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ABSTRACT

Context. Galaxies are strongly influenced by their environment. @fyang the galaxy density is a fficult but critical step in study-
ing the properties of galaxies.

Aims. We aim to determine dierences in density estimation methods and their applitalil astronomical problems. We study
the performance of four density estimation techniquese&rest neighbors (kNN), adaptive Gaussian kernel densttynation
(DEDICA), a special case of adaptive Epanechnikov kernakitle estimation (MBE), and the Delaunay tessellation fedtima-
tor (DTFE).

Methods. The density estimators are applied to six artificial dataaat on three astronomical datasets, the Millennium Siionla
and two samples from the Sloan Digital Sky Survey. We comgiaeerformance of the methods in two ways: first, by meagurin
the integrated squared error and Kullback—Leibler divecgeof each of the methods with the parametric densitieseofitiiasets (in
case of the artificial datasets); second, by examining thécability of the densities to study the properties of g#a in relation to
their environment (for the SDSS datasets).

Results. The adaptive kernel based methods, especially MBE, perfatter than the other methods in terms of calculating the den
sity properly and have stronger predictive power in astnoical use cases.

Conclusions. We recommend the Modified Breiman Estimator as a fast anallelimethod to quantify the environment of galaxies.

Key words. Methods: statistical — Methods: data analysis — largeesstilicture of the Universe

1. Introduction 2000, hereafter SDSS) in order to study environmetifatés on
galaxy evolution. We are also interested in finding struegun
Estimating densities in datasets is a critical first step &akimg higher-dimensional spaces, like six-dimensional phaseespr
progress in many areas of astronomy. For example, a galaxgv&n higher-dimensional spaces in large astronomicabdaés
environment apparently plays an important role in its evoldsuch as the SDSS database itself). We are therefore itgdres
tion, as seen in the morphology—density relation (e.g.,i®i& in accurateand (computationallygficientdensity estimators for
Humason 1931; Dressler 1980) or the color—density and-eolastronomical datasets in multiple dimensions.
concentration—density relations (e.g., Baldry et al. 206®r In this paper we investigate the performance of four density
these relations, a consistent, repeatable — and hopetdiyate estimation methods:
— estimate of the local density of galaxies is an importahima .
As another example, reconstruction of the large-scaletstre  — k-nearestneighbors (kNN); _ _
of the Universe requires a proper estimation of the cosmie de — @ 3D implementation of adaptive Gaussian kernel density es-
sity field (e.g., Romano-Diaz & van de Weygaert 2007). Even timation, called DEDICA (Pisani 1996); , L
simulations require density estimation: smoothed partigdro- — 2 mod_lfled version of the adaptive kernel_densﬂy estimation
dynamics (SPH) is a method to create simulated astronomical ©f Bréiman et al. (1977), called the modified Breiman esti-
data using astrophysical fluid dynamical computation (Gidg mator (MBE); and o ,
& Monaghan 1977; Lucy 1977), in which kernel-based den— the Delaunay tessellation field estimator (DTFE: Schaap &
sity estimation is used to solve the hydrodynamical equatio ~ van de Weygaert 2000).

Density estimation is not only required for analyzing spledio- 4 first method is well-known to astronomers and involves de

main structures but also for structures in other spac&s_ﬁiiid.- termining densities by counting the number of nearby neighb

ing bound structures in six-dimensional phase space inlaimu, 5 point under consideration. This method is typicallycLise
tions of cosmic structure formation (Maciejewski etal. 90r o, jjes of the morphology—density relation and other alaser
mthree-dl_mensmnal projections OfPhaS‘? space m_smwiaof tional studies of the relation between environment andxyala
the accretion of satellites by large galaxies (Helmi & deee properties (e.g., Dressler 1980: Balogh et al. 2004; Badtigy.
2000). 2006; Ball et al. 2008; Cowan & Ivezic 2008; Deng et al. 2009,
In the current work we are motivated by a desire to quajust to mention a few studies). The second and third methads a
tify the three-dimensional density distribution of gaksiin both adaptive-kernel density estimators, where a kernelseh
large surveys (like the Sloan Digital Sky Survey, York et abkize adapts to local conditions (usually isotropicall@pending
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on some criteria set before or iteratively during the estioma wheresy is the distance of thi€" nearest neighbor fromandVgy
process, is used to smooth the point distribution so that&yp the volume of the unit sphere in d-dimensional space. The kNN
densities can be estimated. The fourth method, like the fisets approach uses aftierent window size for each point so it adapts
the positions of nearby neighbors to estimate local desssithe to the local density: when the density is high neahe window
compare the methods using artificial datasets with knowsidenwill be small; but when the local density is low, the windowllwi
ties and three astronomical datasets, including the Millem grow to a larger size.
simulation of Springel et al. (2005) and two samples of real The kNN approach can be a good solution for finding the
galaxies drawn from SDSS. “best” window size. However, this methodfBers from a num-
This paper is organized as follows. Section 2 discusses ther of deficiencies. The resulting density estimate is nobagr
four density estimation methods under consideration.i@e& probability density since its integral over all space dies, and
describes the datasets we used. Section 4 contains a cemjigritails fall of extremely slowly (Silverman 1986). The den-
son between the methods based on datasets with both knaiwn field is very “spiky” and the estimated density is farrfro
and unknown underlying density fields. Finally, in Sectiowé& zero even in the case of large regions with no observed sample
summarize our findings and draw conclusions. due to the heavy tails. Furthermore, it yields discontirgieven
We point out here that our goal hererist to quantify the when the underlying distributions are continuous (Breiregal.
shapeof the environments of objects in datasets, but rather 1977).
estimate the density field or the densities at specific pomts  In astronomical work it is typically the case that the sam-
those datasets (see below). Information about the shape ofple point is not considered to be its own neighbor (e.g., Sles
structures found in the datasets is beyond the scope of tils w 1980; Baldry et al. 2006). This presents a conceptual projds
we refer the interested reader to recent excellent stugiesd., the point density will then disagree with the field densitytet
Jasche et al. (2010), Aragon-Calvo et al. (2010) and Seushication of a sample point. In our work we take the samplefpoin
etal. (2009). to be its own first neighbor as in Silverman (1986), and we use
the average of kNN-estimated densities wktls= 5 andk = 6
when computing either the point or grid densities. This is no
precisely equivalent to the average- 4 andk = 5 kNN den-
The purpose of a density estimator is to approximate the treigy used in many astronomical papers (e.g., Baldry et #1620
probability density function (pdf) of a random process fram While theV in the denominator of Eq. 1 would be equal, the
observed dataset. There are two main families of densityiast in the nominator is one higher in Silverman’s definition.
tors: parametric and non-parametric. In parametric methioe
type of distribution (uniform, normal, Poisson etc.) of thiee-
nomenon needs to be known (or guessed) beforehand, whereds

non-parametric methods do not need this information. TBmepeiman et al. (1977) described a case of an adaptive (Gay)ssi
ods under consideration in this study belong to the secqueél ty kernel approach. This method begins by computing the distan
First, though, we must distinguishftérent types of esti- s, to thek? nearest neighbor of each data point located at
mated densities. Starting fdro_m an input dataset consistirj st as in a kNN density estimator. Rather than using this dis
list of point positionsr; € R% i = 1,...,Ninad-dimensional tgnce to compute the KNN density estimate, it uses this & ste
spatial domain, we define two types of probability density as the |ocal kernel size (also known Aandwidth) in an adaptive
1. Point probability densitiesprobability densities(r;) at the kernel density estimator or Parzen estimator (Parzen 18623
original point positions;; sampleDy of N points Wlth position vectors € Rd(l =1,..,N)
2. Probability density field probability densitiep(t) at arbi- and kerneK(r), the adaptive kernel density estimaie)is then
trary points in the spatial domain &¢. We often evaluate given by:
field densities at the points of a Cartesitkdimensional grid \
and therefore also speak-gxﬁd dens.,ltues B(r) = 1 Z(O/k 6i,k)‘dK( r—r; ) @)
Furthermore, the probability densities have to be conderte N & ak Gik
to physical densities when comparing galaxies. This is ieza
the parameter of interest is a quantification of the envirentn In their simulations Breiman et al. (1977) used a symmetric
of individual galaxies, not the probability of finding a gaya Gaussian kernel. Here and oy are still to be determined. For
at a specific position. The latter is is calculated by the dgnsk or ax too small, the result will be noisy, whereaki@nday are
estimators and can be converted into the former by multiglyi large we lose detail. The proper parameter values-fvidth of

2. Density estimation methods

Adaptive Epanechnikov kernel density estimation

by N, i.e., the normal distribution)k anday were determined by optimiz-
1. Point number densitiess (r;) = N(r;) ng;;(;rtaln goodness-of-fit criteria (for details see Brainet al.

