
Journal of Mathematical Imaging and Vision 22: 143–157, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Morphological Pyramids in Multiresolution MIP Rendering of Large
Volume Data: Survey and New Results

JOS B.T.M. ROERDINK
Institute for Mathematics and Computing Science, University of Groningen, P.O. Box 800,

9700 AV Groningen, The Netherlands
roe@cs.rug.nl

Abstract. We survey and extend nonlinear signal decompositions based on morphological pyramids, and their
application to multiresolution maximum intensity projection (MIP) volume rendering with progressive refinement
and perfect reconstruction. The structure of the resulting multiresolution rendering algorithm is very similar to
wavelet splatting. Several existing classes of pyramids are discussed, and their limitations indicated. To enhance
the approximation quality of visualizations from reduced data (higher levels of the pyramid), two approaches are
explored. First, a new class of morphological pyramids, involving connectivity enhancing operators, is considered.
In the pyramidal analysis phase, a conditional dilation operator is used, with a given number n of iterations. The
corresponding pyramids for n = 0 and n = 1 are known as the adjunction pyramid and Sun-Maragos pyramid,
respectively. We show that the approximation quality when rendering from higher levels of the pyramid does increase
as a function of the number of iterations n of the conditional dilation operator, but the improvement for n > 1 is
limited. The second new approach, called streaming MIP-splatting, again starts from the adjunction pyramid. The
new element is that detail coefficients of all levels are considered simultaneously and are resorted with respect to
decreasing magnitude of a suitable error measure. All resorted coefficients are projected successively, until a desired
accuracy of the resulting MIP image is obtained. We show that this method outperforms the previous methods based
on morphological pyramids, both with respect to image quality with a fixed amount of detail data, and in terms of
flexibility of controlling approximation error or computation time.

Keywords: multiresolution signal decomposition, volume rendering, maximum intensity projection, progressive
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1. Introduction

Multiresolution signal decomposition schemes have a
long history in image processing and analysis. Such
schemes can be useful for noise suppression, more ro-
bust detection of signal features, and improved com-
putational efficiency by analyzing a signal in a coarse-
to-fine fashion. Well-known are linear multiresolution
schemes, such as the Laplacian pyramid [1] or decom-
position methods based on wavelets [9]. More recent
are nonlinear multiresolution signal decompositions
based on morphological pyramids. A detailed study
of such pyramids was made by Goutsias and Heij-
mans [4, 6]. Morphological pyramids systematically

split the input signal into approximation and detail sig-
nals by repeatedly applying a pyramidal analysis op-
erator which involves morphological filtering followed
by downsampling. As the level of the pyramid is in-
creased, spatial features of increasing size are retained.
The original signal can be recovered from the pyramid
decomposition by repeated application of a pyramid
synthesis operator. An important element of the mor-
phological pyramid schemes is the so-called pyramid
condition, which states that synthesis of a signal fol-
lowed by analysis returns the original signal [4].

In this paper we survey and extend the application
of morphological pyramids to the problem of mul-
tiresolution visualization of large volume data sets.
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Volume visualization, or volume rendering, is a tech-
nique which produces two-dimensional images of
three-dimensional data from different viewpoints, us-
ing advanced computer graphics techniques such as
illumination, shading and colour [3]. Expecially when
interactive rendering rates are required (i.e., there must
be a fast response of the rendering system to actions
of the user), this is a very demanding problem when
the sizes of the volume data are large. For this rea-
son, a multiresolution approach is an obvious choice,
allowing to quickly visualize reduced versions of the
data which can be progressively refined if needed. In
so-called preview mode, when a user explores the data
from different viewpoints, only approximation data on
the highest decomposition level L are used, so that the
amount of data, and therefore the rendering time, is
roughly reduced by a factor of 8L . This leads to im-
proved user interaction. A second reason for applying
morphological methods in volume rendering is the fea-
ture extraction capability of morphological operators,
which can be incorporated in the volume rendering
process.

A volume rendering method which is widely used
in medical imaging is maximum intensity projection
(MIP). Here one generates, for each pixel of the view
plane, a ray through the data parallel to the line of sight
(i.e., perpendicular to the view plane), and assigns the
maximum data value encountered along this ray to the
pixel. Because of its computational simplicity, MIP is
widely used in the display of magnetic resonance an-
giography (MRA) and ultrasound data. Since the MIP
transform is nonlinear, the standard linear multiresolu-
tion models based on wavelets [5, 7, 11, 16, 20, 21] are
not applicable. Instead, morphological pyramids can
be used for multiresolution rendering. Even though
the morphological operators are nonlinear and non-
invertible, the pyramid scheme does allow perfect re-
construction as well as progressive refinement, just as
in the linear case. Pyramids where the synthesis op-
erator is a dilation are particularly appropriate. For
brevity, we will refer to this class of pyramids as di-
lation pyramids. These pyramids have the advantage
that it is not necessary to first reconstruct the 3-D
data to full resolution before computing the MIP op-
eration. Instead, the maxima along the line of sight
can be first computed from the data on a coarse level
(where the size of the data is reduced), after which a fast
2-D morphological synthesis operator is used to per-
form reconstruction of the projection image to full grid
resolution.

We have recently investigated two cases of dilation
pyramids for MIP volume rendering. The first is the ad-
junction pyramid [12,14], where the pyramidal analysis
and synthesis operators are composed of morphologi-
cal erosion and dilation, combined with dyadic down-
sampling for analysis and dyadic upsampling for syn-
thesis [4]. When applied to MIP volume rendering, we
found that too few small features present in the data
were retained in high levels of the pyramid. To put it
differently, the detail signals are ‘too large’. To im-
prove the effectiveness of feature extraction, we stud-
ied in [13] an alternative pyramid scheme in which a
morphological opening instead of an erosion is used for
pyramidal analysis (the pyramidal synthesis operator is
still a dilation). This pyramid has been studied in mor-
phological image processing by Sun and Maragos [18],
see also [4], and is referred to as the Sun-Maragos pyra-
mid below. When applying the Sun-Maragos pyramid
to MIP volume rendering, the approximation quality
improved, essentially because erosions are replaced by
openings, which keep image features to a larger ex-
tent, so that the chance that (parts of) these features
survive the downsampling step is larger. Nevertheless,
small structures such as veins and arteries in angio-
graphic data become disconnected during the pyramid
decomposition process. This suggests that connectivity
preserving operators might do even better.

