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Abstract—A novel, physically motivated deformable model for shape recovery and segmentation is presented. The model, referred to

as the charged-particle model (CPM), is inspired by classical electrodynamics and is based on a simulation of charged particles moving

in an electrostatic field. The charges are attracted towards the contours of the objects of interest by an electrostatic field, whose

sources are computed based on the gradient-magnitude image. The electric field plays the same role as the potential forces in the

snake model, while internal interactions are modeled by repulsive Coulomb forces. We demonstrate the flexibility and potential of the

model in a wide variety of settings: shape recovery using manual initialization, automatic segmentation, and skeleton computation. We

perform a comparative analysis of the proposed model with the active contour model and show that specific problems of the latter are

surmounted by our model. The model is easily extendable to 3D and copes well with noisy images.

Index Terms—Deformable model, charged-particle system, electrostatic field, Coulomb force, segmentation, shape recovery,

skeleton.
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1 INTRODUCTION

AN important goal in computer vision is to recover the
shapes of the objects of interest from visual data.

Deformable models introduced by Kass et al. [1] and
generalized to the 3D case by Terzopoulos et al. [2] have
become extremely popular, offering a unified framework
which combines knowledge from geometry, physics, and
approximation theory [3]. They have been extensively used
in shape recovery and medical imaging (see [3], [4] for
recent surveys). Other applications range from geometric
modeling [5] and computer animation [6] to texture
segmentation [7] and object tracking [8], [9].

A popular deformable model is the snake model [1],
describing a closed parametric curve that deforms dynami-
cally and moves towards the desired image features under
the influence of internal and external forces, appearing in an
energy functional to be minimized. The internal forces keep
the contour smooth, while the external forces attract the
snake towards lines, edges, or other low-level image
features. Amini et al. [10] pointed out some shortcomings
of the original algorithm and proposed an improvement
based on discrete dynamic programming. Although their
approach is more stable and allows the inclusion of hard
constraints in the energy functional, the method is time
consuming and needs careful setting of parameters. A fast,
greedy active contour algorithm was proposed by Williams
and Shah [11]. Their method retains the improvements of
Amini’s algorithm, but is more than an order of magnitude
faster. Leymarie and Levine [12] presented a detailed
analysis of the snake model, emphasizing its limitations

and shortcomings, and proposed an improved termination
criterion and a method based on a discrete scale-space
representation useful for object tracking. Grzeszczuk and
Levin [13] controlled the evolution of the active contour by
a simulated annealing process which causes the contour to
settle into the global minimum of an image-derived energy
function. Peterfreund [14] proposed the velocity snake for
boundary tracking of nonrigid objects, by applying velocity
control to the evolving contour. Ngoi and Jia [15] presented
an active contour model for colour region extraction in
natural scenes. Wong et al. [16] developed the segmented
snake model and demonstrated its ability to handle objects
with sharp corners. Their method involves a recursive split-
and-merge procedure that divides a contour into segments,
each of which defines the contour locally. In [17], an active
contour model based on the B-spline representation and
multiple-stage energy minimization was proposed. Xu and
Prince [18] proposed a new external force, which they called
gradient vector flow (GVF), and showed that GVF has a
large capture range and is able to move the snake into
boundary concavities. An accurate and high-speed active
contour model based on a reformulation of the internal
energy was introduced by Mokhtarian and Mohanna [19],
by removing the curvature part and using curvature scale-
space filtering for smoothing.

All aforementioned deformable models cannot handle
topological changes of the underlying shapes. Several
methods have been proposed to address this limitation.
Malladi et al. [20] proposed a geometric formulation of the
active contour model, based on level sets. As shown in [21],
[4], this method suffers from boundary leakage in the
vicinity of blurred edges. In an attempt to overcome this
problem, Caselles et al. [21] reformulated the snake
evolution as an optimization of the total gradient along
the snake, which led to a curvature evolution implementa-
tion. Since the literature on geometric active contours and
surfaces based on level sets is vast, we refer to [4] for a
recent and exhaustive review. McInerney and Terzopoulos
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[22] proposed a new class of deformable models by
introducing an affine cell image decomposition. This
mechanism induces an iterative reparameterization that
enables parametric deformable surfaces to modify their
topology. Vasilescu and Terzopoulos [23] used spring-mass
models in the context of surface reconstruction.

A completely different approach to shape deformation is
based on particle systems. Such systems have been
introduced in computer graphics by Reeves [24] to model
natural phenomena such as fire and waterfalls. In these
models, particles move under the influence of force fields
but do not interact with each other. Szeliski and Tonnensen
[25] proposed a system of oriented, interacting particles to
model deformable surfaces. Each particle is considered as a
surface element and has an associated rotation matrix. The
authors define coplanar and cocircular energies which tend
to align the particles on the surface of a plane or a sphere,
respectively. The interacting-particle system can be used to
split, join, or extend surfaces without the need for manual
intervention.

In this paper, we introduce a novel, physically motivated
deformable model for shape recovery and segmentation
based on charged particles. The charges are attracted
towards the contours of the objects of interest by an electric
field, whose sources are computed based on the gradient-
magnitude image. The electric field plays the same role as
the potential force in the snake model, while internal
interactions are modeled by repulsive electrostatic forces,
referred to as Coulomb forces. The method needs an
initialization step, but we will show that this step is much
less critical than in the snake model. Unlike the active
contour model, our model allows charges to be placed
entirely inside an object, outside on one side of the object, or
can cross over parts of boundaries. In contrast to attractive
forces based on the squared gradient-magnitude image [1]
which act only in small vicinities along boundaries of
objects, the electric field exhibits increased capture range
because of its long range attraction, and enhanced robust-
ness against boundary leakage. Due to the combined effect
of external interactions of particles with the electrostatic
field and internal repelling forces between them, particles
follow paths along object boundaries and, hence, converge
without difficulty into deep boundary concavities or
internal boundaries separating embedded objects. More-
over, the method is insensitive to initialization and can
adapt to topological changes of the underlying shape.

The remainder of this paper is organized as follows: In
Section 2, we review the snake model and discuss variations
and some inherent problems with this model. The charged-
particle model (CPM) is introduced in Section 3. We give
ample descriptions of all its constituent parts and imple-
mentation details in Section 4, which also contains a
multiresolution setting useful for dealing with noisy gray-
scale images. In Section 5, we present experimental results,
in three different settings: 1) shape recovery, 2) automatic
segmentation, and 3) skeleton computation. We include
some initial 3D examples. Also, the behavior of the
proposed model in the presence of noise and its sensitivity
to parameter changes are analyzed. Finally, conclusions,
current limitations and a discussion of possible extensions
are given in Section 6.

