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Abstract 

We describe a simple relation between the asymptotic behavior of the 
variance and of the expected number of distinct sites visited during a correlated 
random walk. The relation is valid for multistate random walks with finite 
variance in dimensions 1 and 2. A similar relation, valid in all dimensions, exists 
between the asymptotic behavior of the variance and of the probability of return 
to the origin. 

MULTISTATE RANDOM WALKS; VARIANCE, RANGE AND RETURN PROBABILITY 

1. Introduction 

In a recent paper, Henderson et al. [6] discussed a two-dimensional random 
walk in which, at each stage, the direction of the next step is correlated to that of 
the previous step. They found that in the asymptotic expressions for the variance 
and the expected number of distinct sites visited (henceforth denoted as range), 
there occurs the same multiplying factor. Accordingly the question was raised 
whether this relation applied only to their particular correlated random walk or 
whether it is of a more general validity. This question is answered in the 
affirmative in Section 2. There we also show that a similar relation exists between 
the asymptotic expressions for the variance and the probability of return to the 
origin. 

As far as we know, a general relation between the variance and the probability 
of return to the origin or the range of a random walk was first conjectured by 
Shuler [9] in the context of random walks on inhomogeneous periodic lattices, 
i.e. lattices which consist of a periodically repeated unit cell, where each unit cell 
contains a number of non-equivalent sites. He argued that the range and the 
probability of return to the origin should be proportional, or inversely propor- 
tional respectively, to (in dimension 2) the 'area' [E(x2)E(y2)]ll'2 covered by the 
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walker, where x, and yn are the displacements in the horizontal and vertical 
directions, respectively, after n steps. These conjectures were subsequently 
investigated within the context of multistate random walks, i.e. random walks 
where the walker can be in a number of internal states which affect his motion 

(Roerdink and Shuler [7], [8]). A similar study was recently reported by Bender 
and Richmond [2], but the precise relation between the variance and the 

probability of return to the origin or the range was not discussed by them. 
In Section 2 we present the general results for the probability of return to the 

origin and the range of a correlated random walk. We restrict ourselves here to 
correlated random walks on homogeneous periodic lattices, but the extension to 
correlated walks on inhomogeneous periodic lattices is straightforward. It is also 
assumed that the correlations extend over a finite number of previous steps. In 
Section 3 we briefly indicate some applications of these results by means of two 

examples, the one of Henderson et al. [6], as well as its d-dimensional analogue, 
studied by Gillis [4] (see also Barber and Ninham [1], p. 52). 

2. Theory 

Consider a multistate random walk on a d-dimensional uniform lattice [3] (a 
uniform lattice is a lattice where all sites are equivalent, i.e. there is the same set 
of vector steps at each point). The position of the walker on the lattice is 

specified by a vector r, where 
d 

(2.1) r = , liai. 

The {li} are integers, and {a,} is a set of so-called fundamental translation vectors, 
i.e. the lattice is mapped onto itself when translated along any of the vectors {ai}. 
A special case is that of hypercubic lattices, for which {a,} are d orthonormal unit 
vectors {ei}, which generate the integer lattice Zd. The internal states of the 
walker are labeled by Greek indices, running from 1 to m, where m is the total 
number of internal states. A 'state' of the walker is defined by his position I and 
his internal state a. 

A basic quantity for these walks is the probability Pn)(l - 1) that after n steps 
the walker is at site I and internal state a, given that he started at site 1o in 
internal state 3. (The components of I are the integers 1i in (2.1).) The fact that 

only the difference I - lo appears is due to the translational invariance of the 
lattice. The evolution of the probability distribution is described by the 

Chapman-Kolmogorov equation 

(2.2) P +1(l _ l) =s Tra ( o- )P f(L -- o) 

where T, (lI-l') is the single-step transition probability from site I' and the 
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internal state y to site I and internal state a. A fundamental role is played by the 
m x m matrix T, with matrix elements defined by 

(2.3) Ta =r Ta y(). 

By the normalization of transition probabilities, YS T,, = 1, so T is a stochastic 
matrix, which we assume to be irreducible. That is, T has a simple maximal 
eigenvalue Ao = 1 with associated right eigenvector rr, which is normalized, 
Sm=1 rTa = 1. The matrix T governs the evolution of an m-state Markov chain, 
which describes the transitions between the m internal states. The asymptotic 
occupation probability of internal state a is rr,. 

In order to state our results, we further define a set of diffusion coefficients Dii 
(i,j = 1,2, * , d) as follows: 

(2.4) Dij = lim 12 {E [ri (n)rj (n)] - E[r (n)]E [rj (n)]} 

where r(n) is the displacement of the walker after n steps with components 
ri(n)= r(n). ei (i = 1,2, - , d), where the {ei} are defined above. The limit 
exists if the single-step distribution Tay(I-l') in (2.2) has finite means and 
variances for all a and y, as will be assumed in the following. An algorithm to 
calculate the diffusion coefficients is given by Roerdink and Shuler [7] but will 
not be discussed here. 

Having defined the matrix T and associated eigenvector ir and the diffusion 
coefficients Dij, we are in a position to state our results on the probability of 
return to the origin and the range of correlated random walks. These results 
have been derived for multistate random walks on inhomogeneous periodic 
lattices (Roerdink and Shuler [7]), and only some minor modifications are 
necessary for the present case of correlated random walks, which can be viewed 
as multistate random walks where the internal states are determined by the 
previous step(s) (see Section 3). Therefore, the details of the derivation are 
omitted. 

