final outcome of the layout, we ran our
algorithm multiple times on the same dataset. In each
run, the initial position of the nodes was randomly gen-
erated and the size of the smallest rectangle containing
the graph layout (whose longest side is parallel to a line
connecting the two most distant nodes) was computed.
This allowed us to compare the size of the graph. In
addition, we compared the position of the barycentre of
the graph across runs (cf. Fig. 5).

The force-directed algorithm yields a layout such that
visual exploration of relations among nodes is intu-
itive. Several techniques are at our disposal for explor-
ing such relations: simple graphical primitives drawn by

the user and data-driven approaches such as local den-
sity of nodes. Graphical primitives can be used to label
nodes, or groups of nodes, and to relate them with both
the corresponding entries of the CCM and their loca-
tions in the brain (cf. Fig. 1). A local density of nodes
is computed using the adaptive Gaussian kernel density
estimation method proposed by Pisani (1996). By inter-
polating the positions of the graph nodes, a continuous
density function is obtained and iso-density lines can be
created (cf. Fig. 3).

We use the density of graph nodes as an indicator
of groups of voxels with highly correlated connectivity
profiles. By counting the number of density peaks (local
maxima) of the density function, the number of clusters
in the data can be inferred. Similarity of the connectivity
profiles of voxels within a cluster, similarity of profiles
in different clusters, and relationships among clusters
can also be assessed by exploring the density map and
the position of the graph nodes.

Figure 2: The effects of noise addition to the data presentedin Fig. 1A.
Noise ranges from 0% (A) to 80% (I). The size of the nodes differs
in every picture because the spreading of the layout increases with the
amount of noise.

Figure 3: Comparison of spectral reordering and FDGL. A) Spectral
reordered CCM of the area SMA/pre-SMA of subject 1. B) Results
of k-means clustering on the CCM, for 2 and 3 clusters. C) Results of
k-means clustering on the graph layout, for 2 and 3 clusters. D) The
FDGL. E) Iso-density lines. F) The colour map used for mapping the
density. G) The continuous density function.
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5. Results

5.1. Synthetic data

Synthetic CCMs and their corresponding graph lay-
outs are shown in Fig. 1. Nodes are labelled with gray
values chosen by the user. Below each layout, the la-
belling of the nodes (seed voxels) is mapped along the
columns of the CCMs, showing that the clusters per-
ceived by the user reflect the actual compartments in the
CCMs.

Fig. 1A shows that well-defined compartments of a
CCM are represented by graph nodes that have been
tightly grouped in circular regions: since the connec-
tivity profiles within a compartment are similar, the
attractive forces among the corresponding nodes have
overcome the repulsive forces during the force-directed
layout. A graph representation of overlapping com-
partments is shown in Fig. 1B, C. When two or more
compartments of the CCM partially overlap, the layout
shows a “bridge” between the two respective circular
groups of nodes. The compactness and position of the
bridges reflect the fact that the corresponding entries of
the CCM are similar to each other and equally dissimi-
lar from the two overlapping compartments. When the
CCM presents a gradual change in similarities between
the rows (columns) of a compartment and those of an-
other compartment, the graph layout shows bridges that
actually connect the circular regions, see Fig. 1D–F. A
more gradual change in similarity (cf. Fig. 1F) is re-
flected by a more elongated layout.

A key feature of this method is that the topology of
the graph layout reflects not only relations among vox-
els (i.e., presence of circular regions) but also relations
between groups of voxels. For instance, as we see in
Fig. 1C, E, voxels coloured in orange lay between the
group of voxels coloured in red and the voxels coloured
in yellow. This reflects the fact that their connectivity
profiles are equally similar to those of the red voxels
and those of the yellow voxels. On the other hand, the
red and yellow groups are drawn far away from each
other, meaning that their connectivity profiles are very
different.

