
Physica l12A (1982) 557-587 North-Holland Publishing Co. 

A C U M U L A N T  E X P A N S I O N  F O R  T H E  T I M E  

C O R R E L A T I O N  F U N C T I O N S  O F  S O L U T I O N S  

T O  L I N E A R  S T O C H A S T I C  

D I F F E R E N T I A L  E Q U A T I O N S  

J.B.T.M. ROERDINK 

Institute for Theoretical Physics, Princetonplein 5, Utrecht, The Netherlands 

Received 23 October 1981 

It is shown that the cumulant expansion for linear stochastic differential equations, hitherto 
used to compute one-time averages of the solution process, is also capable of yielding the 
two-time correlation and probability density functions. The general case with a coefficient matrix, 
an inhomogeneous part and an initial condition which are all random and mutually correlated, is 
discussed. Two examples are given, the latter of which treats the harmonic oscillator with 
stochastic frequency and driving term studied before. Finally we investigate the relation of our 

method with the so-called smoothing method. 

1. Introduction 

This  a r t i c le  is c o n c e r n e d  wi th  l inear  s t ochas t i c  d i f fe ren t ia l  equa t i ons  o f  the  

fo rm 

d u(t) = A(t,  to)u(t) + f(t ,  to), (1.1) 
dt 

w h e r e  u(t) is a vec to r ,  A(t, to) a r a n d o m  coeff ic ient  ma t r i x  or  l inear  o p e r a t o r  

a n d / ( t ,  to) a r a n d o m  vec tor* .  The  r a n d o m  na tu re  o f  these  quan t i t i e s  is i n d i c a t e d  

b y  the  p a r a m e t e r  to w h i c h  will  o f t en  be  o m i t t e d  in the  fo l lowing .  The  ini t ial  

cond i t i on  U(to) m a y  be t a k e n  as f ixed or  in gene ra l  as a r a n d o m  quan t i t y  u0(to). 

In  a p r e v i o u s  article1), h e r e a f t e r  r e f e r r e d  to  as I,  we  c o n s i d e r e d  the  ca se  in 

wh ich  A(t, to), f(t ,  to) and u0(to) are  mu tua l ly  co r r e l a t ed .  I t  was  s h o w n  tha t  the  

ave r age  of  u(t) o b e y s  i t se l f  a d i f fe ren t ia l  equa t ion  of  the  fo rm 

d (u(t)) = K(t/to)(U(t)) + F(t/to) + I(t/to), (1.2) 

p r o v i d e d  tha t  a~'c is smal l ,  w h e r e  a is a m e a s u r e  fo r  the  s t r eng th  of  the  

* Although the variable t in (1.1) in this article is interpreted as denoting a physical time, it 
could be any one-dimensional physical variable. 
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fluctuations in A(t )  and ~-~ is the largest of three correlation times: the 
autocorrelat ion time of A(t) ,  the crosscorrelat ion time of A(t )  with [(t) and 

that of A(t)  with u0. Here  the angular brackets  denote  an average over  the 
probabil i ty measure  P(w)  which determines the prescribed statistics of all the 
random quantities involved. Both the matrix K(t/to) (involving the ordered 

cumulants  of A(t )  alone) and the vectors  F(t/to) and 1(t/to) (involving the joint 
cumulants  of  A(t )  with f ( t )  and u0 respect ively)  were obtained as expansions  
in the paramete r  ar~. Moreover ,  after  a transient time of order r~, K(t/to) and 