The goal of this paper is to improve upon the approx-
imation quality of the morphological pyramids men-
tioned above along two distinct routes. First, we study
the application of a new class of dilation pyramids in
which the pyramidal synthesis operator ψ↓ = δA σ ↓

is fixed to be a dilation δA by a structuring element A
(preceded by an upsampling operator σ ↓), but where
the pyramid analysis operator has the form ψ↑ = σ ↑ η

where σ ↑ denotes downsampling and η may be cho-
sen in different ways. This class was recently intro-
duced in [15] for analyzing 2-D images, and in this
paper we study its usefulness to rendering of volume
data. Choosing the operator η to be an erosion εA, fol-
lowed by an arbitrary number of conditional dilations
with structuring element A, also leads to a valid syn-
thesis operator, that is, the pair (ψ↑, ψ↓) still satisfies
the pyramid condition. We refer to these pyramids as
conditional dilation pyramids. Note that this class also
contains the opening by reconstruction, which is the
connected filter obtained by iterating the conditional
dilations until idempotence [17]. We present experi-
ments to show that indeed slightly more details can
be retained in high pyramid levels when the iteration
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number n of the conditional dilation increases. How-
ever, the improvement is quite limited, and comes
at the expense of increased computation times dur-
ing the analysis phase of the pyramid, especially for
large n.

The second new approach, called streaming MIP-
splatting after the analogous approach in the linear case
of wavelet splatting [8], again starts from the adjunc-
tion pyramid. The difference with the original algo-
rithm [12,14] is that detail coefficients of all levels are
considered simultaneously and are resorted with re-
spect to decreasing magnitude of a suitable error mea-
sure. Detail coefficients in the adjunction pyramid as
defined in [12,14] are not ‘small’ in the usual sense, be-
cause they are defined by the application of an unusual
difference operator. Therefore, in our new approach we
also consider the detail coefficients one would obtain
by ordinary subtraction, sort these by decreasing mag-
nitude, and after that replace them again by the origi-
nal detail coefficients at the corresponding location and
scale. In the rendering phase, all resorted coefficients
are projected successively, until a desired accuracy of
the resulting MIP image is obtained. We show that this
method outperforms the previous methods based on
morphological pyramids, both with respect to image
quality with a fixed amount of detail data, and in terms
of flexibility of controlling approximation error or com-
puting time.

The remainder of this paper is organized as follows.
Section 2 supplies a few preliminaries on morpho-
logical pyramids, and gives the definition of adjunc-
tion, Sun-Maragos and conditional dilation pyramids.
In Section 3 we first recall the MIP algorithm based
on adjunction pyramids, and then introduce the new
multiresolution MIP algorithm based on conditional
dilation pyramids. An evaluation of the approximation
quality of the different types of conditional dilation
pyramids is presented. In Section 4, the streaming MIP-
splatting algorithm is introduced, and we present ex-
perimental results which show its superior performance
when compared to the previous approaches. Section 5
contains a summary and discussion.

2. Preliminaries

Consider signals in a d-dimensional signal space V0,
which is assumed to be the set of functions on (a subset
of) the discrete grid Z

d , where d = 2 or d = 3 (image
and volume data), that take values in a finite set of
nonnegative integers.

The general structure of linear as well as nonlin-
ear pyramids is as follows. From an initial signal f0,
approximations { f j } of increasingly reduced size are
computed by a decomposition or analysis operator ψ↑:

f j = ψ↑ ( f j−1), j = 1, 2, . . . L .

Here j is called the level of the decomposition.
The set { f0, f1, . . . , fL} is referred to as an approx-

imation pyramid. In the case of a Gaussian pyramid,
the analysis operator consists of Gaussian low-pass fil-
tering, followed by downsampling [1]. An approxima-
tion error associated to f j+1 may be defined by tak-
ing the difference between f j and an expanded version
of f j+1:

d j = f j −̇ ψ↓ ( f j+1). (1)

Here −̇ is a generalized subtraction operator. The set
d0, d1, . . . , dL−1, fL is referred to as a detail pyramid.
Assuming there exists an associated generalized addi-
tion operator +̇ such that, for all j ,

f̂ j +̇ ( f j −̇ f̂ j ) = f j , where f̂ j = ψ↓ ( ψ↑ ( f j )),

we have perfect reconstruction, that is, f0 can be ex-
actly reconstructed by the recursion

f j = ψ↓ ( f j+1)+̇d j , j = L − 1, . . . , 0. (2)

For the linear case, the detail pyramid is called a
Laplacian pyramid, and the synthesis operation con-
sists of upsampling, followed by Gaussian low-pass
filtering [1]. In the case of morphological pyramids,
the analysis and synthesis operators involve morpho-
logical filtering instead of Gaussian filtering [4, 6]. It
should be noted that, in principle, the analysis and syn-
thesis operators may depend on level, but we assume
them to be the same for all levels throughout this paper.

To guarantee that information lost during analysis
can be recovered in the synthesis phase in a non-
redundant way, one needs the so-called pyramid con-
dition [4]:

ψ↑ (ψ↓ ( f )) = f for all f. (3)

By approximations of f we mean signals in V0 of
the same size as the initial signal f which are recon-
structed from higher levels of the pyramid by omitting
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some of the detail signals. More precisely, a level- j
approximation f̂ (0)

j of f is defined as

f̂ (0)
j = ψ↓ j ( f j ), (4)

where ψ↓ j means repeating the ψ↓ operator j times.
The generalized addition and subtraction operators

+̇ and −̇ in (1) and (2) are usually taken as ordinary
addition and subtraction. For the case of the adjunction
pyramid, another choice is possible, see below.