Figure 2 shows the influence of noise addition to
the artificial dataset presented in Fig. 1A. Salt & pep-
per noise was added (using the Matlab© function im-
noise) to the binary vectors before computing the CCM.
Fig. 2A shows the graph layout of the original dataset
without noise. In Fig. 2B–I the strength of the noise
ranges from 10 to 80 percent. In this simple case it is
still possible to visually detect the presence of two clus-
ters, even when the noise affects up to 50 percent of the

Figure 4: Reproducibility of our method. Top: statistics on the size of
the smallest rectangle containing the graph layout and on theposition
of its barycenter. Bottom: result of a single run (left), average density
over 50 runs (center) and standard deviation of the density in each
voxel (right). Colour maps are shown in the bottom of the figure.

original data.

Table 1: Degree of overlap of k-means clustering results performed on
the entries of the CCM and on the positions of the nodes in the graph
layout, for subjects 1-5.

subj.1 subj.2 subj.3 subj.4 subj.5
2
clus-
ters

98.8%95.9%89.8%84.6%77.5%

3
clus-
ters

76.2%95.7%84.8%94.3%98.7%

5.2. Subject data
Next we apply our method to data acquired from 13

healthy subjects, as described in section 3. The results
of five subjects are shown in Fig. 3 and Fig. 7, while
results of the remaining 8 subjects, as well as clustering
and tractography results, are shown in the supplemen-
tary materials.

Figure 3 shows the results for SMA/pre-SMA data
from subject 1. Figure 3A shows the spectral reordered
CCM, as described in Johansen-Berg et al. (2004). Fig-
ure 3B shows results of k-means clustering of the CCM,
for k=2 and for k=3 clusters. Gray values identify which
rows in the CCM belong to the same cluster. Figure 3C
shows results of k-means clustering of the graph lay-
out. The clusters are mapped to the rows of the CCM.
Figure 3D shows the graph layout, where nodes are
coloured according to their density using the colour map
shown in Fig. 3F. Figure 3E shows iso-density lines
of the continuous 2D density function in Fig. 3G. The
colour map in Fig. 3F was chosen to enhance the details
of the 2D density function and to ease its readability.
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Figure 5: Top: plot of the graph densities of subject 1 on the MNI
standard template. The regions with highest density overlapwith the
putative positions of SMA and pre-SMA. Centre: k-means clustering
of SMA and pre-SMA into 2 clusters. Bottom: k-means clusteringof
SMA and pre-SMA into 3 clusters.

Figure 6: Frequency maps of the number of times each voxel is con-
nected to the somatomotor area (top) and to prefrontal areas (bottom).
Somatomotor area was defined by using a mask of the primary mo-
tor cortex, corticospinal tract, and lateral premotor cortex (BA6). The
prefrontal area was defined by a mask of BA44, BA45, superior pari-
etal lobe, and medial frontal gyrus (MFG). All masks except MFG
were taken from Eickhoff’s Anatomy Toolbox (Eickhoff et al.,2005).
The mask of MFG was taken from the Harvard-Oxford Cortical Struc-
tural Atlas. Colour maps are shown on the right. The green linerep-
resents Y(MNI)=0.

Figure 7: Spectral reordering, graph layout and MNI mapping of sub-
jects 2-5.

6



Figure 4 shows statistics on the reproducibility of our
method. The smallest rectangle containing the graph
layout of Fig. 3 is shown in the top image of Fig. 4.
This rectangle has its longest side parallel to the imag-
inary line connecting the two most distant nodes in the
layout. Since orientation of the rectangle depends on the
initial random position of the nodes and usually differs
from one run to the other, the coordinates of its barycen-
tre are computed according to the node of the rectangle
most close to the barycentre itself. Average and stan-
dard deviations were computed running our algorithm
fifty times on the data from subject 1. Figure 4 (bot-
tom) shows statistics on the mapping of the densities to
the anatomy. The result of a single run is shown bottom
left. The average of the density maps over fifty runs is
shown in the center. The corresponding standard devia-
tions are shown on the right. We see that the position of
the density peaks is similar across runs, and the standard
deviation is small, although there is a little higher vari-
ability in the anterior region, dorsal with respect to the
cingulate sulcus. These results indicate that our method
is consistent across runs and highly reproducible.