F(t/to) become  independent  of to while I(t/to) vanishes.  
In this paper  we will be concerned with the problem of obtaining the 

t ime-correlat ion function (u(t)  Q u(t')) of u(t), hereaf ter  denoted by C,(t, t'). 
Here  the ~ ) s y m b o l  denotes a Kronecker  product.  The essential step in our 
method is to derive f rom the cumulant  expansion for (u(t))  first an expansion 
for the characterist ic  functional of A(t) .  First we consider the homogeneous  
case with A(t )  of the form A ( t ) =  Ao+ aAl(t ,  w), with A0 non-random. It is 
shown that if aTc'~ 1, the correlation function of u, the latter satisfying (1.1) 

with f ( t )=-0  and fixed initial condition, obeys  differential equations of  the 

form 

9_ C~(t, t + T) = MA(t  + T; t / to )C. ( t ,  t + "r) OT (1.3) 

and 

3__ C.(t, t + "r) = [MA(t + r; t/to) + NA(t + "r; t/to)]C.(t, t + "r), (1.4) 
Ot 

where ~- ~> 0, t/> to. To second order in a, the matrices MA and NA are given by 

t 

M~ = Ag+ a(A~'(t + r) )+ a 2 f ds ((A'((t + z) e" ~a°A'~(s))} e " ~a,; 

fo 

t +'r  

+ a 2 f ds ((A'((t + z) e "+~ '~aaA~'(s))) e ,+,-,~a;, (1.5) 

l 0 

t 

Na = A; + ~(A'~(t)) + c~ 2 ~ ds ((A'~(t) e" ~)%Ai(s))) e " ~'% 

t o 

t + T  

+ 2 f ds ((A'~(t) e "÷" s~aaA'((s))) e "+" ~a~ (1.6) 

t o 

where the brackets  ( ( . . . ) )  denote  ordinary (second order) cumulants  and for  
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any matrix C we have defined 

C ' = C ®  i, C"= i ® C ,  (1.7) 

where 1 is the unit matrix of the same dimension as C. In (1.3) the initial 
condition Cu(t, t) is the equal-time second moment  (u(t) ® u(t)), while in (1.4) 
it is Cu(to, to+ r)= u(to)~(U(to+ "r)) (u(to) is not random). Both initial con- 
ditions can in their turn be calculated from the one-time expansion as in (1.2). 
The matrices MA and NA, involving the ordered cumulants of A, are again 
expansions in a~'c. Both are independent of the initial time to if t - to >> %. 

It is also shown how one can deal with the general case (1.1), where A(t), 
f ( t )  and u0 are all random and mutually correlated. Moreover ,  analogs of the 
eqs. (1.3) and (1.4) are derived for the two-time probability density functions 
of u. 

Among previous approaches to obtain the correlation functions we mention 
the two-time method of Papanicolau and Keller2), diagram methods3'4), and 
that of Morrison and McKennaS), which is an extension of the "smoothing 
method"  of Bourret  6) and KellerT). The latter method, which leads to an 

integro-differential equation for the correlation function, will be discussed 
below in more detail. Related projection operator  methods were recently 
employed by Agarwal8). Still other methods, as that of Keller 9) and McCoyl°), 
lead to complicated partial differential equations. Finally we would like to 
mention that in the case where the coefficient matrix A(t) is a Markov chain, 
the problem can be reduced to solving a linear (matrix) differential equation 
for the correlation function 3'5) (without the need of assuming a small cor- 
relation time). 

The organization of the paper is as follows: first we study the homogeneous 
case and derive eqs. (1.3) and (1.4) (section 2) (the generalization to multi-time 
averages is given in an appendix). Then we investigate in section 3 the 
behaviour of the matrices MA and NA for times exceeding the transient time 
which is of order %. The general case, i.e. including random inhomogeneous 
and initial value terms, is considered in section 4. Next  the method is 
illustrated by two examples, one for the homogeneous case (section 5) and 
another  for the inhomogeneous case (section 6). The second example 
concerns the harmonic oscillator with random frequency and driving term for 
which we previously derived the differential equations for the equal time first 
and second order moments1). In section 7 we show that the method of section 
2 can also yield the equations satisfied by the two-time probability dis- 
tributions of u themselves*. Finally an exact integral equation for the cor- 

* In this paper the expression "probability distribution" is synonymous with "probability 
density". 
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relation function is derived which is compared with the results of the 
smoothing method (section 8). 