2. Number density fielcp (r) = N(r) Silverman (1986) argues that we can interpret this as using

a “pilot estimate” of the density. We can understand this by o
2.1. k-nearest neighbor method serving from Eq. (1) that

The kNN estimator is well-known in astronomy and its workx ) —d

. P . . . O PRNN(r) o 6y (3)
ing principle is to center a window onto each poirénd let it ’
grow until it capturek samples (thé nearest-neighbors a.
Then the kNN density estimate for a dataset vitldata points
is defined at any € RY by

Thus the bandwidth at each location is proportionajm,j’(ri).

Thus, Breiman et al. (1977) implicitly use a kNN pilot degsit

estimate to steer the final density estimate. Tfieot is that in

B(r) = EL 1) low density regions;x will be large and the kernel will spread
N Vd(sg’ out; in high density regions the opposite occurs.
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2.2.1. Fundamentals of the modified Breiman estimator 2.2.2. The pilot density estimate

MBE

( ) ] o In the literature there exists a variety of methods to chdbse
The approach of Breiman et al. (1977) used for finding propgptimal window widthc°Pt automatically. Basically there are
parameter values is computationally expensive, because thyo families of methods known: (i) classical (such as least-
need to run the estimator numerous times to find the optimal Rfyuare cross-validation) and (i) plug-in methods. In thiek
rameters. This is even more costly because the kernel hagenficase, the bias of an estimapeis” written as a function of the
support. This means that each data point contributes toghe dynknownp, and usually approximated through Taylor series ex-
sity at every position, resulting in &B(N?) cost per parameter pansions. A pilot estimate gf is then “plugged in” to derive
setting tested. _ an estimate of the bias (Loader 1999). However, there is some

We want to apply the method for astronomical datasets thfghate about the merits of these methods. For example, Park

are very large in sizex( 50,000 data points) and dimensiong Marron (1990) found that the performance of least squares
(from 10 to hundreds). For this reason we use a fast and sealaloss-validation is not very satisfactory. They recomnestitie
modification of Breiman’s method along the lines of Wilkimso plug-in methods for bandwidth selection. There are sewhair
& Meijer (1995). It was observed by Silverman (1986), tha thaythors who have made strong comments about the classical
implicit kNN pilot estimate could be replaced by dferent esti- approach and advocated plug-in methods (Ruppert et al.;1995
mate without significant change in quality. Therefore, Wilon  sheather 1992). On the other hand, Loader (1999) strongly op
& Me”er (1995) used the kernel denSIty estimator itself thoe posed these views. He argued that the p|ug_in methods can be

pilot. Furthermore they replaced the infinite support Gewss criticized for the same reason the above authors criticizes-
kernel by the finite support Epanechnikov kernel, which insica| approaches.

creases computation speed significantly, and is optimathén t . ,
sense of minimal mean integrated square error (Epanechniko We have already mentioned that the datasets that we will use

1969),To ncrease computatonal speed of e piot esama® 1 P10° 1 222 Sl antuial b loss e
the pilot density field is calculated on grid points first,eaft plug PP

which the pilot density for each data point is obtained bytmul g;ﬂmi}('aogr:tztzll'u-:—;tzric;iﬁ’avtv: ggfg]eedvz?gggn&pﬁgtmheﬁg:hgver
linear interpolation. The method is also scalable: evenmahe 9 ' &

number of data points grows very large, the computation tirgfs window width is only used for the pilot estimate and taist

. - . g urpose the desired window width should be large enough so
rhﬁer:\ijzlpigg%l;nded by the number of grid points (Wilkinson at two consecutive window placements cover an overlappin

- . area. For window width we triechax-min percentile median
In the modified version Eq. 2 becomes standard deviatiomndaverage distancef the data points, nor-
1N A malized by the logarithm of the number of data points. We tbun
p(r) = — Z(o- /li)‘dKe( ') (4) that usingpercentile(Eq. 8) as window width works well (in
N i=1 oA terms of the integrated squared error, see Section 2.5eh)iav
the presence of outliers. However, thax-minwindow width
works better if the dataset contains no outliers. Neveegglwe
9427 _ t.t) iftt<l1 recommend user interaction for changing the window width in
Ke(t) = { 2 otherwise (5)  the case of an undeversmoothed density field.
) ) , ) o , Our procedure for the automatic determinatigi?* can be
in which Vy is the volume of the unit sphere thdimensional s;mmarized as follows. First window sizes, oy, 0, in each of

Space. _ o _ the coordinate directions are computed by
The density estimation proceeds in two phases.

wherekKg is the Epanechnikov kernel defined as

Phase 1. Compute an optimal pilot window widthP' with a Pso(£) = P2o(£)
percentile of the data as defined in Eq. 8 below. Define% = — oo™ t=xy.z (7)
pilot densityppiot by using Eq. 4 withr = o°P and; = 1.

Phase 2. From the pilot densipio: compute the local band-
width parameters; by wherePgo(£) and Poo(¢) are the 88 and 2¢ percentile of the

R e data points in each dimensidénr= x,y, z. Then, in order to avoid
2= (ppilot(ri)) (6) oversmoothing, the optimal pilot window sizé? is chosen as
' g : the smallest of these, i.e.,

Here g is the geometric mean of the pilot densities and
« = 1/d is the sensitivity parameter. The value gfdlis  5°Pt = min{o,, Ty, 7). (8)

chosen to be equivalent to the method of Breiman et al.

(1977), though some authors prefer a value & egardless

of d (Silverman 1986). The final density estimate is given b§.3. Adaptive Gaussian kernel density estimation (DEDICA)

Eqg. 4 once again, but now with = ¢°Ptand4; as givenby ] o

Eq. 6. Pisani (1996) proposed a kernel-based density estimation

method for multivariate data which is an extension of hiskvor

Compared to the original method of Breiman et al., it showd lfor the univariate case (Pisani 1993). Again this is an adapt
noted that dixed window width o°P* for the pilot estimate is kernel estimator. The main fiierences with the MBE method
used, rather than a fixed valuelofDuring the second phase ofare that a Gaussian kernel is used and that the optimal band-
the algorithm we vary the window width with the density atleacwidths are determined in an iterative way by minimizing essro
data point via the local bandwidth parameter. Data pointls &i validation estimate. In our study, we use the 3D densityrestr
low pilot estimate get a large window amite versa DEDICA, which is the FORTRAN implementation by Pisani.
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2.3.1. Fundamentals of the method. (determined by the choice of®). This series of values may be

For a sampléy of N points with position vectors, € RY, (i = too coarse for flrgrg:gg the optimal window widths. Second, the

1, ..., N) and kernel width of thé" point given by, the adaptive Method seeks &; ™ which leads to a globally optimal result,
Gaussian kernel density estimai@)’is given by which, however, may b(_a far from optimal in some regions.
We made an extension to the DEDICA code for obtaining the
. 1N grid density, since the original code computes only poimisile
p(r) = N Z Kn(Iri = rl. o) () ties. We used the optimal window Widthén‘”‘) of each point cal-
i=1 culated during the point density estimation to obtain thegdide
whereK,(t, o) is the standard-dimensional Gaussian kernel kernel density estimatpf(r:"‘)(r) at each grid point by Eq. (9).

