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ABSTRACT

Context. Galaxies are strongly influenced by their environment. Quantifying the galaxy density is a difficult but critical step in study-
ing the properties of galaxies.
Aims. We aim to determine differences in density estimation methods and their applicability in astronomical problems. We study
the performance of four density estimation techniques: k-nearest neighbors (kNN), adaptive Gaussian kernel density estimation
(DEDICA), a special case of adaptive Epanechnikov kernel density estimation (MBE), and the Delaunay tessellation fieldestima-
tor (DTFE).
Methods. The density estimators are applied to six artificial datasets and on three astronomical datasets, the Millennium Simulation
and two samples from the Sloan Digital Sky Survey. We comparethe performance of the methods in two ways: first, by measuring
the integrated squared error and Kullback–Leibler divergence of each of the methods with the parametric densities of the datasets (in
case of the artificial datasets); second, by examining the applicability of the densities to study the properties of galaxies in relation to
their environment (for the SDSS datasets).
Results. The adaptive kernel based methods, especially MBE, performbetter than the other methods in terms of calculating the den-
sity properly and have stronger predictive power in astronomical use cases.
Conclusions. We recommend the Modified Breiman Estimator as a fast and reliable method to quantify the environment of galaxies.

Key words. Methods: statistical — Methods: data analysis — large-scale structure of the Universe

1. Introduction

Estimating densities in datasets is a critical first step in making
progress in many areas of astronomy. For example, a galaxy’s
environment apparently plays an important role in its evolu-
tion, as seen in the morphology–density relation (e.g., Hubble &
Humason 1931; Dressler 1980) or the color–density and color–
concentration–density relations (e.g., Baldry et al. 2006). For
these relations, a consistent, repeatable – and hopefully accurate
– estimate of the local density of galaxies is an important datum.
As another example, reconstruction of the large-scale structure
of the Universe requires a proper estimation of the cosmic den-
sity field (e.g., Romano-Dı́az & van de Weygaert 2007). Even
simulations require density estimation: smoothed particle hydro-
dynamics (SPH) is a method to create simulated astronomical
data using astrophysical fluid dynamical computation (Gingold
& Monaghan 1977; Lucy 1977), in which kernel-based den-
sity estimation is used to solve the hydrodynamical equations.
Density estimation is not only required for analyzing spatial do-
main structures but also for structures in other spaces, like find-
ing bound structures in six-dimensional phase space in simula-
tions of cosmic structure formation (Maciejewski et al. 2009) or
in three-dimensional projections of phase space in simulations of
the accretion of satellites by large galaxies (Helmi & de Zeeuw
2000).

In the current work we are motivated by a desire to quan-
tify the three-dimensional density distribution of galaxies in
large surveys (like the Sloan Digital Sky Survey, York et al.

2000, hereafter SDSS) in order to study environmental effects on
galaxy evolution. We are also interested in finding structures in
higher-dimensional spaces, like six-dimensional phase space or
even higher-dimensional spaces in large astronomical databases
(such as the SDSS database itself). We are therefore interested
in accurateand (computationally)efficientdensity estimators for
astronomical datasets in multiple dimensions.

In this paper we investigate the performance of four density
estimation methods:

– k-nearest neighbors (kNN);
– a 3D implementation of adaptive Gaussian kernel density es-

timation, called DEDICA (Pisani 1996);
– a modified version of the adaptive kernel density estimation

of Breiman et al. (1977), called the modified Breiman esti-
mator (MBE); and

– the Delaunay tessellation field estimator (DTFE: Schaap &
van de Weygaert 2000).

The first method is well-known to astronomers and involves de-
termining densities by counting the number of nearby neighbors
to a point under consideration. This method is typically used in
studies of the morphology–density relation and other observa-
tional studies of the relation between environment and galaxy
properties (e.g., Dressler 1980; Balogh et al. 2004; Baldryet al.
2006; Ball et al. 2008; Cowan & Ivezic 2008; Deng et al. 2009,
just to mention a few studies). The second and third methods are
both adaptive-kernel density estimators, where a kernel whose
size adapts to local conditions (usually isotropically), depending
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on some criteria set before or iteratively during the estimation
process, is used to smooth the point distribution so that typical
densities can be estimated. The fourth method, like the first, uses
the positions of nearby neighbors to estimate local densities. We
compare the methods using artificial datasets with known densi-
ties and three astronomical datasets, including the Millennium
simulation of Springel et al. (2005) and two samples of real
galaxies drawn from SDSS.

This paper is organized as follows. Section 2 discusses the
four density estimation methods under consideration. Section 3
describes the datasets we used. Section 4 contains a compari-
son between the methods based on datasets with both known
and unknown underlying density fields. Finally, in Section 5we
summarize our findings and draw conclusions.

We point out here that our goal here isnot to quantify the
shapeof the environments of objects in datasets, but rather to
estimate the density field or the densities at specific pointsin
those datasets (see below). Information about the shapes ofthe
structures found in the datasets is beyond the scope of this work;
we refer the interested reader to recent excellent studies by, e.g.,
Jasche et al. (2010), Aragón-Calvo et al. (2010) and Sousbie
et al. (2009).

2. Density estimation methods

The purpose of a density estimator is to approximate the true
probability density function (pdf) of a random process froman
observed dataset. There are two main families of density estima-
tors: parametric and non-parametric. In parametric methods the
type of distribution (uniform, normal, Poisson etc.) of thephe-
nomenon needs to be known (or guessed) beforehand, whereas
non-parametric methods do not need this information. The meth-
ods under consideration in this study belong to the second type.

First, though, we must distinguish different types of esti-
mated densities. Starting from an input dataset consistingof a
list of point positionsri ∈ R

d, i = 1, . . . ,N in a d-dimensional
spatial domain, we define two types of probability density as

1. Point probability densities: probability densities ˆp(ri) at the
original point positionsri;

2. Probability density field: probability densities ˆp(r) at arbi-
trary points in the spatial domain ofRd. We often evaluate
field densities at the points of a Cartesiand-dimensional grid
and therefore also speak ofgrid densities.

Furthermore, the probability densities have to be converted
to physical densities when comparing galaxies. This is because
the parameter of interest is a quantification of the environment
of individual galaxies, not the probability of finding a galaxy
at a specific position. The latter is is calculated by the density
estimators and can be converted into the former by multiplying
by N, i.e.,

1. Point number densities: ρ̂ (ri) = Np̂(ri)
2. Number density field: ρ̂ (r) = Np̂(r)

2.1. k-nearest neighbor method

The kNN estimator is well-known in astronomy and its work-
ing principle is to center a window onto each pointr and let it
grow until it capturesk samples (thek nearest-neighbors ofr).
Then the kNN density estimate for a dataset withN data points
is defined at anyr ∈ Rd by

p̂(r) =
1
N

k

Vdδ
d
k

, (1)

whereδk is the distance of thekth nearest neighbor fromr andVd

the volume of the unit sphere in d-dimensional space. The kNN
approach uses a different window size for each point so it adapts
to the local density: when the density is high nearr, the window
will be small; but when the local density is low, the window will
grow to a larger size.

The kNN approach can be a good solution for finding the
“best” window size. However, this method suffers from a num-
ber of deficiencies. The resulting density estimate is not a proper
probability density since its integral over all space diverges, and
its tails fall off extremely slowly (Silverman 1986). The den-
sity field is very “spiky” and the estimated density is far from
zero even in the case of large regions with no observed samples,
due to the heavy tails. Furthermore, it yields discontinuities even
when the underlying distributions are continuous (Breimanet al.
1977).

In astronomical work it is typically the case that the sam-
ple point is not considered to be its own neighbor (e.g., Dressler
1980; Baldry et al. 2006). This presents a conceptual problem, as
the point density will then disagree with the field density atthe
location of a sample point. In our work we take the sample point
to be its own first neighbor as in Silverman (1986), and we use
the average of kNN-estimated densities withk = 5 andk = 6
when computing either the point or grid densities. This is not
precisely equivalent to the averagek = 4 andk = 5 kNN den-
sity used in many astronomical papers (e.g., Baldry et al. 2006).
While theV in the denominator of Eq. 1 would be equal, thek
in the nominator is one higher in Silverman’s definition.