Quantitative comparisons between k-means cluster-
ing of graph layout and k-means clustering of the CCM
for subjects 1-5 are shown in Table 1. Both quantitative
and qualitative comparisons of clustering results for the
remaining 8 subjects are shown in the supplementary
materials. We observe high consistency of the clustering
results. This confirms the soundness of our approach
and validates the hypothesis that high similarity of con-
nectivity profiles corresponds to proximity in the graph
layout.

Figure 5 shows the results of our method (top figure)
and the result of k-means clustering on the graph (center
and bottom figures) for the SMA/pre-SMA of subject
1. The density peaks shown by our method correspond
to two groups of voxels, one in the posterior and one
in the frontal premotor cortex, situated in the putative
location of SMA and pre-SMA (the colour map is the
same as Fig. 3). In agreement with column “subj. 1” of
Table 1, the position of the density peaks best matches
the results of k-means clustering with k equal to 2 rather
than k equal to 3.

Figure 6 shows a group-wise comparison of tractog-
raphy results on each voxel of the region of interest
(ROI). Two ROIs were used as targets for probabilis-
tic tractography. These ROIs are the somatomotor area
(M1 and cortico-spinal tract) and the prefrontal areas
BA44, BA45, superior parietal lobe, and medial frontal
gyrus. The figure shows the frequency of connections
from each voxel to the somatomotor area (top) and to the
prefrontal brain regions (bottom) in the group of sub-

jects. The voxels in the posterior regions of the ROI (pu-
tatively SMA) are connected to the somatomotor area
in all subjects. The frequency of this connectivity pat-
tern decreases as we move toward the front of the ROI
(putatively pre-SMA). Accordingly, the region showing
most frequent connectivity with prefrontal brain regions
lays in the frontal part of our ROI. An important result
is that these two connectivity patterns do not separate
SMA/pre-SMA in two clear regions, but overlap in the
central region of the ROI.

6. Discussion
The medial frontal cortex of the hemispheres, above

the cingulate sulcus, is composed of different corti-
cal regions featuring different architecture, functionality
and anatomical connections with the rest of the brain.
The most posterior sector is part of the primary motor
cortex M1 (BA4, (Brodmann, 1909)). SMA, adjacent
to M1, is involved in practical issues such as response
selection or production. Pre-SMA is involved in the es-
tablishment or retrieval of sensory-motor associations
(Tanji and Hoshi, 2008; Picard and Strick, 2001).

Tracer injection studies in macaque showed that
SMA and pre-SMA are also distinct in terms of their
anatomical connections with other parts of the brain:
SMA has direct connections to the spinal cord and to
M1; pre-SMA is not directly connected with final motor
pathways but mainly with other regions of the prefrontal
cortex. The two regions also differ in their projections
to the cingulate, parietal and temporal cortex (Luppino
et al., 1993).

Using results from animal studies on the macaque,
Picard and Strick (1996) showed the presence of a rel-
atively sharp subdivision between SMA and pre-SMA,
localised around the plane through the anterior commis-
sure (Y(MNI)=0). However, this boundary is idealised
and based on evidence from animal studies; in a sin-
gle subject examination no anatomical landmark can be
used to effectively discriminate SMA from pre-SMA.

Connectivity based parcellation of SMA/pre-SMA
was performed by Johansen-Berg et al. (2004), An-
wander et al. (2007), Klein et al. (2007), and Nanetti
et al. (2009). In Johansen-Berg et al. (2004), Klein
et al. (2007) and Nanetti et al. (2009) the location of
the boundary between SMA and pre-SMA was inves-
tigated. In Anwander et al. (2007) results of k-means
clustering with k>2 were investigated and the possibil-
ity that k-means with k=3 could distinguish M1, SMA
and pre-SMA was discussed.

Given the recovered similarity in the tractography
results between the two posterior clusters, the lack
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of a macroscopic landmark to distinguish SMA from
M1, and the inter-subject variability on the location of
the border M1/SMA (cf. probabilistic maps for M1 in
the cytoarchitectonic atlas of Juelich (Eickhoff et al.,
2005)), it is possible that at least part of M1 is included
in the ROI. Nevertheless, the posterior boundary of the
mask used for these parcellation studies (MNI Y=-22),
introduced by Johansen-Berg et al. (2004) and used
in several SMA/pre-SMA parcellation studies, localises
the boundary between medial M1 and medial SMA as
described in the probabilistic cytoarchitectonic atlas of
Juelich (Eickhoff et al., 2005).