2 THE ACTIVE CONTOUR MODEL

In this section, we briefly review the active contour model
and include a discussion of the model variations and
additions, in so far as relevant to this paper.

2.1 The Classical Snake

The traditional active contour model is a closed parametric
curve CCðsÞ ¼ ðxðsÞ; yðsÞÞ, s 2 ½0; 1�, which can change shape
and position in order to minimize the energy functional [1]

E ¼
I 1

0

ds �EintðCCðsÞÞ þ �EimðCCðsÞÞ þ �EconðCCðsÞÞ; ð1Þ

with EintðCCðsÞÞ ¼ CC0ðsÞj j2 þ w CC00ðsÞj j2, where �, �, w, and �

are scalar weights. The movements of the snake are
governed by: 1) its internal energy Eint, 2) the image
energy Eim, which tends to move the snake towards image
features, and 3) a user-defined energy term Econ, specifying
some constraints. The internal energy term Eint ensures
curve regularity and is computed as the sum of two terms.
The first term is tension and acts as an elastic force which
shortens the curve, while the second term—stiffness—
enforces smoothly changing contours, and makes the snake
behave like a thin plate. Here, a first difficulty occurs with
respect to setting the parameter w of the snake. Clearly, too
much tension makes the snake deform too easily, stopping
at false edges, while too much stiffness makes the snake
too rigid, preventing it to follow contours with large
changes in curvature. Initially, Kass suggested for the
image-energy term a potential based on the squared
gradient-magnitude image [1], i.e., Eim ¼ � G� � rIj j2,
where G� is a Gaussian kernel with standard deviation �

and “*” denotes convolution.

2.2 Problems, Variations, and Additions

There are several problems related to the traditional snake
model, which we briefly mention here. For a more extensive
discussion, see [18], [21], [26], [27].

1. Curve collapse: In the absence of image energy, the
curve tends to collapse [28]. One may add an internal
pressure term forcing the contour to expand [29], but
this requires the initial contour to be placed
completely inside the target object. Moreover, as
pointed out in [18], the snake may get outside the
contour of the target object in places with weak
response of the gradient operator (boundary leakage).
Although the dynamic pressure models proposed in
[30], [31] were designed to solve the latter problem,
the first still remains.

2. Sensitivity to initialization: The initial contour should
be close to the true boundary in order to be attracted.
Several techniques have been proposed to rectify
this problem, e.g., multiscale methods [32], [19],
pressure forces and distance potentials [29], and,
more recently, gradient vector flow (GVF) snakes
[18]. Basically, the GVF approach replaces the
classical external force with a vector field exercising
strong forces near edges and also extends the
gradient map further into homogeneous regions by
a generalized diffusion process.
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3. Convergence into boundary concavities: If the external
force is weak, the snake is not pulled inside
concavities and will stop advancing. Although there
are several approaches [29], [33] which try to solve
this problem, most of them do not give satisfactory
results [18]. The GVF method was shown to remedy
this problem to some extent [18], [34], but it still does
not work well for thin and long boundary concav-
ities. As the example of Fig. 1 shows, the GVF snake
stops at the “entrance” of the concavity because
there is no attractive force to pull the snake inside;
see, especially, the zoom-in on the GVF field.

4. Termination criterion: The deformation is supposed to
stop when the global energy minimum is reached.
However, the snake can be trapped in local minima,
and global minimization techniques such as simu-
lated annealing [35] or dynamic programming [36]
need to be used.

5. Topological changes: Splitting and merging of con-
tours can be addressed by considering the active
contour (or surface) as the zero level set of a higher-
dimensional function, cf. Malladi et al. [20] and
Caselles et al. [37]. The evolving curve CC is
embedded as the zero level set of a 2D scalar
function �ðxx; tÞ, satisfying the evolution equation

@�

@t
¼ F̂Fiðx; yÞðw0 þ w1�ðx; yÞÞ r�j j; ð2Þ

where w0 and w1 are constants, � is the level set
curvature and F̂F ðx; yÞ is an extension of F ðx; yÞ ¼
1þ jrG� � Iðx; yÞjð Þ�m to all level sets. This ap-
proach works well for objects with steady edges,
but otherwise it suffers from boundary leakage. This
happens because the multiplicative term only slows
down the evolving contour near edges, without
stopping it completely. To overcome this problem,
Caselles et al. [21] introduced geodesic active
contours by adding an extra stopping term which
is meant to pull back the contour if it passes the
boundary. However, as shown by Siddiqi et al. [26],
this formulation is still affected by the boundary-
leakage problem, which was further addressed by
adding an “area minimizing term,” providing an
additional attractive force when the evolving front is
in the vicinity of an edge. As noted by the authors,
this active contour can still leak through larger
boundary gaps.

Xu et al. [27] formulated their parametric GVF active
contours in the level set framework, in an attempt to
combine the advantages of both methods: increased capture
range, ability to converge into boundary concavities,

increased robustness against boundary leakage conferred
by the GVF field, and automatic topology adaptation
offered by the level set method. The result was the
geometric GVF active contour, formulated as

@�

@t
¼ w� r�j j � gg � r�; ð3Þ

wherew is a constant and gg is theGVF field.Although theGVF
field does increase the robustness with respect to the initial
placement of the contour, and bridges boundary gaps, there
are cases when changes in topology cannot be handled
correctly. For example, in the central region separating the
objects shown in Fig. 2, the GVF field has direction tangential
to the zero level set, and in such a case there is no force to push
or pull the level set. If a constant pressure term (similar to w0

in (2)) is added to the model, the topological problem can be
solved, but the level set advances into boundary gaps (see the
example shown in Fig. 2b).

Despite all improvements mentioned above, several
difficulties with the geometric active contour model still
remain. As mentioned in [4], level sets remove one of the
major drawbacks of parametric snakes, i.e., sensitivity to
initialization, provided that the initial contour is symme-
trically initialized with respect to the boundaries of the object
of interest. Symmetric initialization ensures that the evol-
ving contour reaches all object boundaries almost at the
same time. However, if this is not the case and the contour
is initialized closer to one part of the boundary than the
others, the contour crosses over the first portion of the
object boundary. This happens because the stopping factor
(F ðx; yÞ in (2)) is small but nonzero. If this factor is made
smaller, i.e., by choosing a larger value of m, then the level
set will stop at noisy edges since the noise would be
amplified. On the contrary, ifm is low, weak boundaries are
not detected well and they will be crossed over by the
evolving contour, see Fig. 3.