1 2
Knlt.0) = o2y eXp[‘f,z] (10)  2.4. Delaunay Tessellation Field Estimator (DTFE)

The kernel widthsr; are chosen by an iterative method that min® TFE is a well-known method in astronomy to reconstruct den-
imizes the integrated square error locally. The procedsiasi Sity fields from a discrete set of scattered points (see, e.g.

follows. Schaap & van de Weygaert 2000). In this method, the Delaunay
tessellation (Okabe et al. 2000) of the points is constructe
1. Initialize the window width: first. Then the point density is defined as the inverse of the
total volumeV of the surrounding tetrahedra (in 3D) of each
L 11 & point, multiplied by a normalization constant (Schaap & dan
O =40y, o= AK)N 5 g Z s (11) Weygaert 2000). For a sam Dy, of N points with position vec-
I=1 torsr; € RY, (i = 1,...,N), the DTFE density estimatg(r;) is
] o ) given by:
where s, is the standard deviation of tH® coordinate of
the data and\(K) = 0.96 for a Gaussian kernel (Silverman 1d+1
1986). pr) = Qv (13)
I

2. lteratively perform the following steps far= 1,2, ...:

(a) Halve the window widthe™ = (12

(b) Compute ailot estimatef)g}fot(ri) by Eq. (9) withfixed
kernel sizeg; = ™ )

. . .

(c) compute local bandwidth factorg” by Eq. (6) with In the next step, the density field is obtained by linearlgiint
Ppitot = f’gﬁot ande = 1/2 polating the point densitieg(r;) at the vertices of the Delaunay

(d) Compute an adaptive kernel estimaf8(7;) by Eq. (9) tetrahedrato the full sample volume.
with adaptive kernel sizes™ = ¢ . A"

(e) Compute the cross-validation estimate (Pisani 19985. Error measures

whereV, = le(::LVtetraj. Here Vierra j is the volume of thej™
tetrahedra an& is the number of tetrahedra that contain point

Eq. 7):
1 NN . 2.5.1. Integrated Squared Error
aMy — _— C_r. (ny2 (My2y3
M(Pa) = N2 - ;K”(lr' il (077)7 + (7)) The integrated squared error (ISE) between the true deiedity
= E N and the density field obtained from each density estimatonés
2 W qf our primary performance criteria in this study. The ISHés
—m ; ]Z; Kn(Iri = rjl, 0 )- (12)  fined as:
Minimization of the cross-validation estimate is equiva- o 5
lent to minimizing the integrated square error betwed® E = f (p(r) = p(r))=dr (14)

the true density and the estimated density, see Pisani -
(1996) for more details. wheref{r) is the estimated density amdr) is the true densit
3. Determine the iteration number ney for which the cross- Ar) y amdr) Y-
validation estimate is minimized, and return the corresipon

ing optimal window WidthSo-i(n""‘) and the adaptive kernel 2.5.2. ngeralized Kullback-Leibler Divergence (Csiszar’s
density estimat@(k”;"po(ri) at the sample points. I-divergence)
o Kullback-Leibler divergence (KLD) is one of the fundamédnta

The cross-validation procedure can be understood by |90k'80ncepts in statistics that measures how far away a pratyabil
at the behaviour of the flerent terms inM(p”). Wheno? distribution f is from another distributiom. It can also be in-
decreases during iteration, some terms will keep on ingrgasterpreted in terms of the loss of power of the likelihoodaati
while others start to decrease when the local window sizes hgst when the wrong distribution is used for one of the hypeth
come much smaller than the inter-point distances. Thises tBes (Eguchi & Copas 2006). The valuelED(f,g) = 0 if f
point where the minimum df/l(f)(k'g) is reached and the iteration= g. However, the Kullback-Leibler divergence is only defined
stops. if f andg both integrate to 1. Among the four methods under

Although, as we will see below, DEDICA gives good resultsonsideration, the density function estimated by kNN dasts n
in many cases, it fails in certain situations. This can bibatied integrate to unity. Therefore, we use the generalized lackb
to some drawbacks of the method. First, the fixed kernel sizesibler divergence (hereafter gkLD), also known as Csiszar
o used for the pilot estimates form a discrete series of valuedivergence (Csiszar 1991), to quantify théfeience between
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two non-negative functions which havefférent integrals. For — Dataset 5 contains three wall-like structures where eadh wa
two positive functiond (r) andg(r), the gKLD is defined as: is created with a uniform distribution in two of the dimen-
sions and a Gaussian distribution in the third.
— Dataset 6 contains points drawn from a lognormal distribu-

ot 9= [ (f(r) Iog(%) () + g(r))dr. (15 " gon.

We compare the methods by comparDp || ).

Strictly speaking, the (generalized) Kullback-Leiblevet:
gence is only defined when both true density) or the method
densityg(r) are positive. This is a condition that is not fulfilled
by our data: firstly, the boundary region of our ‘true’ fields{
proximately 23% of the total volume) has zero density; sdbgn
the DTFE and MBE methods produce density fields with zei@g e apility of the methods to recover the “true” poinfierd
values because they have finite support. densities

All methods except the DTFE estimate non-zeros for regions '
for which the true density is zero. This results in a gKLD alu
for KNN, MBE and DEDICA that is lower than is justified: the3.2. Astronomical datasets with unknown density fields
discrepancy between the true and estimated field in thisdbouq. test the performance of the methods on astronomical data w
ary region is not accounted for in the measure due to the muf P . i g . .
tiplication by the true densityf{ in Eq. 15. The DTFE method Use thrée astronomical datasets: semi-analytic modekigala
behaves in the opposite way: it estimates zero densitiese/vhgr%wn from thle 'V"L'e”?'um Sc;mulat:con (Sspélggel et al. 2005)
the true density is non-zero. We modified the gKLD such th&l" two samples of galaxies drawn from '
if g(r) = 0 we instead sed(r) = ¢, wheree is a small number.

This results in a higher gKLD value for DTFE than is justified3.2.1. The MSG dataset

the discrepancy in the boundary region can have a arbitraril . ) :

large dfect (by choosing an arbitrarily low) on the measure, OUr first astronomical dataset consists of the L-Galaxy samp
However, we determined that thiffect is small by comparing of the “milliMil” subsample of the Millennium Simulatioh The

our gKLD value with the gkLD value calculated only over thdMillennium Simulation is one of .the Iargest. simulations lete
regions where both fields are non-zero. study the development of the Universe (Springel et al. 2(05)

lowing nearly 2x 10 particles. It was created to make predic-

tions about the large-scale structure of the universe anghaoe

these against observational data and astrophysical gsedie

L-Galaxies are created by populating halo trees drawn fiamn t

We examined the performance of the four density estimatidfillennium Simulation with semi-analytic models followgrihe

methods on three classes of datasets: a number of simulgiegtepts in De Lucia & Blaizot (2007). We use the much smaller

datasets with known density fields to test the ability of ea¢milliMillennium” (“milliMil”) simulation, which sampled only

method to recover relatively simple density distributioas ~ 2 x 107 particles, and its associated L-Galaxies data. We re-

astronomical dataset with an unknown but well-sampled defer to this dataset as the MSG dataset, which contains 53918

sity field based on the Millennium Simulation of Springepoints. In a visual representation the output of the sinmat

et al. (2005); and two diierent observed galaxy samples drawlooks like a fine three-dimensional web of filaments with fahc

from the Sloan Digital Sky Survey (SDSS: see, e.g., Adelmaself-similarity and multiple layers of organization.