2.2. Adaptive Epanechnikov kernel density estimation

Breiman et al. (1977) described a case of an adaptive (Gaussian)
kernel approach. This method begins by computing the distance
δi,k to thekth nearest neighbor of each data point located atri ,
just as in a kNN density estimator. Rather than using this dis-
tance to compute the kNN density estimate, it uses this to steer
the local kernel size (also known asbandwidth) in an adaptive
kernel density estimator or Parzen estimator (Parzen 1962). For a
sampleDN of N points with position vectorsri ∈ R

d(i = 1, ...,N)
and kernelK(r), the adaptive kernel density estimate ˆp(r) is then
given by:

p̂(r) =
1
N

N
∑

i=1

(αk δi,k)−dK

(

r − ri

αk δi,k

)

. (2)

In their simulations Breiman et al. (1977) used a symmetric
Gaussian kernel. Herek andαk are still to be determined. For
k orαk too small, the result will be noisy, whereas ifk andαk are
large we lose detail. The proper parameter values forσ (width of
the normal distribution),k andαk were determined by optimiz-
ing certain goodness-of-fit criteria (for details see Breiman et al.
1977).

Silverman (1986) argues that we can interpret this as using
a “pilot estimate” of the density. We can understand this by ob-
serving from Eq. (1) that

p̂kNN(ri) ∝ δ−d
i,k (3)

Thus the bandwidth at each location is proportional to ˆp−1/d
kNN(ri).

Thus, Breiman et al. (1977) implicitly use a kNN pilot density
estimate to steer the final density estimate. The effect is that in
low density regionsδi,k will be large and the kernel will spread
out; in high density regions the opposite occurs.
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2.2.1. Fundamentals of the modified Breiman estimator
(MBE)

The approach of Breiman et al. (1977) used for finding proper
parameter values is computationally expensive, because they
need to run the estimator numerous times to find the optimal pa-
rameters. This is even more costly because the kernel has infinite
support. This means that each data point contributes to the den-
sity at every position, resulting in anO(N2) cost per parameter
setting tested.

We want to apply the method for astronomical datasets that
are very large in size (> 50, 000 data points) and dimension
(from 10 to hundreds). For this reason we use a fast and scalable
modification of Breiman’s method along the lines of Wilkinson
& Meijer (1995). It was observed by Silverman (1986), that the
implicit kNN pilot estimate could be replaced by a different esti-
mate without significant change in quality. Therefore, Wilkinson
& Meijer (1995) used the kernel density estimator itself forthe
pilot. Furthermore they replaced the infinite support Gaussian
kernel by the finite support Epanechnikov kernel, which in-
creases computation speed significantly, and is optimal in the
sense of minimal mean integrated square error (Epanechnikov
1969). To increase computational speed of the pilot estimate,
the pilot density field is calculated on grid points first, after
which the pilot density for each data point is obtained by multi-
linear interpolation. The method is also scalable: even when the
number of data points grows very large, the computation time
remains bounded by the number of grid points (Wilkinson &
Meijer 1995).

In the modified version Eq. 2 becomes

p̂(r) =
1
N

N
∑

i=1

(σλi)−dKe

(

r − ri

σλi

)

(4)

whereKe is the Epanechnikov kernel defined as

Ke(t) =
{

d+2
2Vd

(1− t.t) if t.t < 1
0 otherwise

(5)

in which Vd is the volume of the unit sphere ind-dimensional
space.

The density estimation proceeds in two phases.

Phase 1. Compute an optimal pilot window widthσopt with a
percentile of the data as defined in Eq. 8 below. Define a
pilot densityp̂pilot by using Eq. 4 withσ = σopt andλi = 1.

Phase 2. From the pilot density ˆppilot compute the local band-
width parametersλi by

λi =

(

p̂pilot(ri)

g

)−α

. (6)

Here g is the geometric mean of the pilot densities and
α = 1/d is the sensitivity parameter. The value of 1/d is
chosen to be equivalent to the method of Breiman et al.
(1977), though some authors prefer a value of 1/2 regardless
of d (Silverman 1986). The final density estimate is given by
Eq. 4 once again, but now withσ = σopt andλi as given by
Eq. 6.

Compared to the original method of Breiman et al., it should be
noted that afixed window widthσopt for the pilot estimate is
used, rather than a fixed value ofk. During the second phase of
the algorithm we vary the window width with the density at each
data point via the local bandwidth parameter. Data points with a
low pilot estimate get a large window andvice versa.

2.2.2. The pilot density estimate

In the literature there exists a variety of methods to choosethe
optimal window widthσopt automatically. Basically there are
two families of methods known: (i) classical (such as least-
square cross-validation) and (ii) plug-in methods. In the latter
case, the bias of an estimate ˆp is written as a function of the
unknownp, and usually approximated through Taylor series ex-
pansions. A pilot estimate ofp is then “plugged in” to derive
an estimate of the bias (Loader 1999). However, there is some
debate about the merits of these methods. For example, Park
& Marron (1990) found that the performance of least squares
cross-validation is not very satisfactory. They recommended the
plug-in methods for bandwidth selection. There are severalother
authors who have made strong comments about the classical
approach and advocated plug-in methods (Ruppert et al. 1995;
Sheather 1992). On the other hand, Loader (1999) strongly op-
posed these views. He argued that the plug-in methods can be
criticized for the same reason the above authors criticizedclas-
sical approaches.

We have already mentioned that the datasets that we will use
are very large in size. Selecting bandwidth by cross-validation
or a plug-in approach could consume more time than the density
estimation itself. Therefore, we looked for simpler methods that
can give an accurate estimate for the window width. Moreover,
this window width is only used for the pilot estimate and for this
purpose the desired window width should be large enough so
that two consecutive window placements cover an overlapping
area. For window width we triedmax-min, percentile, median,
standard deviationandaverage distanceof the data points, nor-
malized by the logarithm of the number of data points. We found
that usingpercentile(Eq. 8) as window width works well (in
terms of the integrated squared error, see Section 2.5.1) even in
the presence of outliers. However, themax-minwindow width
works better if the dataset contains no outliers. Nevertheless, we
recommend user interaction for changing the window width in
the case of an under/oversmoothed density field.

Our procedure for the automatic determinationσopt can be
summarized as follows. First window sizesσx, σy, σz in each of
the coordinate directions are computed by

σℓ =
P80(ℓ) − P20(ℓ)

logN
, ℓ = x, y, z (7)

whereP80(ℓ) andP20(ℓ) are the 80th and 20th percentile of the
data points in each dimensionℓ = x, y, z. Then, in order to avoid
oversmoothing, the optimal pilot window sizeσopt is chosen as
the smallest of these, i.e.,

σopt = min{σx, σy, σz}. (8)

2.3. Adaptive Gaussian kernel density estimation (DEDICA)

Pisani (1996) proposed a kernel-based density estimation
method for multivariate data which is an extension of his work
for the univariate case (Pisani 1993). Again this is an adaptive
kernel estimator. The main differences with the MBE method
are that a Gaussian kernel is used and that the optimal band-
widths are determined in an iterative way by minimizing a cross-
validation estimate. In our study, we use the 3D density estimator
DEDICA, which is the FORTRAN implementation by Pisani.
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2.3.1. Fundamentals of the method.

For a sampleDN of N points with position vectorsri ∈ R
d, (i =

1, ...,N) and kernel width of theith point given byσi , the adaptive
Gaussian kernel density estimate ˆp(r) is given by

p̂(r) =
1
N

N
∑

i=1

Kn(|ri − r|, σi) (9)

whereKn(t, σ) is the standardd-dimensional Gaussian kernel

Kn(t, σ) =
1

(2πσ2)d/2
exp

[

−
t2

2σ2

]

(10)

The kernel widthsσi are chosen by an iterative method that min-
imizes the integrated square error locally. The procedure is as
follows.

1. Initialize the window width:

σ(0) = 4σt, σt = A(K)N−
1

d+4

√

√

√

1
d

d
∑

l=1

s2
ll (11)

where sll is the standard deviation of thelth coordinate of
the data andA(K) = 0.96 for a Gaussian kernel (Silverman
1986).