2.1. Dilation Pyramids

We now consider the general class of pyramids whose
analysis/synthesis operator pairs have the form

ψ↑( f ) = σ ↑ (η ( f )), (5)

ψ↓( f ) = δA (σ ↓ ( f )), (6)

where δA( f ) is the flat1 grey-value dilation with struc-
turing element A, and σ ↑ and σ ↓ denote dyadic down-
sampling and upsampling by a factor of 2 in each spatial
dimension:

σ ↑( f )(n) = f (2n)

σ ↓( f )(m) =
{

f (n), if m = 2n

0, otherwise

Here the arrows indicate transformations to higher
(coarser) or lower (finer) levels of the pyramid.

The (not yet specified) operator η, and the structuring
element A, are assumed to satisfy certain conditions, in
order that the pyramid condition (3) is satisfied. These
conditions will be considered next, when we present
several types of dilation pyramids which differ only in
the form of the analysis operator η.

2.1.1. Adjunction Pyramid. In this case, η( f ) =
εA( f ), i.e. the erosion with structuring element A. As
shown in [4], the pyramid condition (3) is satisfied if
there exists an a ∈ A such that the translates of a over
an even number of grid steps are never contained in the
structuring element A. Introducing the notation

Z
d [n] = {k ∈ Z

d | k − n ∈ 2Z
d}

A[n] = A ∩ Z
d [n]

the pyramid condition can be expressed as

A[a] = {a} for some a ∈ A. (7)

In an adjunction pyramid, the product ψ
↓
Aψ

↑
A is an

opening, i.e. an operator which is increasing, anti-
extensive and idempotent. The anti-extensivity prop-
erty means that ψ

↓
A ψ

↑
A ( f ) ≤ f . Therefore, we can

define the generalized addition and subtraction opera-
tors by (cf. [4]):

t+̇s = t ∨ s = max(t, s),

t −̇ s =
{

t, if t > s

0, if t = s
(8)

where 0 is the smallest image or voxel value possible.
As a consequence, the detail signals are nonnegative:

d j (n) = f j (n) −̇ ψ
↓
A( f j+1)(n)

= f j (n) −̇ ψ
↓
A ψ

↑
A ( f j )(n) ≥ 0. (9)

Note that the definition of −̇ in (8) implies that the
detail signal d j (n) equals f j (n), except at points n for
which f j (n) = ψ

↓
A ψ

↑
A ( f j )(n), where d j (n) = 0. So,

detail signals are not ‘small’ in regions where the struc-
turing element does fit approximately, but not exactly,
to the data.

For an adjunction pyramid with the generalized addi-
tion being defined as the maximum operation (see (8)),
the reconstruction takes a special form [12,14]. Making
use of the fact that ψ

↓
A is a dilation, hence commutes

with the maximum operation, we derive from (2) and
(8):

f = ψ
↓
A

L ( fL ) ∨
L−1∨
k=0

ψ
↓
A

k(dk), (10)

where L is the decomposition depth, and ψ
↓
A

k denotes
k-fold composition of ψ

↓
A with itself. This representa-

tion is quite similar to the (linear) Laplacian pyramid
representation [1]. The main difference is that sums
have been replaced by maxima.

Remark 1. One may also use ordinary addition and
subtraction to define the detail signals in an adjunction
pyramid. However, unless indicated otherwise, by ‘ad-
junction pyramid’ we will always mean the adjunction
pyramid with the special addition and subtraction given
by (8).

2.1.2. Sun-Maragos Pyramids. This pyramid has the
analysis operator η( f ) = αA( f ), where αA = δA εA
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is the opening by structuring element A. Under the
condition that

A[0] = {0}, (11)

where 0 is the origin of Z
d , the pyramid condition (3)

is satisfied (see [4, Proposition 5.9]), that is,

ψ↑ ψ↓ = σ ↑ δA εA δAσ ↓ = id,

where id denotes the identity operator. Since (εA, δA) is
an adjunction, we have that δA εA δA = δA. Therefore,
when A satisfies (11), the previous formula implies that

σ ↑ δA σ ↓ = id. (12)

2.1.3. Trivial Pyramid. This pyramid has the analy-
sis operator η( f ) = f , i.e. the identity operator. Again,
assuming that (11) holds, the pyramid condition is sat-
isfied, since ψ↑ ψ↓ = σ ↑ δAσ ↓ = id, where (12) was
used. In this type of pyramid, analysis consists only of
downsampling, which is why we refer to it as the triv-
ial pyramid (compare to the lazy wavelet in the lifting
scheme [19]).

2.1.4. Conditional Dilation Pyramid. This pyramid
has the analysis operator η( f ) = R(n)

A ( f ), where the se-
quence of operators R(n)

A for n = 0, 1, 2, . . . is defined
by the following recursion:

R(0)
A ( f ) = εA( f ) (13)

R(n)
A ( f ) = f ∧ δA

(
R(n−1)

A ( f )
)
, n = 1, 2, . . . . (14)

The operator in (14) is a conditional dilation, that is,
after each dilation step the infimum with the original
signal f is taken. Therefore, R(∞)

A ( f ) is the opening by
reconstruction of f from its erosion εA( f ). In practice,
f is defined on a finite subset D ⊆ Z

d and the recursion
terminates after a finite number of steps.

By observing that R(0)
A ( f ) is the erosion εA of f and

R(1)
A ( f ) is the opening αA = δA εA of f , we see that

the cases n = 0 and n = 1 correspond to the adjunc-
tion pyramid and Sun-Maragos pyramid, respectively.
Again assuming the structuring element A to satisfy
condition (11), we showed in [15] that the pyramid con-
dition is satisfied. To make this paper self-contained,
the proof is reproduced in the Appendix.