McCarthy & others 2007; Abazajian et al. 2009). Our goal is to use the complexity of the MSG dataset to test
the performance of the methods with a well-sampled but reaso

) ) L ably “astronomical” setting. Unfortunately, thieie underlying

3.1. Simulated datasets with known density fields density field of the MSG dataset is unknown. We therefore-boot

We begin by constructing six simulated datasets with knovxaﬁrap MSG samples to define a "true density” for astronomical

density distributions (Table 1). ata. The density field of the MSG data is used to create new
datasets and their density is taken to be the true densityosét

— Dataset 1 is a unimodal Gaussian distribution with addé@tasets. The process of creating new datasets can bebeescri
uniform noise. as follows:
- ES:?S:: %fcog;[gg Sbmoﬁ%?euriséizg;is;gggt'&gﬂggg ?gﬁgiéatlep 1: Calculfate th(_a density field of the MSG dataset usieg on
P of the density estimation methods.

and diferent centers, again with added uniform noise; th§tep 2: Generate a new dataset by a Monte-Carlo process

dataset has the same number of points as Dataset 1. which will have a probability density function similar toah
— Dataset 3 contains four Gaussian distributions with anlequa of the MSG data. as follows:

number of points but dierent CMs and dierent centers, 1 " Generate a randdnpositionr;(x, y, 2) within the origi-
again with added uniform noise; this dataset has twice as nal sample and a random valpebetween zero and the

many points as Datasets 1 and 2. maximum field density of the sample.

- DatasTer: 4 cor:jtains ad_vvaII—Iikef a;]nd a”fill_iment—like StUC- 5 |nterpolate the density of a pointri(x, y, 2) in the field
ture. Thex- andy-coordinates of the wall-like structure are obtained from step 1.

drawn from a uniform distribution and thecoordinate is
drawn from a Gaussian distribution. The filament-like struc ! Seehttp://www.g-vo.org/Millennium/Help?page=index

ture is created with a Gaussian distribution in $s@ndy- 2 We used a random number generator based on the subtractive
coordinates and a uniform distributionzrcoordinate. method of Knuth 1981 with a period of2

Scatter plot representations of these datasets are shown in
Figure 1.

The increasing complexity of these datasets allow us togrob
simple situations ranging from idealized clusters to dgriglds
that look somewhat like the large-scale structure of thevkhsie,
with walls and filaments. The advantage of using simple simu-
lations withknowndensity distributions is clearly the ability to

3. Datasets
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Table 1. Simulated datasets with known density distributions

Dataset Component Points Distribution

1 Trivariate Gaussian 1 40000 M; = (50,50, 50) CM; = diag(30)
Uniform random noise 20000 Uniformy(y, z) = [0, 100]

2 Trivariate Gaussian 1 20000 M; = (25, 25, 25) CM; = diag(5)
Trivariate Gaussian 2 20000 M, = (65, 65, 65) CM;, = diag(20)
Uniform random noise 20000 Uniformy(y, z) = [0, 100]

3 Trivariate Gaussian 1 20000 M; = (24,10, 10) CM,; = diag(2)
Trivariate Gaussian 2 20000 M, = (33 70,40) CM;, = diag(10)
Trivariate Gaussian 3 20000 M3 = (90, 20, 80) CM; = diag(1)
Trivariate Gaussian 4 20000 M, = (60,80, 23) CM, = diag(5)
Uniform random noise 40000 Uniformy(y, z) = [0, 100]

4 Wall-like structure 30000 Unifornx(y) = [0, 100], Gaussiard) = [M = 50, var = 5]
Filament-like structure 30000 Unifor)(= [0, 100], GaussiarX, y) = [M = 50, var = 5]

5 Wall-like structure 1 20000 Uniform(2) = [0, 100], Gaussian(y} [M = 10, var = 5]
Wall-like structure 2 20000 Unifornx(y) = [0, 100], Gaussiard) = [M = 50, var = 5]
Wall-like structure 3 20000 Unifornx(2) = [0, 100], Gaussianf) = [M = 50, var = 5]

6 Log-normal 60000 Log normalf,y,2) = [M = 3, var = 4]

Notes. M=Mean,C M=Covariance Matrix

Fig. 1. Scatter plot representations of simulated datasets. @ eiglbt, top to bottom: Datasets 1-6.

3. if p < P accept the point;j(x,y, Z) as a point in the new Next, the field densities — on the grid — of the two new

datasetpP will be the “true” density ofr;(x, Y, 2). datasets generated by all density estimation methods ane co
4. repeat step 2a-2c until the required number of pointspsred with the true densities obtained with the processithest
obtained. above.

We generated two such datasets, one using DTFE (called
“MSG-DTFE” dataset) and another using MBE (called “MSGg']E'z' SDSS datasets
MBE"), each with the same number of points as the initial MS?;.. . o

’ - . .~ Finally, to apply these density estimation methods to akeser
f[jeartaoslgtt.egc;rrotrr:]eﬂl]\gS(; dMo?Eéjq?gﬁ?st g:]% :‘rourethdeel\r/llgé%?ﬁ)%'nFE astronomical data we extract two galaxy samples from the
datE)’:\set from the De%unay tessellation (see Appendix BIEC Seventh Data Release (DR7) of SDSS (Abazajian et al. 2009): a

: . I, ‘cone” of galaxies over a relatively small solid angle on sk«

plot representations of these three fields — the original M & extenc?ed in redshift, and &Sh)éll” of galaxies gverasmyall
dataset and the two derived datasets — are shown in Figur ré%shift interval but a Iaryge solid area

Note that both derived datasets look reassuringly like ttig o
inal MSG dataset, although slight smoothing can been seen in The spectroscopic redshift is used to calculate the comov-
both derived datasets. ing distanceR which is subsequently converted to Cartesian co-
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Fig. 3. Top: Distance distribution of the SDSS spectroscopic lggata

in comoving distances assuming a concordance cosmafagy-(0.28,
Q) = 0.72,h = 0.7). The dashed line is a fit to this distribution as-
suming the galaxies follow a Schechter luminosity functiaith an
apparent magnitude limit af < 17.7 (see Eq. 16). Bottom: The cor-
responding inverse weight as derived from the luminositycfion. A
10% completeness level (correspondindrte 515 Mpc, equivalent to
z=0.123) is chosen to remove high redshift outliers.

where{p (r)) is the average field densit§, the survey area and
®(R) is the selection function given by
Fig. 2. Scatter plot representation of MSG and MSG-derived dataset

Top to bottom: MSG data, Dataset MSG-DTFE, Dataset MSG-MBE.q,(g) — e—(%)ﬁ_ (17)

The best fit of Eq. 16 to our dat®(= 2.447 sr) is given by
(o(r)) = 0.013Mpc3, R, = 2998Mpc andg = 1.5 and is
ordinates for density estimation, using a flat cosmologyhwishown in Figure 3, top. The corresponding selection fundto
Qm=0.28,Q4 =0.72,hp = 0.7. shown in Figure 3, bottom. After calculation, the densities
corrected by dividing by the value of the selection functain
the distance of the galaxy.
We note that due to the fiber masks used for the spectroscopy

A completeness correction is required when calculatingities Of SDSS, not all (bright) sources in dense environments have

from SDSS data, which we discuss before presenting the satRectroscopic redshifts. These sources are not includedrin

ples. SDSS is magnitude-selected but not (initially) cazised S@mple, and we have not corrected for this, resulting in s dfia

in redshift. This means that with distance, the number aixjas Underestimated densities in the densest regions.

in the sample drops because fainter galaxies can no longk-be

tected, causing underestimated densities for distankigalalo  The “cone” sample

counter this fect, weights are calculated for every distance as-

suming a Schechter luminosity function (Schechter 1978efe We choose 1939 “primary” galaxies within the rectangular

1977), following the procedure of Martinez & Saar (2002)t F boundary RA= (185 190) and Dec= (9, 12) and with Petrosian

this calculation all SDSS galaxies with spectroscopicatise I < 17.7 and that have spectroscopic redshifts. The sky coverage

between 50 and 2000 Mpc (corresponding to redshifts frodfour sample is 14 0.