2. Iteratively perform the following steps forn = 1, 2, . . . :
(a) Halve the window width:σ(n) = σ(n−1)/2
(b) Compute apilot estimatep̂(n)

pilot(ri) by Eq. (9) withfixed

kernel sizesσi = σ
(n)

(c) compute local bandwidth factorsλ(n)
i by Eq. (6) with

p̂pilot = p̂(n)
pilot andα = 1/2

(d) Compute an adaptive kernel estimate ˆp(n)
ka (ri) by Eq. (9)

with adaptive kernel sizesσ(n)
i = σ

(n) · λ
(n)
i

(e) Compute the cross-validation estimate (Pisani 1996,
Eq. 7):

M(p̂(n)
ka ) =

1
N2

N
∑

i=1

N
∑

j=1

Kn(|ri − r j|, ((σ
(n)
i )2 + (σ(n)

j )2)
1
2 )

−
2

N(N − 1)

N
∑

i=1

∑

j,i

Kn(|ri − r j |, σ
(n)
j ). (12)

Minimization of the cross-validation estimate is equiva-
lent to minimizing the integrated square error between
the true density and the estimated density, see Pisani
(1996) for more details.

3. Determine the iteration numbern = nopt for which the cross-
validation estimate is minimized, and return the correspond-
ing optimal window widthsσ

(nopt)
i and the adaptive kernel

density estimate ˆp
(nopt)
ka (ri) at the sample points.

The cross-validation procedure can be understood by looking
at the behaviour of the different terms inM(p̂(n)

ka ). Whenσn
i

decreases during iteration, some terms will keep on increasing
while others start to decrease when the local window sizes be-
come much smaller than the inter-point distances. This is the
point where the minimum ofM(p̂(n)

ka ) is reached and the iteration
stops.

Although, as we will see below, DEDICA gives good results
in many cases, it fails in certain situations. This can be attributed
to some drawbacks of the method. First, the fixed kernel sizes
σ(n) used for the pilot estimates form a discrete series of values

(determined by the choice ofσ(0)). This series of values may be
too coarse for finding the optimal window widths. Second, the
method seeks aσ

(nopt)
i which leads to a globally optimal result,

which, however, may be far from optimal in some regions.
We made an extension to the DEDICA code for obtaining the

grid density, since the original code computes only point densi-
ties. We used the optimal window widthsσ

(nopt)
i of each point cal-

culated during the point density estimation to obtain the adaptive
kernel density estimate ˆp

(nopt)
ka (r) at each grid pointr by Eq. (9).

2.4. Delaunay Tessellation Field Estimator (DTFE)

DTFE is a well-known method in astronomy to reconstruct den-
sity fields from a discrete set of scattered points (see, e.g.,
Schaap & van de Weygaert 2000). In this method, the Delaunay
tessellation (Okabe et al. 2000) of the points is constructed
first. Then the point density is defined as the inverse of the
total volumeV of the surrounding tetrahedra (in 3D) of each
point, multiplied by a normalization constant (Schaap & vande
Weygaert 2000). For a sampleDN of N points with position vec-
tors ri ∈ R

d, (i = 1, ...,N), the DTFE density estimate ˆp(ri) is
given by:

p̂(ri) =
1
N

d + 1
Vi

(13)

whereVi =
∑K

j=1 Vtetra, j. HereVtetra, j is the volume of thejth

tetrahedra andK is the number of tetrahedra that contain point
ri .

In the next step, the density field is obtained by linearly inter-
polating the point densities ˆp(ri) at the vertices of the Delaunay
tetrahedra to the full sample volume.

2.5. Error measures

2.5.1. Integrated Squared Error

The integrated squared error (ISE) between the true densityfield
and the density field obtained from each density estimator isone
of our primary performance criteria in this study. The ISE isde-
fined as:

IS E=
∫ ∞

−∞

(p̂(r) − p(r))2dr (14)

wherep̂(r) is the estimated density andp(r) is the true density.

2.5.2. Generalized Kullback-Leibler Divergence (Csiszar’s
I-divergence)

Kullback-Leibler divergence (KLD) is one of the fundamental
concepts in statistics that measures how far away a probability
distribution f is from another distributiong. It can also be in-
terpreted in terms of the loss of power of the likelihood ratio
test when the wrong distribution is used for one of the hypothe-
ses (Eguchi & Copas 2006). The value ofKLD( f , g) = 0 if f
= g. However, the Kullback-Leibler divergence is only defined
if f andg both integrate to 1. Among the four methods under
consideration, the density function estimated by kNN does not
integrate to unity. Therefore, we use the generalized Kullback-
Leibler divergence (hereafter gKLD), also known as Csiszar’s
I-divergence (Csiszar 1991), to quantify the difference between
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two non-negative functions which have different integrals. For
two positive functionsf (r) andg(r), the gKLD is defined as:

D( f ‖ g) =
∫ ∞

−∞

(

f (r) log

(

f (r)
g(r)

)

− f (r) + g(r)
)

dr. (15)

We compare the methods by comparingD(p ‖ p̂).
Strictly speaking, the (generalized) Kullback-Leibler diver-

gence is only defined when both true densityf (r) or the method
densityg(r) are positive. This is a condition that is not fulfilled
by our data: firstly, the boundary region of our ‘true’ fields (ap-
proximately 23% of the total volume) has zero density; secondly,
the DTFE and MBE methods produce density fields with zero
values because they have finite support.

All methods except the DTFE estimate non-zeros for regions
for which the true density is zero. This results in a gKLD value
for kNN, MBE and DEDICA that is lower than is justified: the
discrepancy between the true and estimated field in this bound-
ary region is not accounted for in the measure due to the mul-
tiplication by the true density (f ) in Eq. 15. The DTFE method
behaves in the opposite way: it estimates zero densities where
the true density is non-zero. We modified the gKLD such that
if g(r) = 0 we instead setg(r) = ǫ, whereǫ is a small number.
This results in a higher gKLD value for DTFE than is justified:
the discrepancy in the boundary region can have a arbitrarily
large effect (by choosing an arbitrarily lowǫ) on the measure.
However, we determined that this effect is small by comparing
our gKLD value with the gKLD value calculated only over the
regions where both fields are non-zero.

3. Datasets

We examined the performance of the four density estimation
methods on three classes of datasets: a number of simulated
datasets with known density fields to test the ability of each
method to recover relatively simple density distributions; an
astronomical dataset with an unknown but well-sampled den-
sity field based on the Millennium Simulation of Springel
et al. (2005); and two different observed galaxy samples drawn
from the Sloan Digital Sky Survey (SDSS: see, e.g., Adelman-
McCarthy & others 2007; Abazajian et al. 2009).

3.1. Simulated datasets with known density fields

We begin by constructing six simulated datasets with known
density distributions (Table 1).

– Dataset 1 is a unimodal Gaussian distribution with added
uniform noise.

– Dataset 2 contains two Gaussian distributions with an equal
number of points but different covariance matrices (CMs)
and different centers, again with added uniform noise; this
dataset has the same number of points as Dataset 1.

– Dataset 3 contains four Gaussian distributions with an equal
number of points but different CMs and different centers,
again with added uniform noise; this dataset has twice as
many points as Datasets 1 and 2.

– Dataset 4 contains a wall-like and a filament-like struc-
ture. Thex- andy-coordinates of the wall-like structure are
drawn from a uniform distribution and thez-coordinate is
drawn from a Gaussian distribution. The filament-like struc-
ture is created with a Gaussian distribution in thex- andy-
coordinates and a uniform distribution inz-coordinate.

– Dataset 5 contains three wall-like structures where each wall
is created with a uniform distribution in two of the dimen-
sions and a Gaussian distribution in the third.

– Dataset 6 contains points drawn from a lognormal distribu-
tion.

Scatter plot representations of these datasets are shown in
Figure 1.

The increasing complexity of these datasets allow us to probe
simple situations ranging from idealized clusters to density fields
that look somewhat like the large-scale structure of the Universe,
with walls and filaments. The advantage of using simple simu-
lations withknowndensity distributions is clearly the ability to
test the ability of the methods to recover the “true” point orfield
densities.