Internal boundaries separating embedded objects are not
captured by a single active contour [20], [4]. In these cases,
one needs multiple initializations, with at least one
expanding active contour per object.

Thus, we conclude that in the initialization phase,
extensive user interaction is required, while the most serious
drawback of level set methods is contour leakage through
boundary gaps, a problemwhich arises especially in realistic
imagery, such as in ultrasound, MR, and CT images.

3 THE CHARGED-PARTICLE MODEL (CPM)

In this section, we introduce a physically motivated
deformable model for shape recovery based on charged
particles. The model is inspired by classical electrodynamics
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Fig. 1. Convergence of the GVF snake into boundary concavities. Left-to-right: initialization; the GVF field; zoom-in on the GVF field; result.



and is based on a simulation of charged particles moving in
an electrostatic field.

3.1 Formulation

Consider a system of N positively charged particles pi with
electric charges qi, i ¼ 1 . . .N . These charges freely move in
an external electrostatic field EE, generated by fixed,
negative charges placed at each pixel position of the input
image with charge magnitude proportional to the edge-map
of the input image. Each free particle qi moves under the
influence of two forces: 1) internal Coulomb force, FFc, due
to the interaction of the particle with other free particles,
and 2) external Lorentz force, FFl, due to the electric field
generated by the fixed charges ei, see Fig. 4.

The resulting force FF acting on a particle pi located at
position vector rri ¼ ½xi; yi� is

FF ðrriÞ ¼ FFcðrriÞ þ FFlðrriÞ; ð4Þ

where FFc is the Coulomb force, and FFl is the Lorentz force
acting on particle pi with charge qi given by

FFlðrriÞ ¼ qi EEðrriÞ þ vvi �BBðrriÞð Þ: ð5Þ

Here, vvi is the speed of the particle and BBðrriÞ is the magnetic
field. In the absence of a magnetic field (BB ¼ 0) the force
becomes

FFlðrriÞ ¼ qiEEðrriÞ ð6Þ

and has direction parallel to that of the electric field EE. Note
that although a magnetic field arises at particle position rri
due to all other moving particles, we neglected this field in
our formulation because we are only interested in the
equilibrium positions.

Now,assumethatat eachpixelpositionRRk; k ¼ 1; . . . ;M of
the edge-map function fðx; yÞ given by rðG�ðx; yÞ � Iðx; yÞÞj j
of an image I of size M pixels, a fixed negative electric

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 10, OCTOBER 2004

Fig. 2. (a) The geometric GVF snake does not handle topological changes correctly; left-to-right: initialization; zoom-in on the GVF field; snapshots.
(b) With a pressure term the topological problem can be solved, but the boundary-leakage problem reappears; left-to-right: initialization; successive
snapshots.

Fig. 3. Geodesic snakes: difficulty of choosing an appropriate stopping factor. (a) For small m, weak boundaries are not detected well. (b) For large
m, the level set is stopped at noisy edges.



charge ei ¼ �fðxi; yiÞ � 0 is placed. By the superposition
principle, the electric field at position rr is given by

EEðrrÞ ¼ �r�0ðrrÞ ¼ �r
XM

k:RRk 6¼rr

ek
4��0

1

rr�RRkj j

 !
; ð7Þ

where �0ðrrÞ is the electric potential at position rr, and �0 is
the electric permittivity of free space. Notice that, if the
position rr coincides with a grid position, say RRi, then this
position is excluded in the summation. Evaluating the
gradient in (7) and substituting EEðrriÞ in (6), it follows that

FFlðrriÞ ¼ qi
XM

k:RRk 6¼rri

ek
4��0

rri �RRk

rri �RRkj j3
: ð8Þ

The Coulomb force acting on particle pi with charge qi is the
sum of the Coulomb forces generated by all other free
particles taken in isolation, i.e.,

FFcðrriÞ ¼ qi
XN
j 6¼i

qj
4��0

rri � rrj

rri � rrj
�� ��3: ð9Þ

Assuming that all free particles have the same positive
charge qi ¼ q, (4) can be rewritten as

FF ðrriÞ ¼ k q2
XN
j 6¼i

rri � rrj

rri � rrj
�� ��3 þ q

XM
k:RRk 6¼rri

ek
rri �RRk

rri �RRkj j3

 !
; ð10Þ

with k ¼ 1
4��0

. The major difference between the two terms
in (10) is that the Lorentz force reflects particle-mesh or
external attractive interactions and is computed in the
image domain, while the Coulomb force represents particle-
particle or internal repelling interactions. Since the distribu-
tion of fixed charges ei reflects the strength of the edge map
and the electric force is “inverse-square,” i.e., it decays with
the squared distance, the electrostatic field has large values
near edges and small values in homogeneous regions of the
objects present in the input image.

In the implementation, which is discussed in more detail
below, we precompute the field EE at the grid positions RRk,

and then interpolate between the field values at these
positions in order to obtain the field at any position rri of a
freely moving particle pi (see Sections 3.2 and 4).

The total energy of the system is the summation of all
particle energies, i.e.,

Epðrr1; . . . ; rrNÞ ¼

1

2

XN
i¼1

w1

XN
j6¼i

1

rri � rrj
�� ��� w2

XM
k:RRk 6¼rri

ek
rri �RRkj j

 !
;

ð11Þ

where w1 ¼ kq2 and w2 ¼ kq are weights.

3.2 Particle Dynamics

Having defined the energy associated with our system, we
can derive its equations of motion. The variations of particle
potentials with respect to positions produce forces acting on
particles. The standard approach is to consider the New-
tonian equations of motion, and to integrate the correspond-
ing system of differential equations in time, i.e.,

FF ðrriÞ ¼ w1FFcðrriÞ þ w2FFlðrriÞ � �vvi ð12Þ

drriðtÞ
dt ¼ vvi

dvviðtÞ
dt ¼ �r�ðrrÞjrr¼rri

¼ FF ðrriðtÞÞ;

(
ð13Þ

where � is the particle potential and rri, vvi, and aai are its
position, speed, and acceleration, respectively (the mass of
the particle has been set to 1). Notice that compared to (4),
(12) has an additional term, FFdampðrriÞ ¼ ��vvi, the damping
(or viscous) force which is required for the particles to
attain a stable equilibrium state, which minimizes their
potential energies, see (11). The problem with integrating
(13) is the circular dependency between rriðtÞ and FF ðrriðtÞÞ,
which restricts the methods for numerical integration
which can be used. However, even though the force
FF ðrriðtÞÞ is unknown, at least its first few derivatives are
easily found, which means that Taylor series can be used
to approximate the function.