3. Multiresolution MIP Volume Rendering

The basic idea of multiresolution MIP is to use a pyra-
mid representation in which it is possible to interchange
the MIP operator (computing maxima along the line
of sight) with the pyramidal synthesis operator. Then
the MIP operation can be performed on a coarse level,
where the size of the data is reduced, before performing
a fast 2-D morphological synthesis operation to recon-
struct the projection image to full grid resolution, thus
leading to a computationally efficient algorithm. For
the dilation pyramids defined above, such commutativ-
ity of MIP and pyramid synthesis holds because both
the upsampling operation and the dilation δA commute
with the maximum operation [12, 14].

In the following, the MIP operation is denoted by
MΘ, where the viewing coordinates are denoted by a
vector Θ = (θ, φ, α). Here θ and φ are two angles
defining the projection direction vector which is per-
pendicular to the view plane, and the angle α gives
the orientation of the view plane with respect to this
projection direction, cf. Fig. 1. Successive approxi-
mations of the MIP of f are denoted by M̂( j)

Θ ( f ),
j = L , L − 1, . . . , 0, where L is the decomposition
depth. These approximations all have the same size in
the image plane, because they are reconstructed from
higher levels in the pyramid to the size of the MIP of f .

For a discrete volume data set f , the MIP operator
MΘ projects all voxels on the view plane, and takes
the maximum of all voxel values projecting to the same
pixel. For non-axial projections, where the viewing co-
ordinate system is not aligned with the Cartesian coor-
dinate system in which the data are defined, additional
interpolation issues arise. In order to emphasize the
basic structure of the algorithm, these issues are not
considered in what follows, see [14] for more details.

Figure 1. Data cube and view plane defined by unit vectors u, v
orthogonal to the viewing vector.
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3.1. The Multiresolution MIP Algorithm
for Dilation Pyramids

The multiresolution MIP algorithm for dilation pyra-
mids defined by (5)–(6) can be summarized as follows.

– Preprocessing. Compute an L-level 3-D morpholog-
ical pyramid with structuring element A of the vol-
ume data f , resulting in a sequence of volumes d0,
d1, . . ., dL−1, fL (detail pyramid), or in a sequence of
volumes f0, f1, . . ., fL−1, fL (approximation pyra-
mid). Here fL is a signal at the coarsest level.

– Actual MIP volume rendering. For a given orienta-
tion Θ of the viewing coordinate system, do:

1. Compute a low resolution approximation
M̂(L)

Θ ( f ) by first applying the voxel projection
operator MΘ to fL , followed by the 2-D syn-
thesis operator ψ

↓
Ã

L :

M̂(L)
Θ ( f ) = ψ

↓
Ã

L (MΘ( fL )). (15)

Here Ã = MΘ(A) is a 2-D structuring element,
which is obtained as the projection of the 3-D
structuring element A on the view plane.

2. Refine the image progressively.

• Detail pyramid. For each level j < L , com-
pute an approximation M̂( j)

Θ ( f ) on level j as
follows. Reconstruct f j+1 to level j , and add
the result to d j to obtain f j . Then apply the
MIP operator MΘ, and finally perform a 2-D
reconstruction operator j times:

f j = ψ
↓
A( f j+1) +̇ d j (16)

M̂( j)
Θ ( f ) = ψ

↓
Ã

j (MΘ( f j )) (17)

• Approximation pyramid. Since f j is available,
directly apply formula (17) above.

3. The recursion terminates with M̂(0)
Θ ( f ), which

equals the MIP MΘ( f ) of the original data f .

3.2. The Multiresolution MIP Algorithm
for Adjunction Pyramids

For the special case of the adjunction pyramid with the
generalized addition and subtraction defined by (8), one
may directly project all detail signals and refine in the
image plane, as follows from (10). This leads to the
following algorithm [12, 14].

– Preprocessing. Compute an L-level 3-D morpholog-
ical adjunction pyramid with structuring element A
of the volume data, resulting in a sequence d0, d1,
. . ., dL−1, fL , where {d j } are detail signals and fL is
a signal at the coarsest level.

– Actual MIP volume rendering. For a given orienta-
tion Θ of the viewing coordinate system, do:

1. Compute a low resolution approximation
M̂(L)

Θ ( f ) by first applying the voxel projection op-
erator MΘ to fL , followed by the 2-D synthesis
operator ψ

↓
Ã

L :

M̂(L)
Θ ( f ) = ψ

↓
Ã

L (MΘ( fL )). (18)

Here Ã = MΘ(A) is a 2-D structuring element,
which is obtained as the projection of the 3-D
structuring element A on the view plane.

2. Refine the image progressively by taking the de-
tail signals dk , k = L − 1, . . . , 0 into account.
From a level- j approximation M̂( j)

Θ ( f ), compute
an approximation M̂( j−1)

Θ ( f ) on level j − 1 by
projecting d j−1, applying the 2-D pyramid syn-
thesis operator ψ

↓
Ã

j−1 to the projection, and tak-
ing the maximum of the image so obtained with
the previous approximation:

M̂( j−1)
Θ ( f ) = ψ

↓
Ã

j−1(MΘ(d j−1)) ∨ M̂( j)
Θ ( f ).

(19)

3. The recursion terminates with M̂(0)
Θ ( f ), which

equals the MIP MΘ( f ) of the original data f .

3.3. Remarks on Implementation and Efficiency

For MIP rendering, the time complexity is O(N 3) for
a volume data set of size N 3, since for each of the N 2

pixels in the image plane, the maximum of N voxel val-
ues has to be computed. Various acceleration schemes
exist, but these do not change the complexity [2,10,22].
For multiresolution MIP, there is first the preprocess-
ing step, only to be executed once, in which the pyra-
mid is constructed. The analysis operator involves 3-D
erosions which are linear in the number of voxels. A
complete reconstruction is also linear in the number of
voxels. In preview mode, rendering uses only the high-
est decomposition level L , and therefore the rendering
time is reduced by a factor of 8L .