3.2. Astronomical datasets with unknown density fields

To test the performance of the methods on astronomical data we
use three astronomical datasets: semi-analytic model galaxies
drawn from the Millennium Simulation (Springel et al. 2005),
and two samples of galaxies drawn from SDSS.

3.2.1. The MSG dataset

Our first astronomical dataset consists of the L-Galaxy sample
of the “milliMil” subsample of the Millennium Simulation1. The
Millennium Simulation is one of the largest simulations ever to
study the development of the Universe (Springel et al. 2005), fol-
lowing nearly 2× 1010 particles. It was created to make predic-
tions about the large-scale structure of the universe and compare
these against observational data and astrophysical theories. The
L-Galaxies are created by populating halo trees drawn from the
Millennium Simulation with semi-analytic models following the
precepts in De Lucia & Blaizot (2007). We use the much smaller
“milliMillennium” (“milliMil”) simulation, which sampled only
∼ 2 × 107 particles, and its associated L-Galaxies data. We re-
fer to this dataset as the MSG dataset, which contains 53918
points. In a visual representation the output of the simulation
looks like a fine three-dimensional web of filaments with fractal
self-similarity and multiple layers of organization.

Our goal is to use the complexity of the MSG dataset to test
the performance of the methods with a well-sampled but reason-
ably “astronomical” setting. Unfortunately, thetrue underlying
density field of the MSG dataset is unknown. We therefore boot-
strap MSG samples to define a “true density” for astronomical
data. The density field of the MSG data is used to create new
datasets and their density is taken to be the true density of those
datasets. The process of creating new datasets can be described
as follows:

Step 1: Calculate the density field of the MSG dataset using one
of the density estimation methods.

Step 2: Generate a new dataset by a Monte-Carlo process,
which will have a probability density function similar to that
of the MSG data, as follows:
1. Generate a random2 position r i(x, y, z) within the origi-

nal sample and a random valuep between zero and the
maximum field density of the sample.

2. Interpolate the densityP of a pointr i(x, y, z) in the field
obtained from step 1.

1 Seehttp://www.g-vo.org/Millennium/Help?page=index
2 We used a random number generator based on the subtractive

method of Knuth 1981 with a period of 255.
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Table 1.Simulated datasets with known density distributions

Dataset Component Points Distribution
1 Trivariate Gaussian 1 40000 M1 = (50,50, 50) CM1 = diag(30)

Uniform random noise 20000 Uniform(x, y, z) = [0, 100]
2 Trivariate Gaussian 1 20000 M1 = (25,25, 25) CM1 = diag(5)

Trivariate Gaussian 2 20000 M2 = (65,65, 65) CM2 = diag(20)
Uniform random noise 20000 Uniform(x, y, z) = [0, 100]

3 Trivariate Gaussian 1 20000 M1 = (24,10, 10) CM1 = diag(2)
Trivariate Gaussian 2 20000 M2 = (33,70, 40) CM2 = diag(10)
Trivariate Gaussian 3 20000 M3 = (90,20, 80) CM3 = diag(1)
Trivariate Gaussian 4 20000 M4 = (60,80, 23) CM4 = diag(5)
Uniform random noise 40000 Uniform(x, y, z) = [0, 100]

4 Wall-like structure 30000 Uniform(x, y) = [0, 100], Gaussian(z) = [M = 50, var= 5]
Filament-like structure 30000 Uniform(z) = [0,100], Gaussian(x, y) = [M = 50, var= 5]

5 Wall-like structure 1 20000 Uniform(x, z) = [0,100], Gaussian(y)= [M = 10, var= 5]
Wall-like structure 2 20000 Uniform(x, y) = [0, 100], Gaussian(z) = [M = 50, var= 5]
Wall-like structure 3 20000 Uniform(x, z) = [0,100], Gaussian(y) = [M = 50, var= 5]

6 Log-normal 60000 Log− normal(x, y, z) = [M = 3, var= 4]

Notes. M=Mean,CM=Covariance Matrix

Fig. 1.Scatter plot representations of simulated datasets. Left to right, top to bottom: Datasets 1–6.

3. if p < P accept the pointr i(x, y, z) as a point in the new
dataset;P will be the “true” density ofr i(x, y, z).

4. repeat step 2a-2c until the required number of points is
obtained.

We generated two such datasets, one using DTFE (called the
“MSG-DTFE” dataset) and another using MBE (called “MSG-
MBE”), each with the same number of points as the initial MSG
dataset. For the MSG-MBE dataset the true densityP was in-
terpolated from the grid of 2563 points and for the MSG-DTFE
dataset from the Delaunay tessellation (see Appendix B). Scatter
plot representations of these three fields – the original MSG
dataset and the two derived datasets – are shown in Figure 2.
Note that both derived datasets look reassuringly like the orig-
inal MSG dataset, although slight smoothing can been seen in
both derived datasets.

Next, the field densities – on the grid – of the two new
datasets generated by all density estimation methods are com-
pared with the true densities obtained with the process described
above.

3.2.2. SDSS datasets

Finally, to apply these density estimation methods to observed
astronomical data we extract two galaxy samples from the
Seventh Data Release (DR7) of SDSS (Abazajian et al. 2009): a
“cone” of galaxies over a relatively small solid angle on thesky
but extended in redshift, and a “z-shell” of galaxies over a small
redshift interval but a large solid area.

The spectroscopic redshift is used to calculate the comov-
ing distanceR which is subsequently converted to Cartesian co-

6



Ferdosi et al.: Density Estimation Methods

Fig. 2. Scatter plot representation of MSG and MSG-derived datasets.
Top to bottom: MSG data, Dataset MSG-DTFE, Dataset MSG-MBE.

ordinates for density estimation, using a flat cosmology with
Ωm = 0.28,ΩΛ = 0.72,h0 = 0.7.

Completeness Corrections

A completeness correction is required when calculating densities
from SDSS data, which we discuss before presenting the sam-
ples. SDSS is magnitude-selected but not (initially) constrained
in redshift. This means that with distance, the number of galaxies
in the sample drops because fainter galaxies can no longer bede-
tected, causing underestimated densities for distant galaxies. To
counter this effect, weights are calculated for every distance as-
suming a Schechter luminosity function (Schechter 1976; Felten
1977), following the procedure of Martı́nez & Saar (2002). For
this calculation all SDSS galaxies with spectroscopic distance
between 50 and 2000 Mpc (corresponding to redshifts from
0.0117 to 0.530) and Petrosianr < 17.7 are used. If the galaxies
follow a Schechter luminosity function, they should also follow
a number distribution

dN
dR
= 〈ρ (r)〉ΩR2Φ(R) (16)
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Fig. 3.Top: Distance distribution of the SDSS spectroscopic legacy data
in comoving distances assuming a concordance cosmology (Ωm = 0.28,
ΩΛ = 0.72, h = 0.7). The dashed line is a fit to this distribution as-
suming the galaxies follow a Schechter luminosity function, with an
apparent magnitude limit ofr < 17.7 (see Eq. 16). Bottom: The cor-
responding inverse weight as derived from the luminosity function. A
10% completeness level (corresponding toR = 515 Mpc, equivalent to
z= 0.123) is chosen to remove high redshift outliers.

where〈ρ (r)〉 is the average field density,Ω the survey area and
Φ(R) is the selection function given by

Φ(R) = e−
(

R
Rc

)β

. (17)

The best fit of Eq. 16 to our data (Ω = 2.447 sr) is given by
〈ρ (r)〉 = 0.013 Mpc−3, Rc = 299.8 Mpc andβ = 1.5 and is
shown in Figure 3, top. The corresponding selection function is
shown in Figure 3, bottom. After calculation, the densitiesare
corrected by dividing by the value of the selection functionat
the distance of the galaxy.

We note that due to the fiber masks used for the spectroscopy
of SDSS, not all (bright) sources in dense environments have
spectroscopic redshifts. These sources are not included inour
sample, and we have not corrected for this, resulting in a bias of
underestimated densities in the densest regions.