In the interest of simplicity, all particles are advanced
using the same time-step parameter �t. Therefore, at each
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Fig. 4. The CPM. (a) Forces act on free particles with charge qi (indicated by small black dots) which move in the electric field generated by fixed
charges ei (indicated by gray dots); different gray values represent different charge magnitudes. (b) Example of electrostatic field EE generated by
fixed charges.



time step tjþ1 ¼ tj þ�t the force FF ðrriðtÞÞ acting on each
particle pi is computed according to (12), in order to obtain
the acceleration aai of the particle. Then, one can use Euler’s
method [38] to advance the current velocity and position of
the particle over the time step. Unfortunately, this method
may result in large errors, which accumulate in time.

Therefore, we have developed an efficient alternative
method based on Taylor expansion which makes use of
previously computed values for acceleration and speed (i.e.,
a multistep method). It advances the current velocity and
position over one time step as follows:

rrðtþ�tÞ ¼ rrðtÞ þ�t vvðtÞ þ 1

2
�t2 aaðtÞ þ 1

6
�t3

daaðtÞ
dt

vvðtþ�tÞ ¼ vvðtÞ þ�t aaðtÞ þ 1

2
�t2

daaðtÞ
dt

:

ð14Þ

Since the term in daaðtÞ=dt is expensive to compute, we
approximate it using (quadratic) Lagrange polynomials
LLðtÞ, at times fti; ti ��t; ti � 2�tg. Taking the derivative of
the polynomials, and evaluating at t ¼ ti, the desired term is
obtained as

daaðtÞ
dt

����
t¼ti

¼ dLLðtÞ
dt

����
t¼ti

¼

1

2�t
3aaðtiÞ � 4aaðti ��tÞ þ aaðti � 2�tÞð Þ:

ð15Þ

This computation is fast and stable with respect to one of
the worst form of errors occurring whenever a particle is
very close to an object boundary. Since we use constant time
steps, it may happen that at the next time step the particle
would cross over the edge, where it is in fact supposed to
stop. Using the above method, the acceleration of the
particle reverses sign in the vicinity of the edge and,
therefore, the particle eventually stops at the edge, after a
few small oscillations.

The more accurate Runge-Kutta method [38] could be
used, resulting in better convergence and larger time steps,
but at the expense of increased computational cost.

3.3 Comparative Analysis of CPM and Snake Model

The two energy functionals in (1) and (11), corresponding to
the snake model and to the CPM, respectively, have terms
which represent internal and external interactions. In the
snake model, the internal energy is the sum of a tension
term, which acts as an elastic force and a rigidity term,
which discourages bending. Tension evenly spaces snaxels
along the snake contour.

In the CPM, the Coulomb force plays the same role, as
we will show next. Free particles move down gradients of
the potential energy in order to attain a minimum potential
energy state. Since both the electrostatic field EE and
Coulomb force are conservative, each particle will move
in the direction that most reduces its potential energy. Since
we set w2 > w1 and both forces in (12) are normalized, the
movements of the particles are primarily towards positions
of minimum potential energy due to the field EE.

The orientation of the electric field EE at a point
corresponds to the direction in which the electric potential
decreases most rapidly, and a positive charge placed at that
point will be accelerated in this direction. In our case,
negative charges ei proportional to the edge-map function
generate the field and, therefore, its direction will be toward

the nearest edge with the highest magnitude. This implies
that the free particles will be attracted towards these
locations and eventually stop there, after few possible
oscillations (see the discussion under (15)). Next, the
particles will advance along the boundary of the object, in an
attempt to minimize their potential energy due to the
repelling Coulomb force between the free particles. Hence,
they will finally occupy evenly spaced positions along the
boundary. In our opinion, the motion capability of particles
along boundaries of objects constitutes an important
advantage over the snake model. This is the reason why
the particles are able to converge into small and thin
concavities, and are much less sensitive to the initial
positioning, unlike most snakes (see Sections 2.2 and 5).

An example is shown in Fig. 5. Charged particles are
initialized by sampling the circle shown in the bottom-right
part of the first image. The attractive electric field EE is
shown in the second image. All other images are snapshots
obtained at time steps 10; 20; . . . 60 of the numerical
integration. Note that the particles are first attracted
towards the boundary of the “U-shaped” object. As soon
as they arrive at the contour, they start advancing along the
boundary, until they reach evenly spaced positions (see the
last image). Note that some particles may depart outside the
image space and, in this case, they are simply removed from
subsequent computations.

The second term (stiffness) in the snake model serves to
maintain smoothly changing contours. However, as shown
in [28], curvature minimization provides smoothness by
flattening, and it conflicts with the intention to segment
nonrectangular objects. The CPM does not have a similar
term. This means that, in order to achieve a larger degree of
smoothing than that conferred by evenly spaced particles,
other methods must be invoked (e.g., Gaussian filtering of
the input image, spline interpolation).

One problem remains to be addressed before we can use
the CPM for shape detection. Up to now, the model consists
of N disconnected particles which are able to advance along
the boundary of the objects of interest. However, the output
of the method should consist of connected contours of the
target objects. We will address this problem in the next
subsection.

3.4 Curve (Surface) Reconstruction

So far, our particle system does not provide us with explicit
representations of object boundaries. This problem can be
thought of as that of curve or surface reconstruction from
unorganized points. This is an important problem studied
now for many years. Early efforts relied on heuristics and
assumed that the input points are sampled uniformly from
the unknown surface. Major breakthroughs were achieved
by Hoppe et al. [39] and later by Amenta et al. [40] ([41] for
curve reconstruction), who designed algorithms that guar-
antee correct reconstruction even with nonuniform (but
sufficiently dense) samples, and which require the selection
of a single parameter–the sample density.

In all experiments reported below, we use the algorithms
by Amenta et al. [41], [40] to reconstruct the curves and
surfaces.

3.5 Controlling the Complexity of the CPM

The naive evaluation of the Coulomb force FFc in (10) at all
particle positions requires OðN2Þ operations, where N is the
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number of free charged particles. Moreover, a straightfor-
ward computation of the electric field EE is of order OðM2Þ,
whereM is the number of pixels in the input image. For large
input images (or volumes), which usually require a large
number of particles, the force evaluation in (10) can become
prohibitively expensive. Therefore, we describe efficient
methods used to compute all constituent parts of the model.