0.0117 to 0.530) and Petrosiar: 17.7 are used. If the galaxies A lower completeness limit (Fig. 3) of 10% is chosen to

follow a Schechter luminosity function, they should alsbdi@  truncate the galaxy sample to limit théet of high distance

a number distribution outliers; an incompleteness up to 90% does not cause unac-
ceptably large errors when attempting to estimate the tjeoki

dN galaxies (see Appendix A). This corresponds to a distance of

4R = P (MOROR) (16) Rpax = 515 Mpc (redshift 0.123).

Completeness Corrections
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z<0.123 R < 515 Mpc). Right: The shell sample, selected from SDSfjg. 5. performance of DEDICA for dataset 4. Filament in red and
Northern Galactic Cap over the redshift rangel0< z < 0.11, corre-  the wall in blue. Left: Spatial representation of the datafight:

sponding to a distance range of 418-459 Mpc. Comparison of true and DEDICA-inferred densities.

To prevent edgefiects and to limit the féects of local mo-
tion, a lower limit for the distance is set &y, = 50.0 Mpc
(corresponding to a redshift of 0.0117). This results in alfin
number of galaxies in the “cone” sample of 1030. Volume defields. We find that the adaptive-kernel-based methods, MRBE a
sities were calculated using this magnitude- and rediimfted DEDICA, best recover the input density distributions inshe
sample of 1030 galaxies. cases. We conclude this section by applying the densitsnasti
From integration of Eq. 16 for our cone sample.éne = tion methods to the SDSS samples and examine their utility fo
0.00449 sr), it is expected that there are 2702 sources in the determining the color—density and color—-concentrati@msity
gion of which we would detect 692. Instead, the cone samde hralations.
1030 galaxies, 49% more than expected. Comparing with other
regions of the same size shows that our cone sample is indeed
extraordinary dense: out of the 24 other regions, only orte hd. 1. Simulated Datasets
more sources than ours. Therefore we correct the averagde fiel
density of the “cone” sample t@cone(r)) = 0.0196 Mpc3. We first examine the performance of the four density estionati
The definition ofo°P* for the MBE in Eq. 8 does not suf- methods on the six simulated datasets and then on the two MSG-
fice for narrow cone-like samples. Problematic cases foh suderived datasets.
samples are a strong alignment with one axes (or planesgof th
Cartesian coordinate system (our case), or an alignmembni
of the space diagonals. The former results in a too-sofl  4.1.1. Artificial datasets
value because one or two of the values will be much smaller -~
than the other(s), while the latter results in a too-hiRt be- We compare the performance of the methods for the artifi-
causeN (in the denominator of Eq. 7) does not reflect the ir¢ial datasets in the top rows of Table 2 using the ISE and the
complete filling of space by the sample. Therefore we create@KLD metrics. The true densities are parametric densitégs c
new definition ofo°P! for conical samples: first the average disculated using the parameters with which the datasets are cre
tance of the the nearest half of the galaxies is determiied; t ated. It is clear that the adaptive-kernel-based method®E M
0Pt is chosen as the square root of the cross section of the c@hé DEDICA, perform significantly better than kNN or DTFE

at that distance. in recovering the input density distributions. For all buatBset
We explore the fect of the “cone” sample selection on théd, the lognormal distribution, the performance of MBE isteet
performance of the density estimators in Appendix A. than or roughly equal to that of DEDICA. We note that the MBE

densities were calculated with the automatic choice of #re k
. . nel size, and better performance of MBE might be obtained by
The “shell” sample modifying the smoothing parameter manually.

To avoid the complication of the changing luminosity limit o We note also that DEDICA performs very poorly for Dataset
the inferred densities, we also selected galaxies from SD&SJwall plus filament), where it fails to estimate the proper
in a thin shell in redshift space. For this “shell” sample, wdensity. Examining the point densities in Figure 5, it isacle
choose 34558 “primary” galaxies in the Northern Galactip Cahat DEDICA underestimates the densities in the wall. We at-
(Abazajian et al. 2009) with redshifts in the rangé®< z < tribute this to the method failing to choose the proper kisize
0.11 and a Petrosian magnitudes 17.7 (Fig. 4). during the automatic (cross-validation) kernel size d&acon

To compare with the “cone” sample, the incompleteness cahis dataset. We also see similar behavior when considéniang
rection is applied to the shell sample as well, enhancinggiie MSG and SDSS datasets. We discuss this issue in more detail in
mated densities by a factor of 5.3 to 6.9. Section 5.3.

Furthermore we note that the field produced by kNN is not
normalized. For datasets 1 to 6, the fields are approximately
to 30% over-dense on average. This is part of the reason that
We begin by examining the performance of the four densigNN performs the worst in terms of the integrated squarererro
estimation methods on simulated datasets with known dengiin these datasets.

4. Results
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Table 2. Performance of density estimators: simulated and MSG estas

Integrated Squared Error Generalized Kullback-Leibleedjence

Dataset MBE DEDICA DTFE kNN MBE DEDICA DTFE kNN

223x 107 644x10°% 154x10° 282x10° 561x10? 7.62x102 1.83x10! 159x10!
304x10°% 1.75x10° 585x10° 119x10*% 453x102 834x102 190x10*% 1.62x10"
474%x10° 910x10°® 1.99x10* 428x10* 390x102 677x102 162x10' 154x10"
235x10°% 291x10% 112x10° 202x10° 6.22x102 133x10" 234x10! 1.79x10?
565x 107 538x107 131x10°% 213x10°% 101x10! 912x102 242x10!' 212x10*1
766x10% 794x10° 196x10°% 371x10°% 321x10! 632x102 107x10! 143x10?
MSG-DTFE 168x10° 4.86x10° 124x10° 139x10° 650x10! 218x10"7 574x10! 573x10!
MSG-MBE 6.89x107 588x10“% 195x10! 171x10% 3.00x102 226x10" 1.25x10° 3.08x10"

OB WNE

Notes. Entries highlighted irboldface represent the smallest ISE or gKLD value and therefore thest"bmethod for that dataset under that
performance metric.

4.1.2. The MSG datasets of the density = log,;, (0 (ri)) or else a “standardized density”
defined as

We compare the performance of the density estimators on the ,, —

MSG datasets in the bottom rows of Table 2. As expected, DTPE= —_—— (18)

performs best on the MSG-DTFE dataset, and MBE performs
best on the MSG-MBE dataset. Interestingly, kNN performs a¢herey ando are the mean and standard deviation of the (al-
well as DTFE on the MSG-DTFE dataset. This is not a conmost) Gaussian density distributions. We plot the logarith
plete surprise, as DTFE and kNN are conceptually similar, béensity distributions in Figure 7.
cause both use only points in the immediate vicinity of the cu  The true mean density of galaxigs(r)) for the “cone” and
rent location to estimate the density directly. Becausehi, t “shell” samples is respectively.@96 and 013 galaxies per
both may perform better than kernel estimates in the presefnc cubic megaparsec (Section 3.2.2). The mean of the estimated
strong gradients or even discontinuities in the underlyeg- densities(p (r;)) cannot directly be compared against this num-
sity. Despite this, MBE performs nearly as well as DTFE anger, sincep (r;)) is averaged over the set of galaxies &n¢r))
kNN on the MSG-DTFE dataset, suggesting that MBE contimver the field. High density regions contain more galaxies$ an
ues to perform well even on spatially-complex datasets. therefore have a heavier weight in the mean of the point densi
. , ties (o (ri)). This weight is proportional to the density and if a
The gKLD metric in Table 2 reveals that DEDICA fails t0), ., mal distribution of the estimated densities is asatythe
estimate proper densities for the samples from the Millgmi