The “cone” sample

We choose 1939 “primary” galaxies within the rectangular
boundary RA= (185, 190) and Dec= (9, 12) and with Petrosian
r < 17.7 and that have spectroscopic redshifts. The sky coverage
of our sample is 14.7�◦.

A lower completeness limit (Fig. 3) of 10% is chosen to
truncate the galaxy sample to limit the effect of high distance
outliers; an incompleteness up to 90% does not cause unac-
ceptably large errors when attempting to estimate the density of
galaxies (see Appendix A). This corresponds to a distance of
Rmax = 515 Mpc (redshift 0.123).
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Fig. 4. Left: The cone sample, a 15�◦ area within a redshift range of
z< 0.123 (R< 515 Mpc). Right: The shell sample, selected from SDSS
Northern Galactic Cap over the redshift range 0.10 < z < 0.11, corre-
sponding to a distance range of 418–459 Mpc.

To prevent edge effects and to limit the effects of local mo-
tion, a lower limit for the distance is set atRmin = 50.0 Mpc
(corresponding to a redshift of 0.0117). This results in a final
number of galaxies in the “cone” sample of 1030. Volume den-
sities were calculated using this magnitude- and redshift-limited
sample of 1030 galaxies.

From integration of Eq. 16 for our cone sample (Ωcone =

0.00449 sr), it is expected that there are 2702 sources in the re-
gion of which we would detect 692. Instead, the cone sample has
1030 galaxies, 49% more than expected. Comparing with other
regions of the same size shows that our cone sample is indeed
extraordinary dense: out of the 24 other regions, only one had
more sources than ours. Therefore we correct the average field
density of the “cone” sample to〈ρcone(r)〉 = 0.0196 Mpc−3.

The definition ofσopt for the MBE in Eq. 8 does not suf-
fice for narrow cone-like samples. Problematic cases for such
samples are a strong alignment with one axes (or planes) of the
Cartesian coordinate system (our case), or an alignment with one
of the space diagonals. The former results in a too-smallσopt

value because one or two of theσl values will be much smaller
than the other(s), while the latter results in a too-highσopt be-
causeN (in the denominator of Eq. 7) does not reflect the in-
complete filling of space by the sample. Therefore we createda
new definition ofσopt for conical samples: first the average dis-
tance of the the nearest half of the galaxies is determined; then
σopt is chosen as the square root of the cross section of the cone
at that distance.

We explore the effect of the “cone” sample selection on the
performance of the density estimators in Appendix A.

The “shell” sample

To avoid the complication of the changing luminosity limit on
the inferred densities, we also selected galaxies from SDSS
in a thin shell in redshift space. For this “shell” sample, we
choose 34558 “primary” galaxies in the Northern Galactic Cap
(Abazajian et al. 2009) with redshifts in the range 0.10 < z <
0.11 and a Petrosian magnitudesr < 17.7 (Fig. 4).

To compare with the “cone” sample, the incompleteness cor-
rection is applied to the shell sample as well, enhancing theesti-
mated densities by a factor of 5.3 to 6.9.

4. Results

We begin by examining the performance of the four density
estimation methods on simulated datasets with known density

Fig. 5. Performance of DEDICA for dataset 4. Filament in red and
the wall in blue. Left: Spatial representation of the dataset. Right:
Comparison of true and DEDICA-inferred densities.

fields. We find that the adaptive-kernel-basedmethods, MBE and
DEDICA, best recover the input density distributions in these
cases. We conclude this section by applying the density estima-
tion methods to the SDSS samples and examine their utility for
determining the color–density and color–concentration–density
relations.

4.1. Simulated Datasets

We first examine the performance of the four density estimation
methods on the six simulated datasets and then on the two MSG-
derived datasets.

4.1.1. Artificial datasets

We compare the performance of the methods for the artifi-
cial datasets in the top rows of Table 2 using the ISE and the
gKLD metrics. The true densities are parametric densities cal-
culated using the parameters with which the datasets are cre-
ated. It is clear that the adaptive-kernel-based methods, MBE
and DEDICA, perform significantly better than kNN or DTFE
in recovering the input density distributions. For all but Dataset
6, the lognormal distribution, the performance of MBE is better
than or roughly equal to that of DEDICA. We note that the MBE
densities were calculated with the automatic choice of the ker-
nel size, and better performance of MBE might be obtained by
modifying the smoothing parameter manually.

We note also that DEDICA performs very poorly for Dataset
4 (wall plus filament), where it fails to estimate the proper
density. Examining the point densities in Figure 5, it is clear
that DEDICA underestimates the densities in the wall. We at-
tribute this to the method failing to choose the proper kernel size
during the automatic (cross-validation) kernel size selection on
this dataset. We also see similar behavior when consideringthe
MSG and SDSS datasets. We discuss this issue in more detail in
Section 5.3.

Furthermore we note that the field produced by kNN is not
normalized. For datasets 1 to 6, the fields are approximately25
to 30% over-dense on average. This is part of the reason that
kNN performs the worst in terms of the integrated square error
on these datasets.

8
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Table 2.Performance of density estimators: simulated and MSG datasets.

Integrated Squared Error Generalized Kullback-Leibler divergence
Dataset MBE DEDICA DTFE kNN MBE DEDICA DTFE kNN
1 2.23× 10−7 6.44× 10−6 1.54× 10−5 2.82× 10−5 5.61× 10−2 7.62× 10−2 1.83× 10−1 1.59× 10−1

2 3.04× 10−6 1.75× 10−6 5.85× 10−5 1.19× 10−4 4.53× 10−2 8.34× 10−2 1.90× 10−1 1.62× 10−1

3 4.74× 10−6 9.10× 10−6 1.99× 10−4 4.28× 10−4 3.90× 10−2 6.77× 10−2 1.62× 10−1 1.54× 10−1

4 2.35× 10−6 2.91× 10−4 1.12× 10−5 2.02× 10−5 6.22× 10−2 1.33× 10+1 2.34× 10−1 1.79× 10−1

5 5.65× 10−7 5.38× 10−7 1.31× 10−6 2.13× 10−6 1.01× 10−1 9.12× 10−2 2.42× 10−1 2.12× 10−1

6 7.66× 10−4 7.94× 10−5 1.96× 10−3 3.71× 10−3 3.21× 10−1 6.32× 10−2 1.07× 10−1 1.43× 10−1

MSG-DTFE 1.68× 10−3 4.86× 10−3 1.24× 10−3 1.39× 10−3 6.50× 10−1 2.18× 10+1 5.74× 10−1 5.73× 10−1

MSG-MBE 6.89× 10−7 5.88× 10−4 1.95× 10−1 1.71× 10−4 3.00× 10−2 2.26× 10+1 1.25× 100 3.08× 10−1

Notes.Entries highlighted inboldface represent the smallest ISE or gKLD value and therefore the “best” method for that dataset under that
performance metric.

4.1.2. The MSG datasets

We compare the performance of the density estimators on the
MSG datasets in the bottom rows of Table 2. As expected, DTFE
performs best on the MSG-DTFE dataset, and MBE performs
best on the MSG-MBE dataset. Interestingly, kNN performs as
well as DTFE on the MSG-DTFE dataset. This is not a com-
plete surprise, as DTFE and kNN are conceptually similar, be-
cause both use only points in the immediate vicinity of the cur-
rent location to estimate the density directly. Because of this,
both may perform better than kernel estimates in the presence of
strong gradients or even discontinuities in the underlyingden-
sity. Despite this, MBE performs nearly as well as DTFE and
kNN on the MSG-DTFE dataset, suggesting that MBE contin-
ues to perform well even on spatially-complex datasets.

The gKLD metric in Table 2 reveals that DEDICA fails to
estimate proper densities for the samples from the Millennium
dataset. For both MSG samples, DEDICA produces very dif-
ferent density distributions when compared with the “true”dis-
tribution (see the MSG-MBE dataset Fig. 6). As noted above,
we observed a similar performance of DEDICA on the simu-
lated Dataset 4, which contains a filament-like structure. The
MSG dataset also contains obvious filamentary structure. Again,
it appears that the automatic kernel size selection (using cross-
validation) of DEDICA failed to choose proper kernel size for
such datasets (although it performs quite well in Gaussian and
lognormal cases). We summarize this issue in Section 5.3.