2. The correlation functions in the homogeneous case 

In this section we derive the differential equations (1.3) and (1.4). First we 
review some results from I and introduce a convenient notation. By consider- 
ing the cumulant expansion for the characteristic functional of A(t )  we next 
derive a formal expression for C~(t, t + "r). From this the eqs. (1.3) and (1.4) 
are found by differentiation. 

The method presented here can easily be extended to derive differential 
equations for multi-time averages (see appendix A). 

2.1. The characteristic functional of A( t )  

Consider the stochastic differential equation 

u(t)  = A( t )u ( t )  (2.1) 

with A(t )  a random matrix and the initial condition u(to)=-uo fixed. The 
formal solution of (2.1) is 

u(t)  = QA(t/to)Uo, (2.2) 

where we define for any matrix A(t)  

f 

t0 

with t denoting the time-ordering operator (latest times to the left). 
As shown by Van Kampen 11) the average of (2.3) can be expressed as 

t 

(OA(t/to))= '[exp f dsKA(S/to)], (2.4) 
t o 

where the time-ordering operator t in (2.4) now acts with respect to the first 
time variable in KA('/to). The matrix KA is given by the following expansion 

t t I t m [ 

KA(t/to)=(A(t))+~=lfdt, f dt~.., f dtm(A(t)A(tl)...A(tr~))p. (2.5) 
l O t 0 t 0 
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Here  the brackets (. . .)p denote a partially t ime-ordered cumulant* (as defined 
in I) which is a combination of moments  of A with a prescribed order of the 
time variables. If [A(t), A(t')] = 0, for all t, t', it reduces to an ordinary 

cumulant. 
For  convenience we introduce the following short-hand notation 

KA(t/to) = (A(t) : QA(t/to) : )p, (2.6) 

meaning that to compute KA one should first expand the matrix QA between 
the colons in powers of A, take the p-ordered cumulant of each term with 
A(t),  carry out the integrals and finally sum all the terms, as in (2.5). 

Now we replace A(s) in (2.3) by k(s)A(s) where k(s) is a scalar test 

function with finite support. Then we can define the functional 

tO 

If k(s) = O(t - s)t we find again (2.3). Because of the finite support  of k, we can 

take t - ~  in (2.4) with A replaced by kA. Then we have the following 
expansion for the characteristic functional Ga[k] of A (compared with the 
usual definition there is an imaginary unit i missing in the exponent  of (2.7)) 

---- (~A[k]) = ~ exp f ds KkA(s/to) (2.8) GA[k] 
to 

with KkA the same as (2.6) with A replaced by kA. 

2.2. The formal expression for the correlation function 

Consider the following Kronecker  product  (t/> to, r/-- 0) 

u(t) • u(t + r) = [QA(t/to) ~ QA(t + ¢/to)]Uo (~ Uo 

= [QA°(t + ¢[to)QA,(t/to)]Uo Q uo, (2.9) 

where for any matrix (or vector) A we define 

A ' = A ~ i ;  A " = i ~ A ;  A = A ' + A " .  (2.10) 

Here  i is the unit matrix of the same dimension as A. QA' and QA,, are again 
defined by (2.3). 

N o w n o t i c e  the important  property of the commutator  

[A'(t), A"(t')] = 0, all t,t'. (2.11) 

* Often we will write "p-ordered cumulant" or "p-cumulant". 
t 0 denotes the Heaviside-stepfunction. 
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This implies that we can write 

t * x  

tO 

J.B.T.M. ROERDIN K 

l 

I dsA' s,}] 
I 0 

(2.12) 

(tOR) = t [ e x p  f d s K B ( s / t o ) ] ,  

t o 

where KB is defined as in (2.6). 
From (2.13) one deduces 

{A(s), t o ~ < s ~ t  
B(s) = t A " ( s ) ,  t < s ~< t + ~ ' 

/ 0, otherwise 

where A is defined in (2.10), and therefore  

I LA(S/to),  to<~ S <~ t 
KB(s / to)  = MA(S;  t/to), t < S <- t + "r 

0 otherwise. 