Another issue is memory usage. For a volume data
set of size N 3, the size of an L-level analysis pyramid
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is given by

N 3

(
1 + 1

8
+ · · · +

(
1

8

)L)

= 8

7
N 3(1 − (1/8)L+1) ≤ 8

7
N 3. (20)

i.e., at most 14% more memory is needed than for the
input data. In the experiments of this and previous pa-
pers [12–14], the MIP projections MΘ have been im-
plemented by means of the object order voxel projec-
tion method of Mroz et al. [10]. In this method, one
loops through the volume, projects all voxels to the
image plane with each voxel contributing to exactly
one pixel, and accumulates values at pixel locations
by maximum computation. The result is independent
of the order in which the voxels are visited. An effi-
cient volume data storage scheme is used, comprising
histogram-based sorting of ‘interesting’ voxels accord-
ing to grey value, and storing these in a value-sorted ar-
ray of voxel positions. An additional array contains the
cumulative histogram values. In our implementation,
interesting voxels are simply defined as those with a
nonzero grey value (zero voxel values never contribute
to pixel maxima), which may lead to a large reduction
in the amount of voxels to be processed.

When performing progressive refinement with a de-
tail pyramid, the use of value-sorted arrays presents a
problem. During synthesis, one must first do a one-level
reconstruction of f j from f j+1 which involves a 3-D
dilation (see (16)). This dilation cannot be efficiently
computed on data stored as value-sorted arrays. How-
ever, because of the large amount of zero voxels, the
use of value-sorted arrays is more or less mandatory,
since in practice it may save up to 95% of memory
as compared to 3-D arrays. Therefore, it is most ef-
ficient to perform progressive refinement from an ap-
proximation pyramid (stored as as value-sorted arrays),
instead of a detail pyramid. As long as no thresholding
of detail data is used, storing the approximation data
f0, f1, . . . , fL−1, fL does require memory storage of
the same order of magnitude as storing the detail and
coarsest approximation data d0, d1, . . ., dL−1, fL .

The algorithm for the detail pyramid also applies
to adjunction pyramids where detail signals and recon-
structions are computed by using ordinary addition and
subtraction. However, when the special operators of
(8) are used, one may directly project all detail signals
and refine in the image plane, see Section 3.2. This
approach is computationally more efficient than that
given in the general algorithm of Section 3.1, and will

be used in Section 4. However, as far as approxima-
tion quality is concerned, there is no difference. More
details and experimental results on computation time
and memory usage for various data sets can be found
in [12–14].

3.4. Experimental Results

We performed multiresolution MIP rendering using a
2-level decomposition with a 2 × 2 × 2 structuring
element. Larger structuring element sizes remove too
much of the original data in higher levels of the pyra-
mid. In the case of conditional dilation pyramids, a
3 × 3 × 3 structuring element was used for the condi-
tional dilations, in order to recover as much as possible
of the original data in all directions.

Several types of pyramid are compared: the trivial,
adjunction, and conditional dilation pyramid for sev-
eral values of the iteration parameter n. Three data sets
were used,2 all of size 256 × 256 × 256: aneurism,
an X-ray scan of the arteries (with aneurism) of the
right half of a human head (1% nonzero voxels); neu-
ron, a confocal microscopy data set of a neuron (1.8%
nonzero voxels), and bonsai, CT data of a bonsai tree
(16.5% nonzero voxels), see Fig. 2. The sampling dis-
tance in the view plane was taken equal to the sampling
distance of the original volume data. Only axial pro-
jection was used. For the case of the adjunction and
Sun-Maragos pyramids, more details on sizes of ap-
proximation and detail data and behaviour of render-
ing times as a function of pyramid level can be found
in [12, 14].

In Table 1 we show the relative L1-error E ( j) between
a level- j approximation image M̂( j)

Θ ( j = 1, 2) and the

Table 1. Approximation error E ( j) for level j = 1, 2 for the trivial
pyramid and conditional dilation pyramids with various values of
the pyramid parameter n. Cases n = 0 and n = 1 correspond to the
adjunction pyramid and Sun-Maragos pyramid, respectively.

Aneurism Bonsai Neuron

Pyramid type E (2) E (1) E (2) E (1) E (2) E (1)

n = 0 0.859 0.532 0.499 0.225 0.938 0.676

n = 1 0.639 0.366 0.282 0.125 0.851 0.547

n = 5 0.584 0.328 0.244 0.113 0.824 0.520

n = 15 0.546 0.311 0.230 0.109 0.804 0.504

n = 25 0.534 0.305 0.228 0.108 0.799 0.499

Trivial pyramid 0.523 0.284 0.207 0.098 0.808 0.478
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Figure 2. MIP rendering at full size of original data sets used in the
experiments. Top: aneurism; middle: neuron; bottom: bonsai.

full image M̂(0)
Θ :

E ( j) = ∥∥M̂(0)
Θ − M̂( j)

Θ ( f )
∥∥/∥∥M̂(0)

Θ

∥∥. (21)

Figures 3–5 show successive approximations, for all
pyramid types considered. To evaluate the results, we

Figure 3. Multiresolution MIP reconstruction from a 2-level mor-
phological pyramid, aneurism data. Left column: level-2 reconstruc-
tion; right column: level-1 reconstruction. First row: adjunction pyra-
mid; second row: Sun-Maragos pyramid; third row: conditional di-
lation pyramid with n = 25; fourth row: trivial pyramid.

take two criteria into account. First, the size of the
approximation error; second, the extent to which the
noise present in the data is reduced. From the table,
it is observed that conditional dilation pyramids con-
siderably reduce the approximation error as compared
to adjunction pyramids. For iteration numbers higher
than 15, not much further improvement in the error
is obtained. From visual inspection of the figures, it
is clear that in higher levels of the adjunction pyra-
mid small details are quickly removed. The conditional
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Figure 4. Multiresolution MIP reconstruction from a 2-level mor-
phological pyramid, neuron data. Left column: level-2 reconstruc-
tion; right column: level-1 reconstruction. First row: adjunction pyra-
mid; second row: Sun-Maragos pyramid; third row: conditional di-
lation pyramid with n = 25; fourth row: trivial pyramid.