4.2. Application to SDSS datasets

We now examine the application of our density estimators to the
two observed galaxy datasets from SDSS, the “cone” and “shell”
samples defined in Section 3.2.2 above.

4.2.1. Density magnitude distributions

We begin by comparing the distributions of thevaluesof the den-
sities [recall that ˆρ (ri) = Np̂(ri)] produced by the four different
methods (Figure 7). (Note that in this subsection “density dis-
tribution” refers to the 1-D distribution of themagnitudeof the
density, not to the density distribution in space.) All fourdensity
estimation methods produce approximately lognormal distribu-
tions of the values ˆρ (ri) for the SDSS samples (as expected from
previous studies and theoretical ideas: see, e.g., Coles & Jones
1991). Therefore our analysis is performed with the logarithm

of the densityρl = log10 (ρ̂ (ri)) or else a “standardized density”
defined as

ρs =
ρl − µl

σl
, (18)

whereµl andσl are the mean and standard deviation of the (al-
most) Gaussian density distributions. We plot the logarithmic
density distributions in Figure 7.

The true mean density of galaxies〈ρ (r)〉 for the “cone” and
“shell” samples is respectively 0.0196 and 0.013 galaxies per
cubic megaparsec (Section 3.2.2). The mean of the estimated
densities〈ρ̂ (ri)〉 cannot directly be compared against this num-
ber, since〈ρ̂ (ri)〉 is averaged over the set of galaxies and〈ρ (r)〉
over the field. High density regions contain more galaxies and
therefore have a heavier weight in the mean of the point densi-
ties 〈ρ̂ (ri)〉. This weight is proportional to the density and if a
lognormal distribution of the estimated densities is assumed, the
mean of the estimated field densities〈ρ̂ (r)〉 can be calculated as

〈ρ̂ (r)〉 = eln 10µl−
(ln 10σl )2

2 . (19)

For each estimator, the calculated value of〈ρ̂ (r)〉 is plotted in
Figure 7 as well as the known average field density. For the
“cone” sample, DTFE best approximates the known field aver-
age density, closely followed by MBE. For the “shell” sample
this order is reversed. DEDICA does not correctly representthe
known field average density and kNN is in between.

The distributions of the “shell” sample are smoother than
those of the “cone” sample, due to the higher number of data
points. Even for the “shell” sample, the DEDICA density distri-
bution is not smooth, due to its global optimization nature that
leads to tiny window widths (see Section 5.3). The MBE density
distribution peaks at slightly higher densities for the “shell” sam-
ple. Apart from the difference in means and widths, the differ-
ences of the density methods manifest themselves in the tails of
the estimated density distribution. DTFE produces high-density
tails, as it is sensitive to overdensities due to the local nature of
the method. MBE produces a low-density tail. The distribution
from kNN both has stronger high- and low-end tails (compared
to a Gaussian).

The density distribution of DEDICA is offset from the other
distributions. By comparing the estimated field average density
and the true field average density it is clear that the calculated
values cannot represent the actual densities. This is due tothe
sensitivity of DEDICA to overdensities: in case of highly clus-
tered data such as ours, it creates very small kernels, under-
smoothing the density field (see Section 5.3). Moving the po-
sitions of the galaxies by 1 Mpc in a random direction, thereby

9
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Fig. 6.Plot of true versus estimated field densities of the MSG-MBE dataset by MBE (top left), DEDICA (top right), DTFE (bottom left) and kNN
(bottom right). Approximately 16000 random grid locationsare shown.
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Fig. 7. The normalized distribution of the density values in log-space for each estimator. The distributions are smooth and close to Gaussian. The
average field densities as calculated with Eq. 19 are plottedas dashed lines. A broader range in densities (DTFE, kNN) denotes that the estimator
detects more clustering. More clustering results in more galaxies in higher density regions, shifting the peak of the distribution to the right. The
dotted line represents the measured average field density from the selection function (see text). Left: “cone” sample. Right: “shell” sample.

homogenizing the sample a little, removes this effect almost en-
tirely. However, even though the densities of the DEDICA galax-
ies are much higher than is expected, it can still be used as a pa-
rameter describing the environment of the galaxies by usingit in
standardized form.

4.2.2. Galaxy color and concentration as a function of
environmental density

Two applications of the estimated densities are the exploration
of morphology–density relation (see, e.g., Dressler 1980;and

Baldry et al. 2006 in the context of the concentration–density
relation) and environmental effects on the color–magnitude re-
lation (e.g., Balogh et al. 2004; Baldry et al. 2006; Ball et al.
2008). We define the inverse concentration index as

iC =
r50

r90
, (20)

wherer50 andr90 are the radii containing 50% and 90% of the
Petrosian flux (Baldry et al. 2006). For each galaxy,iC is taken
as the average of this ratio in ther andi bands. For typical galax-
ies, the inverse concentration ranges from 0.3 (concentrated) to
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Fig. 8. The color distribution of the SDSS samples. The dotted line is
the division between blue (u− r < 1.9) and red (u− r ≥ 1.9) galaxies.
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Fig. 9. Fraction of red galaxies as a function of standardized density.
In reading order: MBE, DEDICA, DTFE, kNN. The data is binned in
20 bins of width 0.25σ centered around the mean. The yellow region
denotes the error in the calculated red fraction as determined from the
Monte Carlo simulation. In all cases, a clear color–densityrelation can
be seen. The MBE shows a clear dip in high density regions. DEDICA
has such a dip in low density regions.

0.55 (extended). A uniform disc would haveiC = 0.75. Galaxy
colors are computed as the difference betweenabsolutemagni-
tudes afterk-correction3 and extinction corrections.

It has been long known that the distribution of galaxy colors
is bimodal, with blue galaxies being dominantly extended and
disk-like and red galaxies being mostly compact and spheroidal
(at least in the local Universe: see, e.g., Strateva et al. 2001, for a
recent restatement of this observation). We show the color distri-
butions of the two SDSS samples and our selected cut between
blue and red galaxies in Figure 8.

3 k-corrections are calculated withkcorrect v4.1.4 (Blanton &
Roweis 2007) using the Petrosian apparent magnitudes and spectro-
scopic redshifts.

4.2.3. The color–density relation

As discussed in the introduction, “early-type” red galaxies are
far more common in clusters of galaxies than in the general,
low-density field, which is populated mostly by “late-type”blue
galaxies (see, e.g., Hubble & Humason 1931; Dressler 1980;
Balogh et al. 2004; Baldry et al. 2006).

We compare the ability of the density estimators to recover
the existence of this relation. We examine the galaxy colorsin
our “cone” SDSS samples as a function of environmental den-
sity parametrized as the “standardized” density defined above.
The standardized density is binned in ten steps of 0.25σ from the
mean, resulting in 20 bins. The distribution for the countednum-
bers of red (Nr ) and blue (Nb) galaxies in each bin is Poissonian
around the respective meansµr andµb,

P(N|µ) =
e−µµN

N!
. (21)

The parameters of interest areµr and µb, the distributions of
which are also given by a Poissonian distribution,

P(µ|N) =
e−µµN

N!
. (22)

The fraction (f ) of red galaxies relative to the total number of
galaxies is

f =
µr

µr + µb
. (23)

A Monte Carlo process is used to estimate the 68% confidence
intervals for the expected value off for every bin. To model this
fraction as function of the standardized densityρs, a straight line
parametrized as

fmodel= aρs + c (24)

is fit to the data. Bins without either red or blue galaxies aregiven
a zero weight so they do not contribute to the fit. The degrees of
freedom (dof) are the number of bins that contain red and blue
galaxies minus two, since the fitted model has two parameters.

Figure 9 shows the fraction of red galaxies of the “cone”
sample as a function of standardized densities and the best-fitting
straight lines. All estimators consistently findc = 0.60 within
one standard deviation ofσc = 0.015. The slopes differ sig-
nificantly, DEDICA and MBE find the strongest relation with
a = 0.090 anda = 0.103 respectively, DTFE and kNN follow
with a = 0.081 anda = 0.075, all withσa = 0.014− 0.015.