Here we define (for any matrix A ) L a  and Ma as 

La(s / to)  = (A(s) : Qa(s/to)  : )p (s >! to), (2.19) 

MA(S ; t/to) = ( A " ( s )  : Qa, , (s / t )Qa(t / to)  : )p (s/> t >~ to), (2.20) 

where the colons have the same meaning as in (2.6). Inserting (2.18) in (2.16) 

(2.16) 

(2.17) 

( 2 . 1 8 )  

Compared to (2.9) only the mutual order of A'-and A"-matrices has been 
altered, but this allowed because they commute.  Next  we put 

B ( s )  = O(t - s ) A ' ( s )  + O(t + "r - s ) A " ( s ) .  (2.13) 

Then we can write 

u( t )  @ u( t  + ~) = tOB(Uo @ uo), (2.14) 

where 

rOB = QB(v*/to) (2.15) 

since B is a matrix function of s with finite support. Now we use (2.8) with 

the matrix B instead of k A  
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one has 

t+~r t 

(+.>={'exp f dsK.(S/to)}I, exp f dsK.(s/to)} 
t t o 

t + 7  t 

={'exp f dsM (s ;t/to)}{'exp f dsLA(s/to)} 
t t o 

- QMA(t + r/t)QL,(t/to). (2.21) 

Here it is essential to note that the time ordering operators in (2.21) act with 
respect to the first time variable s of the quantities KB, MA and LA. 

Summarizing, we have found that the correlation function of u is given by 

C,(t, t + ~') = (q~B)(Uo • Uo) (2.22) 

with (t0s) as expressed in (2.21). 

2.3. The differential equations for C, 

Differentiating (2.21) with respect to the variable z for fixed t one im- 
mediately gets 

-f-~z (~bB) = MA(t ~" ; tlto)(qJB), (2.23) + 

SO in view of (2.22) we have as the first central result 

0 Cu(t, t + 7) = Ma(t + "r • t/to)C,(t, t + ~) (2.24) 
O'r 

with Ma(t + r ; t/to) given by (2.20) with s = t + r. 
Next differentiate (2.21) with respect to t with fixed r: 

O (OB) = Ma(t + ";; t/to)QMaQLa- QuAMa(t ; t/to)QLA 

I+T t+'r 

O M a , ,  t/to)]QLA. (2.25) + J~[{exp f d s M a ( s ;  t/to)} f d s ' ~ , s ;  
t t 

+ Q~LA(tlto)QL~. 

Here we omitted the time variables in the expressions for QL~ etc. Using the 
fact that 

0 
A"(s')Qx,(s'/t) = Os---~ Qx,(s'lt), 
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we find 

t + ~  t + v  

f d s ~ ( s ; t / t o )  = f d s ( A " ( s ) : Q A , , ( s / t ) A ' ( t ) Q x ( t / t o ) : ) p  
t t 

= N a ( t  + r ; t / t o )  - -  N A ( t  ; t / t o ) ,  

where 

(2.26) 

NA(s ; t/to) = ( : QA..(s / t )A'( t )Q~(t / to)  : )p (s >i t >>- to). (2.27) 

Now we insert the result (2.26) in (2.25). Because of the time ordering 
operator  in (2.25) the factor  NA(t  + ' c ; t / t o )  can be shifted in front of the 
]~-operator (which acts on the first variable of the expressions NA(" ; t/to)!), 
while the factor  N a ( t ; t / t o )  can be shifted backwards outside the brackets 
~ [ . . . ] .  Thus (2.25) becomes 

O (tOo) [Mt_(t  r ; t/to) Na ( t  + r ; t/to)](qJB) + + 

+ QMA[La(t / to)-  MA(t  ; t / t o ) -  Na( t  ; t/to)]QLA (2.28) 

and in view of the relation 

L A ( t / t o ) -  MA(t  ; t / t o ) -  Na( t  ; t/to) 

= ( ,4( t)  : Q~(t/to) : )v - (A"(t) : QA(t/to) : )p - (A'(t) : Q~(t/to) : )v = 0, 