dilation pyramid preserves small details much better,
especially for n ≥ 5. The improvement for higher it-
eration numbers of the conditional dilation pyramid is
especially noticeable for the aneurism data set, which
contains many small elongated veins. Note that this ac-
curacy improvement is possible with rendering times
and memory usage comparable to those of adjunction
pyramids. Noise reduction is significant in level-2 and

Figure 5. Multiresolution MIP reconstruction from a 2-level mor-
phological pyramid, bonsai data. Left column: level-2 reconstruc-
tion; right column: level-1 reconstruction. First row: adjunction pyra-
mid; second row: Sun-Maragos pyramid; third row: conditional di-
lation pyramid with n = 25; fourth row: trivial pyramid.

level-1 approximations of the adjunction and condi-
tional dilation pyramids (compare to the full-size MIP
in Fig. 2). The trivial pyramid has the smallest errors,
which may seem obvious since it retains most of the in-
put data. However, it does not reduce the noise. In fact,
for volume data with many isolated noise voxels which
survive the downsampling step in the analysis phase,
the error may become large, since in the synthesis phase
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these voxels will be expanded by the structuring ele-
ment. It would of course be possible to carry out a noise
reduction step of the original data, before applying the
morphological pyramids. But this would still leave us
with a limit on the accuracy, since one can never do bet-
ter than a level-1 approximation (unless one does a full
reconstruction). What is really needed is a method with
continuous error control. Such a method is presented
in the next section.

4. Streaming MIP-Splatting

A major problem of the approaches presented above
is that the approximation quality is completely deter-
mined by the discrete levels of the pyramid. For ex-
ample, in a pyramid with L = 2 levels, the level-2
approximation may be too coarse, and the level-1 ap-
proximation too fine for meeting a certain upper bound
on computation time. Therefore, we develop in this sec-
tion a new approach, which allows to a priori fix the de-
sired approximation error and/or computation time in
a more or less continuous way. This approach is called
streaming MIP-splatting, after the analogous approach
in the linear case of wavelet splatting [8].

Our approach is to consider detail coefficients of all
levels simultaneously, and order these coefficients in
the same way as an auxiliary set of detail coefficients,
which are sorted with respect to decreasing magnitude.
After the resorting process, these auxiliary coefficients
are no longer used.

4.1. Construction of the Pyramid

Again we start from the adjunction pyramid, cf.
Section 2.1.1, with the generalized addition being de-
fined as the maximum operation, and the generalized
subtraction by (8). Recall that in this case the following
multiresolution representation holds:

f = ψ
↓
A

L ( fL ) ∨
L−1∨
k=0

ψ
↓
A

k(dk). (22)

Note that in volume rendering, fL and dk are 3-D data
arrays.

As discussed in Section 3.3, the representation (22)
allows one to project the elements of the approximation
and detail coefficients in any order on the image plane.
It is not necessary to do this projection level by level, as
we have done so far. The novel idea then is to join the
entries of the 3-D detail coefficient arrays of all levels

k = 0, 1, . . . , L −1 into a one-dimensional coefficient
array, and sort these detail coefficients with respect to
decreasing magnitude. Then, in the rendering phase,
one would start projecting all detail coefficients, largest
first, until a certain desired accuracy has been obtained.

Recall that in order for (22) to hold, the detail signals
should be defined by:

d j (n) = f j (n) −̇ ψ
↓
A( f j+1)(n)

= f j (n) −̇ ψ
↓
A ψ

↑
A ( f j )(n) ≥ 0. (23)

The problem we have to overcome is that the detail
coefficients in the arrays {dk} are not small in regions
where the structuring element does fit approximately,
but not exactly, to the data, cf. Section 2.1.1.

To address this problem, we note that instead of the
special subtraction −̇, we can use ordinary subtraction
to define a related set of detail signals, which we denote
by d̄ j :

d̄ j (n) = f j (n) − ψ
↓
A( f j+1)(n)

= f j (n) − ψ
↓
A ψ

↑
A ( f j )(n) ≥ 0. (24)

The analysis and synthesis operators ψ
↓
A and ψ

↑
A are not

changed. This results in a pyramid d̄0, d̄1, . . . , d̄ L−1,
fL . Note that the approximation signal fL is indepen-
dent of the choice of the difference operator. When the
initial signal f is a 3-D array of size S = N1×N2×N3,
then d j and d̄ j are 3-D arrays of size 8− j S.

In contrast to the original detail signals, the ele-
ments of the auxiliary detail signals d̄0, d̄1, . . . , d̄ L−1

are small when the structuring element approximately
fits the data. We sort these elements with respect to
magnitude and put them into one large 1-D array D̄
with elements D̄1, . . . , D̄M , where M is bounded by
the sum of the sizes of the detail arrays {d̄ j }, see (20).
In practice, we will delete any zero entries during the
sorting process, so that the actual value of M is much
smaller. Note that an element of d̄ j is zero exactly when
this is the case for the corresponding element of d j .

After the sorting step, the entries of the array D̄ are
no longer ordered by level. From the initial dimen-
sions N1, N2, N3, and the index k of each element
D̄k , the original level j and 3-D position (x, y, z) of
the corresponding detail coefficient can be easily re-
constructed. That is, there is a 1-1 mapping π , such
that k = π (x, y, z, j) and (x, y, z, j) = π−1(k), and
D̄k = d̄ j (x, y, z).

As a final step, we replace the value of each entry of
the array D̄ by the corresponding entry of the original
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detail signals:

D̄k ← d j (x, y, z) where (x, y, z, j) = π−1(k). (25)

4.2. Rendering the Pyramid

As a result of the construction phase, we have obtained
an ordered list of detail coefficients d j (x, y, z), which
can be used to compute the MIP of the input data. By
construction, the order is such that each successive co-
efficient, when taken into account, maximally reduces
the L1-error between the partial reconstruction and the
original data.