With our method we were not able to find well de-
fined clusters covering the areas of SMA and pre-SMA,
but rather a continuum of similarity among connectivity
profiles when moving from the posterior to the anterior
premotor area. Like in Nanetti et al. (2009) a substan-
tial variability among the connectivity patterns of the
subjects was found (cf. Fig. 6).

Subjects 1, 3, 6, 8, 11, 12 and 13 showed the pres-
ence of two density peaks. These divide the premotor
cortex into two sagittal regions that could correspond to
SMA and pre-SMA. The other datasets (subjects 2, 4,
5, 7, 9, and 10) showed the presence of three density
peaks. Our speculative explanation is that these peaks,
mapped sagitally along the premotor cortex, could re-
fer to the presence of two groups of voxels with simi-
lar connectivity profiles (possibly SMA/pre-SMA) and
a third region (a transitional area) where connectivity
profiles are equally similar to those in SMA and to those
in pre-SMA (cf. Fig. 1B, Fig. 6). This solution would
be consistent with the results proposed in Nanetti et al.
(2009), which indicate both a substantial inter-subject
variability in the location of the border between SMA
and pre-SMA, and the existence of a gradual change in
connectivity between the posterior and the anterior re-
gions of the ROI.

Another possible explanation is that either SMA or
pre-SMA can be divided into two smaller regions with
different connectivity patterns. Also, as proposed in An-
wander et al. (2007), this could be due to the inclusion
of M1 in the ROI.

A comparative study of structural and functional data
(i.e., functional localization of M1, SMA, and pre-
SMA) in each subject would be an asset for the under-
standing of the relation between functional regions and
similarity in connectivity patterns.
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A. Supplementary Material

Figure A.1: Data of subjects 6, 7, 8, 9. Spectral reordering of the
CCM(A). Comparison between k-means clustering with 2 and 3 clus-
ters on CCM (B) and on graph layout (C); clusters are indicated by
colours and mapped along the rows of the CCM. Graph layout (D).
Iso-density lines (E) of the continuous density function (G). Images
D, E, G are colour-coded according to the colour map F. MNI map-
ping of densities and k-means results (k=2 and k=3) on graph layout
(H).

Figure A.2: Data of subjects 10, 11, 12, 13. Spectral reordering of
the CCM(A). Comparison between k-means clustering with 2 and 3
clusters on CCM (B) and on graph layout (C); clusters are indicated
by colours and mapped along the rows of the CCM. Graph layout (D).
Iso-density lines (E) of the continuous density function (G). Images D,
E, G are colour-coded according to the colour map F. MNI mapping
of densities and k-means results (k=2 and k=3) on graph layout(H).
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Figure A.3: Visual comparison between clustering of graph nodes and
clustering of CCM for both 2 and 3 clusters for subjects 1-13.For each
subject the four subfigures show: clustering of graph nodes for 2 clus-
ters (top left); clustering of CCM for 2 clusters (top right); clustering
of graph nodes for 3 clusters (bottom left); clustering of CCM for 3
clusters (bottom right). The green line represents Y(MNI)=0. See also
Table 1 of the paper and Table A.1 below for quantitative results.

Figure A.4: Probabilistic tracking results seeded in k-means clusters
found with k=2.

Figure A.5: Probabilistic tracking results seeded in k-means clusters
found with k=3.
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Table A.1: Overlap of k-means clustering results performed onthe
entries of the CCM and on the positions of the nodes in the graph
layout, for subjects 6-13.

subj.6 subj.7 subj.8 subj.9 subj.10subj.11subj.12subj.13
2
clus-
ters

96.1%91.4%98.3%93.9%87.4%95.7%96.1%96.3%

3
clus-
ters

77.5%87.1%74.7%71.9%85.3%71.9%83.7%69.3%
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