(2.29) 

we finally arrive by (2.22) at the following equation for the correlation 
function 

0 C. ( t .  t + "c) = [ M A ( t  + r " t/to) + NA( t  + "c • t/to)] C . ( t ,  t + "r), (2.30a) 
O t  ' ' 

where 

Ma( t  + "r ; t/to) = (A"( t  + 7) : QA,,(t + "r/t)Q~,(t/to) : )p, (2.30b) 

Na( t  + • ; t/to) = ( : QA..(t + "r/ t)A'( t)Q~(t/ to)  : )~. (2.30c) 

Note that the operator  M~ in (2.30a) is the same as in (2.24). To compute Ma 
and Na one should again use the prescription below eq. (2.6). 

The initial conditions (u ( t )  @ u( t ) )  and u(to) @ (U(to+ 7)) corresponding to 
(2.24) and (2.30a) can be determined from the cumulant expansion (2.4) for 
equal-time averages (see I). 

If A is of the form A ( t ) = A o + a A l ( t ) ,  with A0 a sure matrix and A~ 
random, one can apply (2.24) and (2.30) to the eq. (2.1) in the interaction 
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representation: 

fJ(t) = aA~')(t)v(t), 

where 

v(t)  = e-"-'°~A°u(t), A~l)(t) = e-~'-'°~%Al(t) e ~'-'°~A° 

and transform the result back to the original representation. Here we give only 
the result to order 0/:: 

O Cu(t, t + ~) = [,g,0 + 0/(Ai(t)> + 0/(A]'(t + ~')) 

t 

+ 2 f ds (((A;(t)  + A~'(t + r)) e('-s)A6Ai(s)>) e -('-s)A~ 

to 

|+T 

+ 0/2 f ds (((A~(t) 
to 

+ A~'(t + r)) e('+~-s)a~A'l'(s))> e-(t+~-s)a~]C,(t, t + I-), 

(2.31) 

where the brackets ((. . .))  denote ordinary cumulants. The cumulants in 
(2.31) are of order two, i.e. the evolution operators occurring within them 
have to be considered as forming one operator with the operator A~(s) or 
A~'(s) succeeding them. The expression for OC,/Ot to order 0/2 is the same as 
(2.31) with A~ and all terms which contain A~(t) omitted (so from the second 
line of (2.31) one should omit the first term, but not the second). If At( t )  is 
Gaussian and [At(t), A~(t')] = 0 (for all t~  t'), such as for a scalar or delta- 
correlated vectorial Gaussian process, the second order approximation (2.31) 
is exact. 

Remark.  If one wants to calculate higher order corrections to the result 
(2.31) one should always keep all the operators A' and A" in (2.30b, c) within 
the cumulant brackets (...)p in decreasing time order (even though they 
commute). That the order of the operators within the time ordered cumulants 
is important follows from the prescription to be used for expressing the 
cumulants in terms of the moments1). For example 

(A"(t + ~')A'(t)A'(s))p v s (A ' ( t )A"( t  + "r)A'(s)) v if [A'(t), A'(s)] ~ 0. 

In the result (2.31) to order 0/2 the order of the A]- and A~'-operators doesn't  
matter, because only ordinary cumulants are involved. 
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3. Estimates for times exceeding the transient time 

In I we showed  that  if t - to>> ~-~ the express ion  (2.5) approaches  K ( t / - ~ ) .  
Using comple te ly  ana logous  a rgument s  we will now show that  

MA(t + ~ ; t/to)~-- MA(t +'r ; t/--oo), t --  to>>'r~ (3. la) 

~--MA(t+T;--°C/--~C), t - - t 0 > > % ;  T>>T~ (3.1b) 

and 

NA(t + "r ; t/to) ~-- Na(t + "r ; t/-~c), t - to >> T~ (3.2a) 

= NA(~ ; t/--~c), t -- to'> r~ ; r "> ~'c. (3.2b) 

This implies in par t icular  that  in (2.31) we can replace to by  - 2  if t - to >> re. 