dataset. For both MSG samples, DEDICA produces very dlrf]ean of the estimated field densitiggr)) can be calculated as

ferent density distributions when compared with the “trdes- 100 (0207)2

tribution (see the MSG-MBE dataset Fig. 6). As noted abowv@, (1)) = €%~ 7 . (19)
we observed a similar performance of DEDICA on the simL’:-
lated Dataset 4, which contains a filament-like structutee T
MSG dataset also contains obvious filamentary structuraimg

or each estimator, the calculated value(@fr)) is plotted in
Figure 7 as well as the known average field density. For the
. . : : . “cone” sample, DTFE best approximates the known field aver-
it appears that the automatic kernel size selection (ugiogse : p »
validation) of DEDICA fai_led to choose_proper _kernel si;e foﬁﬁg gr%gsr'fg’rgl\?;rilg dfog%vlg?g 238&2% o't:gcr):rh eectlflr}(;l;)r :gg\;t)le
ISUCh datalsets (although it performﬁ. quite well in Gausstah %nown field average ciensity and kNN is in between.

ognormal cases). We summarize this issue in Section 5.3. The distributions of the “shell” sample are smoother than

those of the “cone” sample, due to the higher number of data
points. Even for the “shell” sample, the DEDICA density dist
bution is not smooth, due to its global optimization naturat t
_ o ) . leads to tiny window widths (see Section 5.3). The MBE dgnsit
We now examine the application of our density estimatorBeo tgjistripution peaks at slightly higher densities for theetthsam-
two observed galaxy datasets from SDSS, the “cone” andl"shglje Apart from the dference in means and widths, thefeli-
samples defined in Section 3.2.2 above. ences of the density methods manifest themselves in ttseotail
the estimated density distribution. DTFE produces highsttg
tails, as it is sensitive to overdensities due to the loctinesof
4.2.1. Density magnitude distributions the method. MBE produces a low-density tail. The distritwti
from KNN both has stronger high- and low-end tails (compared
We begin by comparing the distributions of feduesof the den- to a Gaussian).
sities [recall thap{r;) = Np(r;)] produced by the four dlierent The density distribution of DEDICA isféset from the other
methods (Figure 7). (Note that in this subsection “densi$y d distributions. By comparing the estimated field averagesitgn
tribution” refers to the 1-D distribution of thmagnitudeof the and the true field average density it is clear that the caiedla
density, not to the density distribution in space.) All fal@nsity values cannot represent the actual densities. This is dtleto
estimation methods produce approximately lognormalidistr sensitivity of DEDICA to overdensities: in case of highlysit
tions of the valuep (r;) for the SDSS samples (as expected frortered data such as ours, it creates very small kernels, under
previous studies and theoretical ideas: see, e.g., Colam&s] smoothing the density field (see Section 5.3). Moving the po-
1991). Therefore our analysis is performed with the logamit sitions of the galaxies by 1 Mpc in a random direction, thgreb

4.2. Application to SDSS datasets
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(bottom right). Approximately 16000 random grid locatiare shown.
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Fig. 7. The normalized distribution of the density values in log@pfor each estimator. The distributions are smooth argk¢twGaussian. The
average field densities as calculated with Eq. 19 are pletethshed lines. A broader range in densities (DTFE, kNNytésrthat the estimator
detects more clustering. More clustering results in motexggs in higher density regions, shifting the peak of theribution to the right. The
dotted line represents the measured average field dermitytfre selection function (see text). Left: “cone” samplighR “shell” sample.

homogenizing the sample a little, removes tHieet almost en- Baldry et al. 2006 in the context of the concentration—dgnsi
tirely. However, even though the densities of the DEDICAagal relation) and environmentalfects on the color—magnitude re-
ies are much higher than is expected, it can still be used as alation (e.g., Balogh et al. 2004; Baldry et al. 2006; Ball bt a
rameter describing the environment of the galaxies by using 2008). We define the inverse concentration index as
standardized form. fso
iC = =, (20)
o0
wherersg andrgg are the radii containing 50% and 90% of the
Petrosian flux (Baldry et al. 2006). For each galagyis taken
Two applications of the estimated densities are the exfiora as the average of this ratio in thandi bands. For typical galax-
of morphology—density relation (see, e.g., Dressler 188@ ies, the inverse concentration ranges from 0.3 (conceufyab

4.2.2. Galaxy color and concentration as a function of
environmental density

10
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4.2.3. The color—density relation

As discussed in the introduction, “early-type” red galaxize

far more common in clusters of galaxies than in the general,
low-density field, which is populated mostly by “late-tygatie
galaxies (see, e.g., Hubble & Humason 1931; Dressler 1980;
Balogh et al. 2004; Baldry et al. 2006).

We compare the ability of the density estimators to recover
the existence of this relation. We examine the galaxy cdlors
our “cone” SDSS samples as a function of environmental den-
sity parametrized as the “standardized” density definedi@bo
The standardized density is binned in ten steps2B8from the
mean, resulting in 20 bins. The distribution for the counteth-
bers of red ;) and blue Ny) galaxies in each bin is Poissonian
around the respective megnsanduy,

e#uN

P(Nlw) = NI

(21)

Fig. 8. The color distribution of the SDSS samples. The dotted line T]'he parameters of interest aie and b, the distributions of

the division between bluai-r < 1.9) and red ¢ — r > 1.9) galaxies.
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which are also given by a Poissonian distribution,

1, N
£ K (22)

PN = =

The fraction ) of red galaxies relative to the total number of
galaxiesis

fo M
Hr + Up

A Monte Carlo process is used to estimate the 68% confidence

intervals for the expected value bffor every bin. To model this

fraction as function of the standardized dengiya straight line
parametrized as

(23)

fmodel=aps+c¢ (24)

is fit to the data. Bins without either red or blue galaxiesggven
a zero weight so they do not contribute to the fit. The degrées o
freedom (dof) are the number of bins that contain red and blue

Fig. 9. Fraction of red galaxies as a function of standardized d,ensigal""x“:"S minus two, since the fitted model has two parameters

In reading order: MBE, DEDICA, DTFE, kNN. The data is binned i

Figure 9 shows the fraction of red galaxies of the “cone”

20 bins of width 025 centered around the mean. The yellow regiog@mple as a function of standardized densities and thefitierss-
denotes the error in the calculated red fraction as deteanirom the Straight lines. All estimators consistently ficd= 0.60 within
Monte Carlo simulation. In all cases, a clear color—densgtgtion can one standard deviation ef; = 0.015. The slopes éer sig-
be seen. The MBE shows a clear dip in high density regions. IBBD nificantly, DEDICA and MBE find the strongest relation with
has such a dip in low density regions.

a = 0.090 anda = 0.103 respectively, DTFE and kNN follow
with a = 0.081 anda = 0.075, all withoy = 0.014- 0.015.