There appears to be a significant dip at high densities (at
0.9σ, ρ̂ (ri) = 0.045gal Mpc−3) in the color–density relation for
the MBE-inferred densities. The cause of this dip is unclear, but
could conceivably be due to a morphological or color transition
at the edge of clusters in this sample (see, e.g., van Dokkum
et al. 1998; Braglia et al. 2007, for more direct evidence of such
transitions).

4.2.4. The color–concentration–density relation

There exists also a correlation between thestructureof galaxies
and their environment (e.g., Dressler 1980; Driver et al. 2006);
by combining the color–density and color–structure relations to-
gether, an even clearer bimodality in galaxy properties canbe
found (Baldry et al. 2006). Here we use the inverse concen-
tration iC as a tracer of a galaxy’s structure, following Baldry
et al. (2006). We show the color–inverse concentration relations
for six bins in standardized density for the “shell” sample in
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Fig. 10.Normalized contour plots in color–concentration space forsix bins in standardized density, for the SDSS “shell” sample and for each of
the four density estimators. The subfigures are cropped to the same color and concentration range as Baldry et al. (2006).To aid comparison, every
subfigure uses the same color levels. The red number in the lower left corner shows the number of galaxies in the bin.

Figure 104. In all density bins (and for each density estimator)
a well-defined red, concentrated (smalliC) peak and a blue, ex-
tended (largeiC) clump can be seen; but the contrast between
these features varies with density as expected.

For all methods, the figures in the first and last column of
figure 10 indicate that the blue, extended clump is more pro-
nounced in the lowest density regions and that the red, concen-
trated galaxies are more common in the highest density regions.
However, the figures in the inner four columns show a clear tran-
sition from the first column to the last for MBE, but hardly for
DTFE, with DEDICA and kNN in between. Therefore, MBE dif-
ferentiates the two classes of galaxies in the intermediatedensity
regions better.

5. Conclusions and Recommendations

All four methods are applicable in astronomical problems; over-
all we prefer the Modified Breiman Estimator. For the artificial
datasets the kernel based methods outperform the DTFE and
kNN with respect to the integrated square error and Kullback-
Leibler divergence. The correct kernel size determinationis a
crucial factor, and DEDICA fails to estimate the kernel sizecor-
rectly in more complex datasets such as the Millennium simula-
tion and SDSS.

5.1. Artificial and Simulated Datasets

From our artificial datasets we conclude that the adaptive-kernel-
based methods, MBE and DEDICA, are better at recovering

4 We note that these figures arenot directly comparable with, say,
Figure 10 of Baldry et al. (2006), for two reasons: (1) the densities used
for the binning arethree-dimensional, standardizeddensities, not two-
dimensional surface galaxy densities, (2) we consider different mass
ranges.

the “true” density distributions than the kNN or DTFE meth-
ods. However, DEDICA clearly has difficulties with spatially-
complex distributions, making it unsuitable for use on prob-
lems related to the large-scale structure of the Universe (see
Section 5.3).

All methods overestimate the density of dense regions, with
DTFE having the highest deviation from the true density be-
cause the DTFE density approaches infinity if the volume of the
surrounding tetrahedra approaches zero. On the other hand,all
methods almost equally underestimate the density in low density
regions.

The DTFE even produces zero densities for points on the
convex hull of the dataset. However, in an astronomical set-
ting, this is not always problematic. The convex hull represents
the edge of the sample: physically there are galaxies beyond
the edge which are not represented in our estimated densities.
Therefore all methods produce densities that are lower thanthe
unknown ‘true’ densities in these regions. The zero values of
the DTFE density estimator can be used as an implicit indicator
that the density estimation was not successful for these galax-
ies. With the other methods, these galaxies silently end up in a
too-low density bin.

Pelupessy et al. (2003) have performed a similar comparison
of a kernel-based method (using a spline kernel with a window
size of 40 nearest neighbors) with DTFE, with the true density
being unknown. They found that in dense regions the kernel-
based method yields lower densities than DTFE. However, they
also mentioned that the performance of the kernel-based method
varies with the choice of kernel and smoothing parameter. DTFE
indeed performs better than the kernel-based method in produc-
ing a high-resolution density field with highly detailed structure.
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5.2. SDSS Datasets

From the SDSS datasets we conclude that although the estima-
tors produce different distributions of densities, they all give re-
sults in analysis that are consistent with the literature. While
the densities produced by DEDICA are inconsistent with the ex-
pected average field density, they can still be used in standard-
ized form.

The kNN and DTFE are very sensitive to local perturbations,
producing high densities in overall low density environments.
This places the more uniform distributed blue galaxies in higher
density bins and broadens the distribution of densities. Therefore
it is more difficult to appreciate the effect of density, e.g., in the
relation with color and concentration, for DTFE and kNN than
for MBE and DEDICA. Furthermore, the kNN method overesti-
mates the average field density. We attribute this to the factthat
kNN does not produce normalized fields.

For kernel based methods it is crucial to select a good kernel
size. From our experience we conclude that it is difficult to define
a one-size-fits-all initial kernel size algorithm.

The MBE indicates a peculiarity in the color distribution of
galaxies at intermediate densities. This could be an indication of
evolution of galaxies at the edge of galaxy clusters that could not
be detected with the other methods.

5.3. DEDICA

Although DEDICA performs very well for most simulated
datasets, it performs badly for the simulated dataset 4 (Figs. 5, 6)
and the astronomical datasets (Fig. 7).

We attribute the failure of DEDICA in these cases to the be-
haviour of the cross validation for inhomogeneously distributed
data. As we already indicated in Section 2.3, DEDICA aims for
a globally optimal result, instead of performing a locally adap-
tive optimization of kernel widths. This may result in low per-
formance in cases where the underlying distribution consists of
two quite different components, as is the case for the simulated
dataset 4.

For the astronomical data, DEDICA produces kernels with
very small sizes. As an example, we compare the optimal win-
dow widths for dataset MSG-DTFE as found by DEDICA and
MBE, respectively; see Fig. 11. It is very clear that DEDICA has
optimal kernel sizes which are much smaller than those of MBE.
In this case, the data are highly clustered and the underlying
density distribution is very non-smooth. Probably, the millen-
nium density has a non-differentiable, fractal-like nature, which
violates the basic assumption of kernel density estimatorsthat
the underlying density should be continuous, differentiable, and
bounded. For MBE this has less serious consequences, as it only
computes a pilot estimate once, instead of trying to optimize the
window widths iteratively.

5.4. Computational Complexities

In Table 3 we present a summary of the computational com-
plexities and memory requirements of the various density es-
timation methods. MBE is the most efficient (linear complex-
ity), DTFE and an efficient kNN implementation using kd-trees
have slightly higher complexity, while DEDICA has quadratic
complexity. Regarding memory usage, MBE has the advantage
that its memory requirement only depends on the number of grid
points, but it does not scale well with increasing number of di-
mensions.

Fig. 11.Optimal window sizes (showing color in log-scale) for dataset
MSG-DTFE produced by DEDICA (left) and MBE (right).

5.5. Recommendations

Each method has its own strengths, therefore the choice of
method may vary depending on the problem at hand. For ex-
ample, having a proper point density is important when studying
the relationships between properties of individual galaxies and
their environment, while a high resolution density field is more
important when studying the large scale structure of the universe.

In this paper we focus on point densities and we conclude
that MBE is our preferred density estimator. It produces densities
that are consistent with expectations from literature and provides
more discriminating power than the other methods. Furthermore
it is the fastest method of our tests. A drawback is that a good
determination of the initial kernel size is non trivial. We recom-
mend an interactive process.

The other kernel method, DEDICA, fails to produce cor-
rect densities for our astronomical datasets. Furthermoreit is the
slowest of the tested methods. Therefore we cannot recommend
DEDICA, at least not for highly clustered data.