In the MIP process, all sorted coefficients are pro-
jected successively, until a desired accuracy of the re-
sulting MIP image is obtained. When a coefficient k is
projected, its value val = D̄k is compared to the cur-
rent value curval at the point of projection in the image
plane, and curval is overwritten when curval < val. In
addition, a local dilation of size j has to be carried out
for coefficients with level j > 0, directly after projec-
tion. The reason is that, because of the resorting, detail
coefficients with varying scale index j are successively
projected. So we cannot do the dilation globally, as
in the case of the level-by-level projection, where the
scale index is constant per level. As before, let Ã de-
note the projection of the 3-D structuring element A
on the view plane, and let j · Ã denote this structuring
element scaled by a factor of j . Then, when the level
of the coefficient is j , all pixels in the neighborhood
j · Ã around the point of projection are overwritten by
val when their current value is smaller than val (this
formulation applies for flat structuring elements).

When all entries of the sorted array D̄ are processed,
the exact MIP of the input volume is obtained. To com-
pute approximations, one may stop projecting detail
coefficients when a maximal index Kmax of the array
D̄ has been reached. This limit Kmax can be determined
in various ways. It may be chosen so that an a-priori
chosen error threshold is reached. Or, when compu-
tational efficiency is the major issue, one may simply
choose Kmax directly, as it determines the total number
of coefficients to be projected, and thus the required
computation time.

4.3. The Streaming MIP-Splatting Algorithm

The multiresolution MIP algorithm for streaming MIP-
splatting can be summarized as follows.

– Preprocessing.

1. Compute an L-level 3-D morphological adjunc-
tion pyramid of the volume data f , resulting in a
sequence of volumes d0, d1, . . ., dL−1, fL . Here
fL is a signal at the coarsest level, and the details
signals are defined by (23).

2. Compute auxiliary detail signals d̄0, d̄1, . . . ,

d̄ L−1 by (24), sort their entries with respect to
magnitude (deleting zero entries), and finally
use (25) to replace each entry of the resulting list
by the corresponding original detail coefficient.

– Actual MIP volume rendering. For a given orienta-
tion Θ of the viewing coordinate system, and a given
maximum size Kmax, do:

1. Compute a low resolution approximation
M̂(L)

Θ ( f ) by first applying the voxel projection
operator MΘ to fL , followed by the 2-D syn-
thesis operator ψ

↓
Ã

L :

M̂(L)
Θ ( f ) = ψ

↓
Ã

L (MΘ( fL )). (26)

Here Ã = MΘ(A) is a 2-D structuring element,
which is obtained as the projection of the 3-D
structuring element A on the view plane.

2. Refine the image progressively. For k = 0, 1,

. . . , Kmax, do:

• Reconstruct the position and level corre-
sponding to index k of array D̄ by the map-
ping (x, y, z, j) = π−1(k).

• Project the coefficient (x, y, z, j) to the cor-
rect position in the image plane (which al-
ready contains the level L approximation
M̂(L)

Θ ( f )), and carry out a local dilation of
scale j by replacing all pixel values in a
neighborhood j · Ã by D̄k when their cur-
rent value is smaller than D̄k .

This results in an approximation which we denote
by M̂(L ,Kmax)

Θ ( f ).

4.4. Experimental Results

In Table 2 we present the L1-approximation error
E (2, f rac) as a function of the percentage f rac of de-
tail coefficients used. That is, frac = Kmax/size(D̄),
where size(D̄) is the total number of entries in D̄, i.e.,
the total number of original detail coefficients with zero
ones deleted. The same data sets as before are used,
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Table 2. L1-approximation error E (2, f rac) for
streaming MIP-splatting with various values of the
fraction frac of detail coefficients used.

frac Aneurism Bonsai Neuron

0.0 0.859 0.449 0.938

0.1 0.331 0.165 0.127

0.2 0.197 0.077 0.073

0.3 0.129 0.041 0.053

0.4 0.087 0.027 0.037

0.5 0.057 0.014 0.029

0.6 0.034 0.008 0.023

0.7 0.017 0.003 0.014

0.8 0.007 0.001 0.009

0.9 0.002 0.000 0.005

1.0 0.000 0.000 0.000

Table 3. L1-approximation error for streaming MIP-splatting. The
fraction of detail coefficients taken into account is determined by
frac = size(d1)/size(D̄). The last row contains the corresponding
level-1 error E (1), taken from Table 1, case n = 0.

Data set frac E (2, f rac) E (1)

Aneurism 0.045 0.497 0.532

Bonsai 0.087 0.173 0.225

Neuron 0.034 0.301 0.676

with the same settings, i.e., a 2-level decomposition
with a 2×2×2 flat structuring element, and axial pro-
jection. When frac = 0, the error corresponds to that of
a level-2 approximation, compare to the error E (2) for
n = 0 in Table 1. When frac = 1, all data have been
taken into account and the error is zero.

For comparison with the earlier algorithm for an ad-
junction pyramid, we also present results on approx-
imation error in Table 3 for the value of frac deter-
mined by size(d1)/size(D̄), where size(d1) is the num-
ber of nonzero level-1 detail coefficients. In this case,
exactly the same number of detail coefficients is used
as for a level-1 approximation in the algorithm which
projects level by level (compare to E (1) for n = 0 in
Table 1).

We observe that the error of streaming MIP-splatting
is smaller than that of a usual level-1 MIP. In the case
of the Neuron data, the difference is substantial, a phe-
nomenon which we also observed for other data sets
(data not shown here). Note also that the fraction of de-
tail coefficients taken into account is quite small (less

than 1%). The streaming algorithm has the advantage
that the fraction of included detail coefficients can be
chosen at will, depending on the computation time one
wants to spend or the maximal error one allows.

For visual inspection, we also give the corresponding
MIP-images in Fig. 6. When we compare these images
to the corresponding level-1 MIP images in Figs. 3–5,
we observe that the streaming results are much better,
with more fine details preserved (see also the full-size
MIP images in Fig. 2). This obviously is due to the prop-
erty of the streaming algorithm that important level-0
detail coefficients will get a small index k in the re-
sorting process, and thus are included during partial
reconstruction.