There appears to be a significant dip at high densities (at
0.90, p (r;) = 0.045gal Mpc?®) in the color—density relation for
the MBE-inferred densities. The cause of this dip is uncleatr

0.55 (extended). A uniform disc would hai& = 0.75. Galaxy could conceivably be due to a morphological or color tramsit
colors are computed as theffdrence betweeabsolutemagni- at the edge of clusters in this sample (see, e.g., van Dokkum

tudes aftek-correctior? and extinction corrections. et al. 1998; Braglia et al. 2007, for more direct evidenceuahs

It has been long known that the distribution of galaxy colo/&ansitions).
is bimodal, with blue galaxies being dominantly extended an
disk-like and red galaxies being mostly compact and sptefoi4 2 4. The color—concentration—density relation
(at least in the local Universe: see, e.g., Strateva et 8l Xor a _ ) _
recent restatement of this observation). We show the cidti-d  There exists also a correlation betweenstractureof galaxies

butions of the two SDSS samples and our selected cut betwééf their environment (e.g., Dressler 1980; Driver et a06)0
blue and red galaxies in Figure 8. by combining the color—density and color—structure refatito-

gether, an even clearer bimodality in galaxy propertiestman
found (Baldry et al. 2006). Here we use the inverse concen-
3 k-corrections are calculated witkcorrecr v4.1.4 (Blanton & trationiC as a tracer of a galaxy's structure, following Baldry
Roweis 2007) using the Petrosian apparent magnitudes aursp €t al. (2006). We show the color—inverse concentratiortiogla
scopic redshifts. for six bins in standardized density for the “shell” sampfe i

11
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Fig. 10.Normalized contour plots in color—concentration spacestwibins in standardized density, for the SDSS “shell” sagid for each of
the four density estimators. The subfigures are croppecetsaine color and concentration range as Baldry et al. (200&)id comparison, every
subfigure uses the same color levels. The red number in trex left corner shows the number of galaxies in the bin.

Figure 1d. In all density bins (and for each density estimatothe “true” density distributions than the kNN or DTFE meth-

a well-defined red, concentrated (sm&l) peak and a blue, ex- ods. However, DEDICA clearly has fidculties with spatially-

tended (largeC) clump can be seen; but the contrast betweemmplex distributions, making it unsuitable for use on prob

these features varies with density as expected. lems related to the large-scale structure of the Universe (s
For all methods, the figures in the first and last column &ection 5.3).

figure 10 indicate that the blue, extended clump is more pro-

nounced in the lowest density regions and that the red, eence Al methods overestimate the density of dense regions, with
trated galaxies are more common in the highest densitymegioDTFE having the highest deviation from the true density be-
However, the figures in the inner four columns show a clear tracause the DTFE density approaches infinity if the volume ef th

sition from the first column to the last for MBE, but hardly forsurrounding tetrahedra approaches zero. On the other hiind,
DTFE, with DEDICA and kNN in between. Therefore, MBE dif-methods almost equally underestimate the density in lowitien

ferentiates the two classes of galaxies in the intermeditsity  regions.
regions better.

The DTFE even produces zero densities for points on the

5. Conclusions and Recommendations convex hull of the dataset. However, in an astronomical set-
) ) ) ting, this is not always problematic. The convex hull repres

All four methods are applicable in astronomical problemv&re the edge of the sample: physically there are galaxies beyond
all we prEfer the Modified Breiman Estimator. For the art#ici the edge which are not represented in our estimated demnsitie
datasets the kernel based methods outperform the DTFE atibrefore all methods produce densities that are lower tian
kNN with respect to the integrated square error and Kullbacknknown ‘true’ densities in these regions. The zero valtfes o
Leibler divergence. The correct kernel size determinalioa the DTFE density estimator can be used as an implicit indicat
crucial factor, and DEDICA fails to estimate the kernel i€ that the density estimation was not successful for thesaxgal
rectly in more complex datasets such as the Millennium simulies. Wwith the other methods, these galaxies silently enchia i
tion and SDSS. too-low density bin.

5.1. Artificial and Simulated Datasets Pelupessy et al. (2003) have performed a similar comparison

. ) of a kernel-based method (using a spline kernel with a window
From our artificial datasets we conclude that the adapt@redd- gize of 40 nearest neighbors) with DTFE, with the true dgnsit

based methods, MBE and DEDICA, are better at recoveriBging unknown. They found that in dense regions the kernel-
4 We note that these figures amet directly comparable with, say, based me_thod yields lower densities than DTFE. Howevey, the
Figure 10 of Baldry et al. (2006), for two reasons: (1) thesilies used @IS0 mentioned that the performance of the kernel-basenidet
for the binning ardhree-dimensional, standardizetgnsities, not two- Varies with the choice of kernel and smoothing parameteEBT
dimensional surface galaxy densities, (2) we considéerint mass indeed performs better than the kernel-based method iruprod
ranges. ing a high-resolution density field with highly detailedwstture.

12
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5.2. SDSS Datasets o

From the SDSS datasets we conclude that although the estil

tors produce dferent distributions of densities, they all give re .

sults in analysis that are consistent with the literaturdil®V -

the densities produced by DEDICA are inconsistent with e € »

pected average field density, they can still be used in stdnde ..

ized form. s
The kNN and DTFE are very sensitive to local perturbation *

producing high densities in overall low density environtsen .

This places the more uniform distributed blue galaxies ghbr

density bins and broadens the distribution of densitiesr&@fore Fig. 11. Optimal window sizes (showing color in log-scale) for datas

it is more dificult to appreciate thefiect of density, e.g., in the ,a~ - i

relation with color and concentration, for DTFE and kNN thar'\{ISG DTFE produced by DEDICA (left) and MBE (right).

for MBE and DEDICA. Furthermore, the KNN method overesti-

mates the average field density. We attribute this to thetfett

kNN does not produce normalized fields. 5.5. Recommendations

For kernel based methods it is crucial to select a good ker

. . ] : . rI”:e‘ich method has its own strengths, therefore the choice of
size. From our experience we conclude that it fRclilt to define method may vary depending on the problem at hand. For ex-
a one-size-fits-allinitial kernel size algorithm. 5510 "having a proper point density is important when stugly
The MBE indicates a peculiarity in the color distribution ofpe reationships between properties of individual gaaxand
galaxies at intermediate densities. This could be an itidica@f i 6ir environment, while a high resolution density field ismm
evolution of galaxies at the edge of galaxy clusters thaltoot  jmportant when studying the large scale structure of thearse.

be detected with the other methods. In this paper we focus on point densities and we conclude
that MBE is our preferred density estimator. It producessdars

5.3. DEDICA that are consistent with expectations from literature aogiges
more discriminating power than the other methods. Furtibeem

Although DEDICA performs very well for most simulatedit is the fastest method of our tests. A drawback is that a good

datasets, it performs badly for the simulated dataset 4(Big5) determination of the initial kernel size is non trivial. Wecom-

and the astronomical datasets (Fig. 7). mend an interactive process.

We attribute the failure of DEDICA in these cases to the be- The other kernel method, DEDICA, fails to produce cor-
haviour of the cross validation for inhomogeneously disitéd rect densities for our astronomical datasets. Furtherihizréhe
data. As we already indicated in Section 2.3, DEDICA aims fatowest of the tested methods. Therefore we cannot recochmen
a globally optimal result, instead of performing a localap- DEDICA, at least not for highly clustered data.
tive optimization of kernel widths. This may result in lowrpe The DTFE produces overall good densities, but is very sen-
formance in cases where the underlying distribution ce®isit sitive to local éfects. It produces small regions of large densi-
two quite ditferent components, as is the case for the simulatgids, even in otherwise low density regions. The computatio
dataset 4. complexity puts an upper limit on the number of sources to in-

For the astronomical data, DEDICA produces kernels wittlude, even though very fast implementations exist. Howeve
very small sizes. As an example, we compare the optimal witiie DTFE is better in discovering shapes in the density fields
dow widths for dataset MSG-DTFE as found by DEDICA anthan the kernel based methods, such as determining the fitame
MBE, respectively; see Fig. 11. Itis very clear that DEDIC#sh tary structure of the cosmic web.
optimal kernel sizes which are much smaller than those of MBE The kNN method, one of the most used density estimators in
In this case, the data are highly clustered and the underlyiastronomy, performs rather badly in our tests. It does raityce
density distribution is very non-smooth. Probably, thelend normalized density fields, which results in overestimateaisit
nium density has a non4flierentiable, fractal-like nature, whichties. The kNN is very sensitive to locaffects which broadens
violates the basic assumption of kernel density estimatwts the density distribution. At the same time it produces nersz
the underlying density should be continuougtatientiable, and densities in regions far away from any sources. The positile
bounded. For MBE this has less serious consequences, dg it @f KNN is that it can be implemented quickly in a few of lines
computes a pilot estimate once, instead of trying to optttie of code. This makes the kNN an attractive choice for quick and
window widths iteratively. dirty density estimations, but we recommend that it showat n

be used for more serious density estimation.