The DTFE produces overall good densities, but is very sen-
sitive to local effects. It produces small regions of large densi-
ties, even in otherwise low density regions. The computational
complexity puts an upper limit on the number of sources to in-
clude, even though very fast implementations exist. However,
the DTFE is better in discovering shapes in the density fields
than the kernel based methods, such as determining the filamen-
tary structure of the cosmic web.

The kNN method, one of the most used density estimators in
astronomy, performs rather badly in our tests. It does not produce
normalized density fields, which results in overestimated densi-
ties. The kNN is very sensitive to local effects which broadens
the density distribution. At the same time it produces non-zero
densities in regions far away from any sources. The positiveside
of kNN is that it can be implemented quickly in a few of lines
of code. This makes the kNN an attractive choice for quick and
dirty density estimations, but we recommend that it should not
be used for more serious density estimation.
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Table 3.Computational complexity and memory requirement of density estimation methods.
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Nd kd-tree inefficient whend≫ 1

DTFE O(N log N) N Available implementation only ford = 3
MBE O(dN) Gd Inefficient with memory whend > 3
DEDICA O(dN2) dN Computationally inefficient

Notes.N=number of data points,d=dimension,G=number of grid points. DTFE numbers ford = 3 only.
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Appendix A: Mock samples – selection effects

In order to study the impact of selection effects on the density
estimations of SDSS galaxies – in particular for the “cone” sam-
ple – we created four mock samples. The densities produced for
these mocks are compared to our “cone” sample. The cone sam-
ple represents a region of SDSS that is 49% more dense than
average. To compare with this overdensity, the mock samples
were created with the same average field density of〈ρcone(r)〉 =
0.0196 which corresponds to 4024 sources.

We distinguish five different effects that we want to investi-
gate. Any difference of the results of the density estimators that
is not explained by the points below are attributed to effects in-
trinsic to the “cone” sample.

1. Background differences of the estimators. A uniform box
with of size 58.9 Mpc with an average density of〈ρcone(r)〉 =
0.0196 is created (“Mock Sample A”, 4020 sources).

2. Effects of the conical shape of the “cone” sample. A sam-
ple with the same average density but with the shape of our
“cone” sample is created (“Mock Sample B”, 4010 sources).

3. Effects of the luminosity selection. Using the derived selec-
tion function, sources are removed from Mock Sample B in
such a way that the radial distribution of sources represents
the radial distribution of the “cone” sample (“Mock Sample
C”, 1027 sources). This is done by assigning to every mock
source a uniform random number between 0 and 1 and re-
moving all sources where this number is larger than the value
of the selection function at that distance.

4. Effects of clustering of the sources. A sample of 49287
galaxies with the same angular shape as Sample B is selected
from the L-Galaxies of the full Millennium Simulation.
A distance and magnitude limit is imposed to select
4024 galaxies with the same shape as the “cone” sample
(“Millennium Mock Sample”).

5. Edge effects. Sources at the edges will have underestimated
densities. To study this effect we removed about 30% of
sources that are closest to the edge in our mock samples.

The radial distributions of the samples are shown in
Figure A.1. The corresponding density distributions of allthe
points are plotted in Figure A.2 and without the edge points in
Figure A.3. In the uniform box (Sample A), the density distribu-
tions of kNN and DTFE are very similar (except for the high-end
DTFE tail). The cone shape only has a significant effect on the
kernel based methods, DEDICA producing slightly higher densi-
ties and MBE slightly lower. When simulating and correctingfor
a luminosity selection (Sample C), the distributions change only
slightly, justifying the 90% incompleteness we allow. The MBE
and kNN distributions look very similar, as do the DEDICA and
DTFE distributions. From the Millennium Mock Sample, it is
clear that the clustering of the sources has a large effect on the es-
timated densities. The densities estimated by DEDICA are sev-
eral orders of magnitude higher than the estimations of the other
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Fig. A.1.Radial distribution of the mock samples. The dashed black line
shows the expected distribution of the galaxies, the black solid line after
applying a luminosity selection. The (red) distribution ofthe “cone”
sample shows more structure than a uniform mock would have (green),
due to internal clustering.
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Fig. A.2.Normalized density distributions from the four density estima-
tors for the four mock samples (A, B, C, and Millennium), all with the
same average density ( ˆρ (r) = 0.0196gal Mpc−3).

methods. This overestimation correlates with the small kernel
sizes used by DEDICA, as discussed in Section 5.3. There is also
an apparent bimodality visible in the MBE density distribution.

A.1. Edge Effects

By comparing Figure A.2 with Figure A.3, it is possible to study
the effect of edges on the density distributions. In Figure A.3
30% of the points closest to the sample edges are removed.
In all methods, the lower density bins are overrepresented in
Figure A.2 due to edge effects but in Figure A.3 the low-end
tails are still visible. Any edge effect on the tails therefore must
be minor.

�4 �3 �2 �1 0 1 2 3
log10(density) [galaxies / cube Mpc]

MBE
DEDICA
DTFE
kNN

	4 	3 	2 	1 0 1 2 3
log10(density) [galaxies / cube Mpc]

MBE
DEDICA
DTFE
kNN

Sample A Sample B


4 
3 
2 
1 0 1 2 3
log10(density) [galaxies / cube Mpc]

MBE
DEDICA
DTFE
kNN

�4 �3 �2 �1 0 1 2 3
log10(density) [galaxies / cube Mpc]

MBE
DEDICA
DTFE
kNN

Sample C Millennium

Fig. A.3. As in Figure A.2, but now with approximately 30% of data
closest to the edges of each sample removed.

0 2 4 6 8 10
x

0

1

2

3

4

5

6

7

8

9

d
e
n
si

ty

1D spatial DTFE density

Maximum

Monte Carlo

Fig. B.1. The original (left) and modified (right) Monte Carlo process
for a 1 dimensional sample. The vertices on the blue line are the origi-
nal sample points, the blue line itself the DTFE field. Black points are
uniformly drawn in the area below the red line, those below the blue
line are included in the new sample. In this 1D example, the lower-
ing of the red line gives a factor 6 improvement in performance, in our
MSG dataset this is more than a factor 10000. The weights are given by
the colored areas: the cyan cells have the same weight. The yellow cell
has the same maximum density or volume as one of the cyan cellsbut
a lower weight. (Densities are linear spatial densities, not probability
densities.)

Appendix B: DTFE Monte-Carlo sampling

A modified, but equivalent, version of the sampling procedure
described in Section 3.2.1 is used for the Monte Carlo sampling
of the DTFE field. Due to the high sensitivity of DTFE to shot
noise, the estimated field will contain very small regions with
very high density: The maximum estimated density for the mil-
liMillennium dataset is more than 10000 times higher than the
average density. Following the exact procedure as with MBE
will result in more than 10000 randomly chosen points to be
discarded for every accepted point, slowing the procedure sig-
nificantly.

This can be alleviated by lowering the maximum possible
value for p in regions with a low density. The height of this
maximum can vary as function of location without affecting the
Monte Carlo simulation, as long as it is always above or equal
to the true densityP and all the points (x, y, z, p) are drawn uni-
formly below it. The maximum density for a field location is set
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to the maximum densityDc of the Delauney cellc at that lo-
cation. Figure B.1 shows the maximum density value for a one
dimensional example as a dotted red line.

Step 2a of Section 3.2.1 is modified to ensure a uniformly
drawn sample. First a Delaunay cell (simplex)c is selected, and
then a pointr within the simplex with a test densityp belowDc.
More points should be drawn from larger cells and from cells
with a higher density in order to get a uniform selection. This is
achieved by giving these cells a higher preference when select-
ing a random cell. This preference is quantified by a weightw
and uniformity is ensured by choosingw = Vc Dc, because this
is exactly thed + 1-dimensional volume below the red line that
corresponds to that cell.

The cells are simplices (tetrahedra whend = 3) with d + 1
verticesv0 to vd. A random positionr i within the cell is selected
by choosingd uniform random numbersa j between 0 and 1 as

r i = v0 +

d
∑

j=1

a j

(

v j − v0

)

, (B.1)

keeping only the 1/d! points actually within the cell. The random
densityp is selected uniformly between 0 andDc. A new cell is
selected if the test densityp is higher than the interpolated ‘true’
densityP at the locationr i .
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