3.5.1 Computation of the Coulomb Force

An efficient approach to approximate the Coulomb force
between free particles is to use a k-d tree [42] data structure to
partition space, such that responses to queries about the
knearestneighborsofaparticlecanbeobtained in logarithmic
time. At each time step, after the tree is constructed, the
Coulombforceateachparticleposition isapproximatedusing
itsk ¼ 10 percentnearestparticles. In thisway, thecomplexity
of force evaluation is reducible toOðN logNÞ.

3.5.2 Computation of the Electric Field

The electrostatic field (see (7)) is computed using the so-
called “particle-particle particle-mesh” (PPPM) method
from molecular dynamics [43]. The field is precomputed,
and its values are kept in two matrices (with the same sizes
as the input image I), one for each component of the
2D vector field.

The basic idea of PPPM is to split the Coulomb potential
representing the force between the fixed charges into a short
range direct interaction part (PP) and a contribution from
the mesh (PM). The Coulomb energy, at vector position
RRi ¼ ½xi; yi� is

Wi ¼
1

2

XM
j 6¼i

Wdirect
ij þWmesh

i : ð16Þ

The direct part of the Coulomb energy of a pair of charges
ðei; ejÞ separated by RRij is given by the Coulomb energy
minus a correction term

Wdirect
ij ðRRijÞ ¼

eiej
1�WcðRRijÞ

RRijj j

� �
RRij

�� �� � Rc

0 RRij

�� �� � Rc;

8<
: ð17Þ

where Rc is the direct interaction cut-off radius. The direct
contribution vanishes at Rc and, for RRij

�� �� � Rc, there is only
a mesh contribution. The correction term WcðRRÞ compen-
sates for the portion of the interaction already covered by
the mesh potential (see (22) below).

The mesh potential �mesh is obtained by solving Poisson’s
equation on the grid

r2�ðRRÞ ¼ �	ðRRÞ; ð18Þ

where 	ðRRÞ and �ðRRÞ are the charge density and the electric
scalar potential at grid point RR, respectively. The charge
density 	ðRRÞ is defined as the charge per grid cell area, and
is computed in two steps. In the first step, we use the linear
charge assignment scheme in [43]. Every charge ei is
distributed over its eight surrounding grid points, and the
charge at grid point RRi is computed as

qðRRiÞ ¼
XM
k¼1

ekHðRRi �RRkÞ: ð19Þ

Here, H ¼ Hx Hy is the weight of a charge located at RR,

HxðRi;x �RxÞ ¼ 1� Ri;x�Rxj j
hx

Ri;x �Rx

�� �� < hx

0 Ri;x �Rx

�� �� � hx;

(

whereM is the size of the input image I, hx is the mesh grid
spacing in dimension x, and Hy is defined similarly. In the
second step, the charges are spread over a larger neighbor-
hood of grid points, in order to produce a smooth total
charge distribution. This step is implemented using the
approach in [44], in which the charges are spread by a
diffusion process. The method proceeds by solving Pois-
son’s equation, (18), on the mesh. Then, the mesh-energy
term is computed as a weighted sum over the same grid
points used in the first charge-assignment step

Wmesh
i ¼ ei

X
k

HðRRi �RRkÞ�ðRRkÞ �Wself
Gauss;i; ð20Þ

where Wself
Gauss;i is a correction term for the mesh energy

which a particle experiences from its own charge distribu-
tion (the self-energy). This constant term per particle is
given by
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Fig. 5. Convergence of the particles. Left-to-right, top-to-bottom: input image and initialization; electric field EE; snapshots at time steps
t ¼ 10; 20; . . . 60.



Wself
Gauss;i ¼ e2i =�; ð21Þ

where � ¼ 2
ffiffiffiffiffiffiffiffiffiffi
DNt

p
, D is the diffusion coefficient, and Nt is

the number of time steps of the diffusion process (Nt and D
can be deduced using the cut-off radius parameter Rc, see
[44] for details). For a Gaussian charge distribution,
obtained by solving a linear diffusion equation, the
correction term WcðRRÞ in (17) is given by

Wc
GaussðRRÞ ¼ EE RR=�ð Þ; ð22Þ

where “EE” denotes the error function. Note that we have
neglected all constants in the description of the PPPM
method.

Finally, the electric field EE at grid points is computed by
substituting the electric potential (given by �ðRRiÞ¼WðRRkÞ=ek,
k ¼ 1; 2; . . . ;M) in (7). In order to obtain the field at any
position rri of a freely moving particle pi, interpolation
between the values at these grid positions is used.

In our implementation, the cut-off radius Rc is set to 20.
We compute an approximate solution to the Poisson’s
equation using Np ¼ 50 iterations of a standard successive
over-relaxation (SOR) technique [38]. Hence, the total time
taken for computing the electric force is linear in the
number M of pixels of the input image.

3.6 Dynamic Particle Creation and Removal

Our particle system can be used to model a wide variety of
shapes, of arbitrary topology, provided that the number of
free particles in the initialization phase is sufficient.
Otherwise, if the number of particles is too small, a rough
and/or incorrect approximation of the boundary is found.
An example of this behavior is shown in Fig. 6. The first
image shows the initialization (58 particles are created by
sampling the circle shown in the middle of the object), while
the next image shows the (incorrect) recovered shape using
the curve reconstruction algorithm by Amenta et al. [41].

This problem is addressed by enhancing the particle
system with two heuristic rules controlling the addition and
deletion of particles. The addition rule postulates that the
particles are in a near-equilibrium state with respect to the
Coulomb and external potentials and checks if any two
neighboring particles have a large enough spacing between
them to add a new particle. If the particles are at a distance
d (in pixels) such that dmin < d � dmin þ dmax;t, a new
particle is created at the midpoint, with velocity and
acceleration computed as the average of those of the two
neighboring particles. The time-dependent parameter dmax;t

is a simulated-annealing term which is gradually reduced
during evolution. The annealing schedule for this term
lowers its value according to dmax;tþ�t ¼ a � dmax;t, where

dmax;t is the value at time t. The deletion rule simply checks if
two neighboring particles are at a distance d such that
d < 1=2dmin, and in this case one of the particles is deleted.