Another important observation we can make is that
use of the L1-error has a quite limited value. Al-
though the errors of the level-by-level algorithm and
the streaming algorithm in Table 3 are comparable, the
corresponding images are perceptually quite different.
Of course, this limitation is well known in image pro-
cessing and computer vision, and active research is still
going on to find better error metrics. Although some
other metrics have been developed, they are often very
hard to compute. Inclusion of these metrics is beyond
the scope of this paper.

5. Discussion

We have surveyed and extended nonlinear multireso-
lution signal decompositions based on morphological
pyramids for MIP volume rendering with progressive
refinement and perfect reconstruction. Such pyramids
combine the feature extraction capabilities of morpho-
logical operators with the acceleration gained by ren-
dering multiresolution data. The morphological opera-
tors used in constructing these pyramids remove spatial
details of size proportional to 2 j , where j is the level
of the pyramid. However, in contrast to linear multires-
olution approaches, such as those based on wavelets,
no smoothing of data takes place. Typical use of such
pyramids is in preview mode, where the user is con-
tinuously changing the viewpoint. For such interactive
display, some loss in image quality is generally accept-
able. When interaction ceases, details of the data can
then be successively taken into account to quickly gen-
erate a high resolution view.

Our main object of interest in this paper was to see
how the approximation error and persistence of small
object features depend on pyramid level, for the dif-
ferent pyramid types. To improve the approximation
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Figure 6. Streaming MIP reconstruction from a 2-level morphological pyramid. The fraction of detail coefficients taken into account is
determined by frac = size(d1)/size(D̄). For comparison, see the level-1 MIP images in Figs. 3–5 which use the same number of detail
coefficients.

quality of visualizations from reduced data (higher lev-
els of the pyramid), two new approaches were explored.
First, the class of conditional dilation pyramids, in-
volving connectivity enhancing operators, was intro-
duced. As a reference, we used the adjunction pyramid
and Sun-Maragos pyramid, which remove spatial de-
tails without regard to the connectivity properties of the
volume data [12–14]. We found that conditional dila-
tion pyramids reduce the relative L1-error between the
full-size MIP and the approximate MIP from reduced
pyramid data as the number n of conditional dilations
increases. This accuracy improvement is possible with
rendering times and memory usage comparable to those
of the adjunction pyramid. For values of n larger than
15 no further improvement was observed. Also, noise
is reduced in higher levels of the pyramid, as indicated
by enhanced visual quality. Nevertheless, the improve-
ment for n > 1 is fairly limited. Only the time needed to

create the pyramids rises significantly with increasing
n, but this is less of a problem since this step is carried
out only once as a preprocessing step, whereas render-
ing is usually performed many times for different view
angles.

The second new approach, called streaming MIP-
splatting, again starts from the adjunction pyramid. The
difference with the original algorithm [12,14] is that de-
tail coefficients of all levels are considered simultane-
ously. They are ordered in the same way as an auxiliary
set of detail coefficients, which are sorted with respect
to decreasing magnitude. These auxiliary coefficients
are defined by using ordinary subtraction, whereas the
detail coefficients to be used during rendering are de-
fined by a special subtraction operator which allows
the max-representation of Eq. (10).

During rendering, all ordered detail coefficients are
projected successively, until a desired accuracy of the
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resulting MIP image is obtained. We have shown that
this method outperforms all earlier methods, both with
respect to image quality with a fixed amount of detail
data, and in terms of flexibility of controlling error or
maximum computation time. This is due to the fact
that an arbitrary fraction of detail coefficients may be
chosen for computing an approximation, whereas the
other pyramids all work level-by-level.

Appendix A: Validity of the Pyramid Condition
for Conditional Dilation Pyramids

Here we prove that the conditional dilation pyramid as
defined in Section 2.1 satisfies the pyramid condition.
First, the following lemma is proved.

Lemma 2. Consider a morphological pyramid with
analysis operator ψ↑ = σ ↑ η and synthesis operator
ψ↓ = δA σ ↓, satisfying the following assumptions:

1. η is an anti-extensive operator
2. η δA ≥ id
3. The structuring element A satisfies condition (11).

Then the pyramid condition holds.

Proof: By Assumption 2 we have that ψ↑ ψ↓ =
σ ↑ η δA σ ↓ ≥ σ ↑ σ ↓ = id. On the other hand, from
Assumption 1, ψ↑ ψ↓ ≤ σ ↑ δA σ ↓. By Assumption
3, formula (12) holds, that is, σ ↑ δA σ ↓ = id. Hence
we found that ψ↑ ψ↓ ≤ id and that ψ↑ ψ↓ ≥ id, so
ψ↑ ψ↓ = id.

This lemma can be used to show that the pair (5)–
(6), with η = R(n)

A given by (14), satisfies the pyramid
condition for each n. It is sufficient to show that the
operator η satisfies Assumptions 1 and 2 of the lemma,
since Assumption 3 was assumed to hold anyhow.

1. The operator R(0)
A = εA is anti-extensive, because

(11) implies that 0 ∈ A, and hence the erosion εA is
anti-extensive. For n > 0, Eq. (14) trivially implies
that R(n)

A ( f ) ≤ f . Hence R(n)
A is anti-extensive for

all n ≥ 0.
2. We prove by induction that assumption 2 holds.

First, R(0)
A (δA( f )) = εA(δA( f )) ≥ f since εA δA is

a closing. Second, for n > 0

R(n)
A (δA( f )) = δA( f ) ∧ δA

(
R(n−1)

A (δA( f ))
)
.

Applying the induction hypothesis, i.e. R(n−1)
A δA ≥

id, we find

R(n)
A (δA( f )) ≥ δA( f ) ∧ δA( f ) = δA( f ).

Finally, (11) implies that 0 ∈ A, and hence the di-
lation δA is extensive. Therefore R(n)

A (δA( f )) ≥ f ,
and we are done.

Notes

1. Some results for non-flat structuring functions can be found in
[14].

2. Available from http://www.volvis.org
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