5.4. Computational Complexities
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Table 3. Computational complexity and memory requirement of dgrestimation methods.

Method Computational Complexity Memory Requirement Comtne
kNN straightforward O(dN?) Nd kd-tree indgficient whend > 1

using kd-tree O(dNlog N)
DTFE O(NlogN) N Available implementation only fod = 3
MBE O(dN) G¢ Inefficient with memory whem > 3
DEDICA O(dN?) dN Computationally infficient

Notes.N=number of data pointsl=dimensionG=number of grid points. DTFE numbers fdr= 3 only.

gram STARE (STAR E-Science), funded by the Dutch Nation&lppendix A: Mock samples — selection effects

Science Foundation (NWO), project no. 643.200.501.
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In order to study the impact of selectioffects on the density
estimations of SDSS galaxies — in particular for the “coratis

ple — we created four mock samples. The densities produced fo
these mocks are compared to our “cone” sample. The cone sam-
ple represents a region of SDSS that is 49% more dense than
average. To compare with this overdensity, the mock samples
were created with the same average field density@fe(r)) =
0.0196 which corresponds to 4024 sources.

We distinguish five dierent éfects that we want to investi-
gate. Any diference of the results of the density estimators that
is not explained by the points below are attributedftees in-
trinsic to the “cone” sample.

1. Background dferences of the estimators. A uniform box
with of size 58.9 Mpc with an average densitypfone(r)) =
0.0196 is created (“Mock Sample A’, 4020 sources).

2. Hfects of the conical shape of the “cone” sample. A sam-
ple with the same average density but with the shape of our
“cone” sample is created (“Mock Sample B”, 4010 sources).

3. Effects of the luminosity selection. Using the derived selec-
tion function, sources are removed from Mock Sample B in
such a way that the radial distribution of sources repressent
the radial distribution of the “cone” sample (“Mock Sample
C”, 1027 sources). This is done by assigning to every mock
source a uniform random number between 0 and 1 and re-
moving all sources where this number is larger than the value
of the selection function at that distance.

4. Effects of clustering of the sources. A sample of 49287
galaxies with the same angular shape as Sample B is selected
from the L-Galaxies of the full Millennium Simulation.

A distance and magnitude limit is imposed to select
4024 galaxies with the same shape as the “cone” sample
(“Millennium Mock Sample”).

5. Edge #ects. Sources at the edges will have underestimated
densities. To study thisfiect we removed about 30% of
sources that are closest to the edge in our mock samples.

The radial distributions of the samples are shown in
Figure A.1. The corresponding density distributions ofth#
points are plotted in Figure A.2 and without the edge points i
Figure A.3. In the uniform box (Sample A), the density dlstri
tions of kNN and DTFE are very similar (except for the higtden
DTFE tail). The cone shape only has a significaifée on the
kernel based methods, DEDICA producing slightly highersilen
ties and MBE slightly lower. When simulating and correctiog
a luminosity selection (Sample C), the distributions creaogly
slightly, justifying the 90% incompleteness we allow. Th8H
and kNN distributions look very similar, as do the DEDICA and
DTFE distributions. From the Millennium Mock Sample, it is
clear that the clustering of the sources has a lafigeton the es-
timated densities. The densities estimated by DEDICA are se
eral orders of magnitude higher than the estimations of thero
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Fig. A.1.Radial distribution of the mock samples. The dashed blaek li
shows the expected distribution of the galaxies, the blati#l Ene after
applying a luminosity selection. The (red) distributiontb& “cone”
sample shows more structure than a uniform mock would haee(y,
due to internal clustering.
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Fig. A.2. Normalized density distributions from the four densityirest-
tors for the four mock samples (A, B, C, and Millennium), alttwthe
same average density () = 0.0196gal Mpc?).

methods. This overestimation correlates with the smalhdler

sizes used by DEDICA, as discussed in Section 5.3. Thersds
an apparent bimodality visible in the MBE density distribuat

A.l1. Edge Effects

By comparing Figure A.2 with Figure A.3, it is possible todyu
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DEDICA
DTFE
kNN

MBE
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DTFE [| [
KNN
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Fig. A.3. As in Figure A.2, but now with approximately 30% of data
closest to the edges of each sample removed.
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Fig. B.1. The original (left) and modified (right) Monte Carlo process
for a 1 dimensional sample. The vertices on the blue lineleetigi-
nal sample points, the blue line itself the DTFE field. Blacknps are
uniformly drawn in the area below the red line, those beloe tue
line are included in the new sample. In this 1D example, thesto
ing of the red line gives a factor 6 improvement in perforngrin our
MSG dataset this is more than a factor 10000. The weightsiega oy
the colored areas: the cyan cells have the same weight. Tioa/yeell
has the same maximum density or volume as one of the cyanbecells
a lower weight. (Densities are linear spatial densities, probability
densities.)

Appendix B: DTFE Monte-Carlo sampling

A modified, but equivalent, version of the sampling procedur
described in Section 3.2.1 is used for the Monte Carlo sangpli
of the DTFE field. Due to the high sensitivity of DTFE to shot

r|10ise, the estimated field will contain very small regionghwi

a\/ery high density: The maximum estimated density for the mil

liMillennium dataset is more than 10000 times higher than th
average density. Following the exact procedure as with MBE
will result in more than 10000 randomly chosen points to be
discarded for every accepted point, slowing the procedigre s
nificantly.

the efect of edges on the density distributions. In Figure A.3 This can be alleviated by lowering the maximum possible
30% of the points closest to the sample edges are removealue for p in regions with a low density. The height of this
In all methods, the lower density bins are overrepresemtedmaximum can vary as function of location withoufexting the
Figure A.2 due to edgefiects but in Figure A.3 the low-end Monte Carlo simulation, as long as it is always above or equal
tails are still visible. Any edgefect on the tails therefore mustto the true density? and all the pointsx, y, z p) are drawn uni-

be minor.

formly below it. The maximum density for a field location id se
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to the maximum densit. of the Delauney celt at that lo-
cation. Figure B.1 shows the maximum density value for a one
dimensional example as a dotted red line.

Step 2a of Section 3.2.1 is modified to ensure a uniformly
drawn sample. First a Delaunay cell (simplex} selected, and
then a point within the simplex with a test densitybelowD..
More points should be drawn from larger cells and from cells
with a higher density in order to get a uniform selection.sTiki
achieved by giving these cells a higher preference whemrtsele
ing a random cell. This preference is quantified by a weight
and uniformity is ensured by choosimg= V; D, because this
is exactly thed + 1-dimensional volume below the red line that
corresponds to that cell.

The cells are simplices (tetrahedra wher: 3) withd + 1
verticesvp to V4. A random positiorr; within the cell is selected
by choosingd uniform random numbers; between 0 and 1 as

d
ri =v0+2aj (Vj —vo), (B.1)
=1

keeping only the Ad! points actually within the cell. The random
densityp is selected uniformly between 0 abg. A new cell is
selected if the test densityis higher than the interpolated ‘true’
densityP at the locatiorr;.

16