With these rules we can automatically recover correct
boundaries of objects, under the assumption that the set of
edge points of the input image does not have gaps larger
than the maximum acceptable value for the sample-density
parameter of the curve (surface) reconstruction methods
(see Section 3.4). If this assumption fails, the reconstructed
contours will have gaps. The third image in Fig. 6 shows the
correctly recovered shape. The last image was obtained
using only five particles in the initialization phase.

4 IMPLEMENTATION

4.1 The Pseudocode of the CPM

The pseudocode of the CPM algorithm is given in
Algorithm 1; it consists of two parts: 1) computation of
the Lorentz force, 2) particle dynamics and reconstruction.
Without loss of generality, the algorithm assumes a 2D input
signal, although it can be easily extended for volumetric
data.

In Part 1, after regularization (convolution with a
Gaussian kernel), the gradient map ½gx; gy� is computed
(line 2) and passed as input to the PPPM method, which in
turn outputs the potential � at each location of the image.
The electric field is given by the gradient of the electric
scalar potential � (see (7)), from which the Lorentz force is
precomputed (see (6)), and its components are kept in two
matrices, one for each component.

Algorithm 1 CPM pseudocode

Part 1: Computation of the electric field E

Input: f—a gray-scale image.

Output: ½Fl;x; Fl;y�—a vector-valued image representing

the Lorentz force.

1: f 0 :¼ GaussianFilteringðfÞ
2: ½gx; gy� :¼ GradientMapðf 0Þ
3: e :¼ �Magnitudeðgx; gyÞ
4: � :¼ PPPMPotentialðeÞ
5: ½Ex;Ey� :¼ �GradientMapð�Þ
6: ½Fl;x; Fl;y� :¼ LorentzForceðEx;EyÞ

Part 2: Particle dynamics and reconstruction

Input: ½Fl;x; Fl;y�.
Output: a set of contours.

1: Set parameters t;�t; a; dmin; dmax;0; w1; w2; �

2: ½p1; p2; . . . ; pN � :¼ InitParticlesðÞ
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Fig. 6. Left-to-right: input image and initialization; incorrectly recovered shape from 58 particles without particle addition; correct shape recovery
using dynamic addition and deletion of particles; correct shape recovery (with particle addition and deletion) with only five particles used for
initialization.



3: repeat
4: ½Fc;x; Fc;y� :¼ EvaluateCoulombForceðp1; p2; . . . ; pNÞ
5: ½Fx; Fy� :¼ w1½Fc;x; Fc;y� þ w2½Fl;x; Fl;y�
6: InsertAndDeleteParticlesðdmin; dmaxÞ
7: UpdateParticlesðp1; p2; . . . ; pN; Fx; Fy; �;�tÞ
8: dmax :¼ a � dmax

9: t :¼ tþ�t

10: until Convergenceðp1; p2; . . . ; pNÞ
11: Reconstructionðp1; p2; . . . ; pNÞ
In Part 2 of the algorithm, in the initialization phase

(line 1), the parameters of the method are set. Throughout
the paper we use the same values (unless stated otherwise):
�t¼0:5, dmin¼2:0, dmax;0¼3:0, a ¼ 0:99, w1 ¼ 1:6, w2 ¼ 1:75,
� ¼ 0:8. The time-step parameter �t is related to the
convergence speed of the free particles. A small value of
this parameter leads to slow convergence, while a large
value improves the convergence speed. However, the
parameter cannot be set to an arbitrarily large value
because during time integration the particles may cross
over edges (see Section 3.2). The next three parameters
control the density of particles: dmin was chosen such that
the smallest distance between particles is one pixel; dmax;0

and a were set such that they represent an acceptable
tradeoff between increased computation time and high
density of particles. The same observations made above for
the time step parameter hold also for the parameters w1 and
w2; in addition, as discussed in Section 3.3, the values of
these parameters must be set such that w2 > w1. The
damping factor � has a regularization role, and it turned
out that suitable values are � < w1; see also the discussion
in Section 5.1.4. As a general remark, we observed in our
experiments that the setting of all parameters is not critical
and can be adapted easily in order to obtain the desired
level of accuracy (i.e., resolution), see also Section 5.5.

After setting the parameters, the particles are initialized,
either manually or automatically (see Section 5), and then
their positions, velocities and accelerations are updated at
each time step (in the repeat-until loop). The Coulomb force
is evaluated as described in Section 3.5.1, and the resulting
force FF at each particle position is computed by summation
of the Coulomb and Lorentz forces (line 5). The required
field values at positions of free particles are obtained by
interpolation between the precomputed field values at grid
positions. Particle insertion and deletion (line 6) is per-
formed as discussed in Section 3.6. (In our actual imple-
mentation, this step is performed during the evaluation of
the Coulomb force, when the neighbors of each particle are
available.) Then, the particles are advanced (line 7) accord-
ing to (14), cf. Section 3.2. Particle convergence (line 10) is
detected by computing the mean absolute difference at time
step tk between all vector positions of particles at the
previous T time steps; this difference can be expressed as

�tk ¼
1

N

XT
i¼1

ð�1Þi
XN
j¼1

rrtk�i

j

��� ���
�����

�����; ð23Þ

where rrtk�i

j is the vector position at time step tk�i of particle
pj; in our implementation T ¼ 4 and � ¼ 0:001. Then, the
stopping criterion Ts : �tk < � is evaluated and, if it holds,
reconstruction is performed using the algorithms by

Amenta et al. ([41] for curve reconstruction and [40] for
surface reconstruction).

4.2 A Multiscale Setting

A multiscale approach for the CPM solves the problem at
successive scales iteratively. First, the solution is found at a
coarse scale, on a small imagewhich needs only fewparticles.
This solution is used as initialization at the next finer scale,
and the process is repeated. By propagating the result from
the coarsest scale to the finest scale, the final curve is obtained
on the initial image without any loss of precision. The
multiscale algorithm can be summarized as follows:

1. Build the pyramid of images from scale 0 (original
image) to scale S (coarsest scale).

2. For s decreasing from S � 1 to 0, evolve the particles
at scale s until convergence is achieved, and denote
by Cs the solution (i.e., particle positions) obtained
using the projection (rescaling) of Csþ1 to level s as
initialization.

3. Do reconstruction at scale s ¼ 0.

For the purpose of simplicity we use a standard
Gaussian pyramid [45] with three levels, although other
pyramids (e.g., wavelet pyramids) may be used as well.