(i) Probability of return to the origin. We assume that the walk is irreducible 
(every state can be reached from every other state) and without drift, i.e. 
E[ri(n)]-O (n->oo) for all i = 1,2,...,d [f(x)-g(x) as x->c means 

limx,c (f(x)/g(x))= 1]. First we consider the case of primitive walks, i.e. there 
exists a positive integer N such that a path of N steps exists between any pair of 
states of the walk. In this case the probability Pn')(o) that the walker returns to 
the origin o after n steps, with initial internal state / and final internal state a, is 
given asymptotically by [7] 

P(((o) ~- r det(2D)- 2(det A)(2 rrn)-d/ 
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Here rTa is the a th component of the eigenvector i' as defined above, D is the 
diffusion matrix defined in (2.4), and A is the matrix with elements 

Aij = ai ' ej. 

For the case of a hypercubic lattice, a, = ei, ei = 1, so A is equal to the unit 

matrix, and the geometrical factor det A = 1. For correlated walks we want to 
know the total probability of return to the origin, independent of the internal 
state of the walker when he starts or returns. Therefore, we sum (2.5) over final 
internal states a and average over the initial distribution {p'} of the internal 
states to find 

(2.6) p. (0o)- P(na(o)pP() (det 2D)-l/2(2wrn)-d/2 (n ) 
ot,0 

where we have used that Sa 7r = 1 and put detA = 1. This formula clearly 
displays the connection between the probability of return to the origin and the 
diffusion coefficients or the corresponding (co)variances. The same prefactor 
(det2D)-1/2 of course appears also in pn(r) for r$ o. 

For periodic (i.e. non-primitive) irreducible walks, the probability pn (o) is 0 
for a subset of values of n. For example, for walks in which the walker can only 
return to the origin after an even number of steps, the results (2.5) and (2.6) have 
to be multiplied by a factor [1 + (- 1)]. 

(ii) Range. To calculate the asymptotic behavior of S'n), the range (or 
expected number of distinct sites visited) after n steps, with initial and final 
internal state given by 8 and a, respectively, the derivation given before in [7] 
has to be slightly modified by starting from Equation (2.2.2) of that paper, 
instead of Equation (2.2.1). The reason is that for the present case of correlated 
walks visits to the same site, but with different internal states of the walker 

during such a visit, are counted only once. The result, again for irreducible and 
driftless walks, is 

~,(2.7) Sn),n (det2D)"2 12 \ d 
1 

detA 2rn/log n d = 2. 

In dimension d _ 3, S(n, is proportional to n for large n, where the proportional- 
ity constant depends on the value of the generating functions Ga,,(o,z)= 
-n=o z "P,',(o) at z = 1, so the dependence on the variance is not so simple as in 
dimension d < 3. Summing again over final internal states and averaging over 
initial internal states, we find, for the case det A = 1, 

P'8n "2 d = 
(2.8) Sn = S', "'- (det 2D)"2 

a,r4p 
~,2irn/logn d = 2. 
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Again the relation between S, and the variances is clear through the presence of 
the diffusion matrix, and in fact the factor (det2D)l/2(detA)-' in (2.7) is the 
inverse of the multiplying factor in (2.5). 

3. Examples 

(i) Henderson et al. [6] discuss a random walk on the square lattice, where the 
walker has probabilities f, b, r and 1 to take a step forward, backward, to the 
right and to the left, with respect to his previous step, respectively. They defined 
four states, El, * *, E4, according to whether the previous step was in the positive 
x-, negative x-, positive y-, or negative y-direction, respectively. They found 
(we take el and e2 to be the unit vectors in the positive x- and y-direction, 
respectively), 

([1 } D -Ib)2 _-(r - 
1)2] (3.1) 2D11 = 2D22 [1 - (f- b) (r) D12 r = D21 = 0. 

Although this result was derived for a special initial condition, it remains correct 
as long as the matrix T is irreducible. 

From (2.6) we find that 

(3.2) pn () (2 )-(21) rn)-l[ 1+ (-)n] 

where the extra factor 1 + (-)" accounts for the periodicity of the walk. In the 
special case f = b = 0, r = 1(1 + a), 1 = 2(1 - a), the walker can only return to the 
origin after 4, 8, 12, . steps, so 

(3.3) pn (o)~ - C2 (2?)--[ 2(11+( + ( (i)" +(-i)"], 

a result already derived by Gillis [5] via a different method. 
From (2.8) and (3.1) we conclude that 

Sn 2D1 27rn/logn 

in agreement with the result of Henderson et al. [6]. The advantage of our 
method is that the lengthy expansions of the generating function are avoided 
(the diffusion coefficients (3.1) can be calculated without using generating 
functions by the matrix algorithm in [7]). 

(ii) A d-dimensional generalization of the previous example was treated by 
Gillis [4] and later by Domb and Fisher [3]. See also [1]. They considered a 
d-dimensional hypercubic lattice, where the walker steps with probabilities f 
and b in the forward and backward direction or takes any of the directions 
orthogonal to his previous step with probability r. For this walk the mean is 
asymptotically 0 and the (co)variances are (see [1], [3]) with 8 = f - b, 
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)_ ~ n, 1 1+ 8 [n, 
E[r2(n )] n ; E[ri (n )rj (n)]- O (i j) 

whence 

(3.4) det2D = 2D i=(i . = 
i=1 \d 1-5 

Gillis [4] found for the probability Rn (S) of returning to the origin after n steps, 
as a function of 8, 

(3.5) R, ()-- d)2 Rn(O) (n-3). 

From (2.6) and the fact that return to the origin is only possible after an even 
number of steps, we find alternatively (we use (3.4)), 

(1 1 +8 \ d/2 
(3.6) R (8) - d 1- ) (2 rn)2[ +(-)n], 

which is in agreement with (3.5). 
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