The main advantage of this approach is a reduction of
the computing costs. Initial convergence leads to a rough
estimation of the boundary and is achieved at a coarse scale,
at which the number of particles is small. At finer scales, the
particles are already close to the boundary, and the number
of iterations needed to achieve convergence is expected to
be small. Moreover, the multiscale setting greatly improves
the behavior of the CPM in the presence of noise, as shown
in Section 5.6.

5 RESULTS

In this section, we show several results obtained using the
CPM on binary and gray-scale images. Three different
settings are considered: 1) shape recovery using manual
initialization, 2) segmentation using automatic initializa-
tion, and 3) skeleton extraction. Also, we present initial
3D shape recovery and segmentation results. Note that all
experiments were conducted using the multiscale approach
(see Section 4.2).

5.1 Shape Recovery

All shape-recovery experiments were carried out using
manual initializations. We will treat in each subsection a
specific problem of the active contour model.

5.1.1 Initialization

In the first experiment, we present results obtained using
the CPM with different initializations on binary images.
Examples are shown in Fig. 7. Because of lack of space, we
skipped intermediate snapshots and show only initializa-
tions and final results. The initializations in Fig. 7 are very
difficult (if not impossible) to handle by most snakes
because parts of the boundary are inside the initial snake
contour, while others are outside. For the CPM, however,
these initializations possess no problem and the silhouettes
of all objects are recovered.
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5.1.2 Convergence into Boundary Concavities

In this experiment we study the convergence of the CPM
into thin and long boundary concavities. The results are
shown in Fig. 8. Even with a difficult initialization, the
particles correctly recover the shapes of both objects. This
happens because the particles can advance along bound-
aries of objects, even in thin and long concavities, due to the
repelling force between them (see Section 3.1).

5.1.3 Embedded Objects and Topology Changes

An important characteristic of the CPM is that its particle
system can adapt to the unknown topology. The free particles
arrive at the boundaries of the objects in the image, regardless
of the topologies of the objects. Moreover, embedded objects
can be captured using a single initialization.

Some results are shown in Fig. 9. The first three examples
in this figure were correctly segmented using only a single
initialization. As shown in the last example, multiple
initializations can also be performed. Note that the
recovered contours are not always closed (see the first,
third, and fourth examples), they may also form T-junctions
(see the first example) and, in our opinion, this represents
an advantage over active contours.

5.1.4 Boundary Leakage

This is not an issue for the CPM. If object boundaries have
gaps, the edge strength is small and the particles will not
converge to these locations. Theoutput contourswill be either
open or closed, depending on the lengths of the gaps. In

Fig. 10, we show results for three different values of the
damping coefficient�. For� ¼ 0:6, the particles cross over the
border separating the two main regions of the input image,
and all three objects are detected. When � ¼ 1:0, the particles
cross over boundaries with weak edge responses (i.e., the
right part of the border), and are attracted to the boundary of
the circle. For larger values of�, the particles converge only to
the border separating the two regions and to the elliptical
object near the initial set of particles. Hence, one can control
the behavior of the particles according to the desired output.
However, for automatic processing a parameter-free method
is desirable, which our method is not.

Results obtainedusing theCPMfor anumberof additional
input images are shown in Fig. 11. In the first row, the input
images and the initializations are shown; the second row
contains the resulting contours found by the method.

Although the first image (angiogram) is quite noisy and
difficult (because of the thin and elongated structures), the
CPMmethod yields quite a good result, being able to enclose
thewholeartery.Thenext imagesaredifficult tosegmenteven
by advanced segmentation methods because of the texture
present either in the background (first and third images) or in
the foreground (the fourth image). Still, the CPM method
behaves quite well, being able to output useful contours
which enclosemost parts of the objects present in the images.

5.2 Automatic Segmentation

Our next experiment is segmentation using (trivial) auto-
matic initializations. Note that the values of some parameters
of themethodweredecreased (w1 ¼ 0:6,w2 ¼ 0:7, � ¼ 0:4), in

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 10, OCTOBER 2004

Fig. 7. Initialization robustness of the CPM. (a) input images and initializations; (b) reconstructed curves.

Fig. 8. Convergence into boundary concavities. Initializations and reconstructed curves for two complex objects.



an attempt to reduce the oscillations of the particles near
equilibrium positions and, hence, to increase the accuracy of
the reconstruction; however, the downside is a slightly
increased convergence time.

The first set of segmentation results is shown inFig. 12. The

initializations shown in the first two caseswere performed by

placing free particles at those locations of the gradient-

magnitude image with values above 10 percent of the

maximum magnitude. In the next two images, initialization

was performed by uniformly spreading particles over the

image plane. The most important structures shown in these

complex images were correctly recovered, although some

gaps in the final contours do exist. To address this problem,

one can usemore advanced curve reconstruction algorithms,

better schemes for filtering, and postprocessing of the

contours. Note that, here, no postprocessing of the contours

was performed and only Gaussian filtering was used.
Some segmentation results for natural images obtained

using the first initialization method are shown in Fig. 13.

Natural images are known to be particularly difficult to

segment, mostly because of the background texture sur-

rounding the main objects. Without being perfect, the

segmentation results shown in both figures are quite good,

even though very simple initialization methods were used.

We expect that more advanced initializations combinedwith

nonlinear filtering would yield even better results.
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Fig. 9. Embedded objects and topology changes. First row: input images and initializations; second row: reconstructed curves.
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Fig. 11. Other results. (a) initializations; (b) results.



5.3 Skeleton Extraction

Another application of the CPM is skeleton computation,

based on the observation that local minima of the electric

field correspond to locations situated on or near the center of

the shape. Therefore, a simplemethod for skeleton extraction

is as follows:

1. Compute the electric field EE.
2. Detect local minima of the magnitude of the field

and assign fixed charges ei to these locations.
3. Compute once again the electric field to yield the

Lorentz force FFl.

We use a very simple local-minima detector, which labels

points as minima if they have in their (5� 5) neighborhood

at least 95 percent of points with value greater than or equal

to their own values.
Some examples of skeleton extraction using this experi-

mental setup are shown in Fig. 14. The first initialization was

done by placing free particles at those locations of the

gradient-magnitude image (after the second computation of

the electric field) with values above 10 percent of the

maximum magnitude. The second initialization was ob-

tained by uniformly spreading free particles over the image

plane. The advantage of this method for skeleton computa-

tion is that it can be applied to gray-scale images. A possible

extension is to augment the skeleton with some information

which may be used to reconstruct the curves (similar to the

medial axis transform).

5.4 Three-Dimensional Examples

A synthetic shape-recovery experiment using the CPM in 3D
was carried out on a 643 grid representing a torus, see Fig. 15.
The parameters of the model were set to w1 ¼ 0:6, w2 ¼ 0:7,

� ¼ 0:4, and the initialization was obtained by sampling
particles on the surfaces of the four spheres shown in the first

image. Intermediate reconstruction snapshots are shown in
the next images, endingwith the correctly recovered shape of
the target object—the torus shown in the last image.

A realistic shape-recovery experimentwasperformedon a
3D MRA (Magnetic Resonance Angiography) volume data
set (2563 voxels), see Fig. 16. Amaximum intensity projection

(MIP) rendering of this data set is shown in the left image of
Fig. 16; note the high amount of noise present in this data set.
The next image shows the initialization (625 particles were

sampled on the surface of the small sphere shown as wire
frame model) superimposed on the recovered surface,

consisting of 22,120 vertices (i.e., particles) and 80,306 faces.
The last image shows the recovered shape using as initializa-
tion 2,500 particles sampled on the surfaces of the four

spheres. The final surface has 26,417 vertices and 110,987
faces. Note that no postprocessing (i.e., smoothing or
simplification) of the final surfaces was performed. Both

results show that the most important structures were
correctly recovered, and only a few vessels are disconnected.

The same characteristics of the model observed in 2D are

apparent here as well; we could have initialized particles
anywhere inside the volume and the result would have

been essentially the same.
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5.5 Parameter Sensitivity

In this experiment, we consider the behavior of the CPMwith
varying settings of parameters. Since the choice of the
damping factor � was already addressed (see Fig. 10), we
limit ourselves to the effect of varying the weight ratio wr ¼
w1=w2 and the annealing factor a, see Fig. 17. The results
indicate that the parameter setting of the CPM is not critical.
There is a wide range from which one can select suitable
parameter values. Obviously, the model cannot handle

extreme settings (see the right-most images), and in these
cases the results may not be usable.

5.6 Coping with Noise

We have studied the behaviour of the CPM in the presence
of three types of independently distributed noise: 1) Gaus-
sian noise, 2) uniform noise, and 3) salt and pepper noise.
All experiments were carried out on the same binary
image, with the same initialization–the circle superimposed
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Fig. 13. Segmentation of natural images. (a) initializations; (b) results.

Fig. 14. Two examples of skeleton computation.

Fig. 15. Synthetic 3D example. Left-to-right, top-to-bottom: initialization, reconstructions at time steps t ¼ 20; 40; 100; 140; 180, at different scales.



over the result shown in the first image of Fig. 18. The

following noise types were used:

. Gaussian noise: zero mean and standard deviations
� ¼ 20; 60; 80; 100.

. Uniform noise: 20, 60, 80, 90 percent of the pixels were
replaced by random values between gray level 0
and 255.

. Salt and pepper noise: 20, 60, 80, 90 percent pixels were
replaced with either 0 or 255, randomly.

The results in Fig. 18 show that the method copes quite

well with all three types of noise. In all but two cases, the

method succeeds in finding rather good approximations of

the contours of the target object. Even in the last image,

which is the most difficult case (since the input image is

binary and has the largest amount of salt and pepper noise),

the method is still able to output a (noisy) contour, although

the object is more difficult to recognize.

6 CONCLUSIONS AND FUTURE WORK

We have introduced the CPM (charged-particle model), a

new physically motivated deformable model for shape

recovery, and demonstrated its flexibility and potential in a

wide variety of settings: 1) shape recovery using manual

initialization, 2) automatic segmentation, and 3) skeleton

computation on gray-scale images. The CPM exhibits some

important characteristics:

1. much less sensitivity to initialization than snakes;
2. increased capture range, granted by both Coulomb

and Lorentz forces;
3. good convergence into boundary concavities;
4. possibility to handle topological changes;
5. easily extendable to 3D; and
6. good behavior on noisy images.

In our opinion, the most important advantage of the CPM
over active contours is that the method can be used for
automatic segmentation, even with very simple initializa-
tion procedures. Extensive user interaction in the initializa-
tion phase is not mandatory, and segmentation can be
performed automatically.

Efficientmethodswere described for fast evaluation of the
Coulomb force at all particle positions (computational
complexity OðN logNÞ, with N the number of particles) and
computation of the external electric field (complexity OðMÞ,
withM number of pixels in the image). Shape reconstruction
can be done in OðN logNÞ time, using the algorithms of
Amenta et al. [40], [41]. Therefore, the overall complexity of
the method is dominated by evaluations of Coulomb forces,
performed at each time step. In practice, themethod is slower
compared tomost parametric snakes (complexityOðNÞ, with
N the number of snaxels), but faster than level-set techniques
(even with efficient implementations based on the narrow-
band algorithm [20]). For example, the time taken to segment
the X-ray hand image from Fig. 12 (resolution 417� 510
pixels) using uniformly placed particles, was 45 seconds on a
Pentium III at 667 MHz. In 3D, the time taken to segment the
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Fig. 16. Realistic 3D shape-recovery example. (a) Maximum intensity projection of the input volume; (b) recovered shapes using particles initialized
on the surface of the small sphere shown as wire frame model; (c) recovered shapes using particles initialized on the surfaces of the four spheres
shown as wire frame models.

Fig. 17. Sensitivity of the CPM to different parameter settings. In row 1, wr denotes the weight ratio w1=w2.



angiogram shown in Fig. 16 (2563 voxels) was around five
minutes (depending on the initialization) on an AMD
XP2600+ at 1900 MHz.

Further investigations of the CPM are the subject of
ongoing research. Of high interest is the applicability of the
method for segmentation of medical images. In addition,
we will focus on supplementing the skeleton with some
information useful in the reconstruction phase. A short-
coming of the current method is that it cannot guarantee
that the recovered contours (surfaces) are without gaps.
Instead of using Gaussian pyramids, one can use wavelet or
other pyramids based on nonlinear diffusion operators.
Also, more complex initialization methods for automatic
segmentation can be used to shorten the time required by
the particles to converge.

Another research direction would be to include more
constraints in the model. For example, we would want to
integrate some region information, as in [7], which means
that shape reconstruction should be done at each time step
(which is feasible since the reconstruction algorithms are
fast) in order to identify regions. Without this information,
the CPM may fail to recover the contours of the main
objects, if highly textured regions are present either in the
surroundings or in the main objects, see Fig. 19.

We believe that the CPMhaswide potential and is flexible
enough to be used and adapted to a given task ranging from
geometrical modeling to segmentation and object tracking.
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