To  show (3.1) we cons ider  a typical  te rm in the expans ion  of  MA(t + r ; t/to): 

t + r  Sn I t 

M~'m '=  f d s , . . .  I d s n f d t , . . .  
t [ tll 

tm I 

f dtm + A" ( sn )A( t , ) . . .  fi~(tm))p (3.3) (A"(t T ) A " ( s 1 )  . . . 

It) 

D u e  to the finite corre la t ion  time ~c of  A and the cluster  p rope r ty  of  the 

o rde red  cumulan t ' ) ,  subsequen t  time variables  in (3.3) are at mos t  a dis tance 

o f  order  ~'c apart ,  o therwise  the o rde red  cumulan t  vanishes.  So we can 
imagine the t ime variables  as points  being in t e rconnec ted  by  flexible strings 

with m a x i m u m  length ~'c. If  the t ime increases  in (3.3) all t ime-points  are 

carr ied  along by  the first one,  t + 'r .  Thus  if t - t o ~  > m~'c (and there fore  

cer ta in ly  t + ~--  t o~  > mTc) M ~  'm) b e c o m e s  independen t  of  to (there is no string 

b e t w e e n  t,, and to) and we m a y  as well pu t  t o - , - o o  in (3.3) (see fig. la). 

If  in addi t ion z >~ n-r~ the cumulan t  vanishes  a l together  because  the maximal  
dis tance be tween  t + • and t~ is (n + l)~-c, thus cer ta inly  that  be tween  t + ~ and t 

(fig. lb). The re fo re  if ~ >> ~,c only  the terms M ~  "°~ remain  and in these remaining 

terms we can put  t ~ - ~  because  all the s~ t ime-var iables  are carr ied along by 
t + T and there fore  b e c o m e  eventua l ly  i ndependen t  of  t (fig. lc). This com-  

pletes the p roo f  of  (3.1). 
N o w  cons ider  a typical  term of  NA(t + "r ; t/to) : 

t + T  Sn I l 

f dsnfdt,... 
t t t 0 

tm  I 

f d tm(A"(sO. . .  A"(s , )A ' ( t ) f i~( tJ . . .  A(t~)>~. (3.4) 

t o 
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mz ~. 
c 

~ ' f - - ' ~ ~  ~ ~ (a) 

t+T s, ~ . . . . . .  s t t . . . . . .  tm t 
n I o 

c mTc 

• , . . . . 

t+T s,l "'" S t t l • • . t t 
n m o 

.4 nT 
c 

• . . , . . 

t+~ s l s t t 
n o 

Fig. 1. E x t e n s i o n  of the integration domains in (3.3)(time running from right to left)• 

In this case  the variable  t carries  the s u b s e q u e n t  t i-variables along.  So  if 
t -  to ~> mrc the e x p r e s s i o n  (3.4) b e c o m e s  i n d e p e n d e n t  o f  to (fig. 2a). On the 
other  hand,  S l can  be at m o s t  a d i s tance  n~-c apart f rom t, so  if r ~> n% w e  can  
ex t en d  the s, integrat ion to  oo b e c a u s e  the cumulant  is z e r o  a n y w a y  if s, ~> nTc 
(fig. 2b). H e n c e  a lso  (3.2) f o l l o w s .  

F r o m  the a b o v e  c o n s i d e r a t i o n s  w e  can  d e d u c e  the f o l l o w i n g  es t imates ,  
taking A o f  order  a and t - to "> ~'c, "r >> ~'~: 

M ~  '°~= or(arc)", N~'m~"= a(ar~) "+'. (3.5) 

H e n c e  w e  find the c o n d i t i o n  a%,~  1 for  the c o n v e r g e n c e  o f  the e x p a n s i o n s  
(2.24) and (2.30), w h i c h  is the s a m e  cond i t ion  as f o u n d  p r e v i o u s l y  for  the 
val idity  o f  the on e - t ime  expans ionL") .  

mT c • 

[ 

t+~ s,; . . . . . .  s t t I . . . . . .  t t 
n m o 

t+T 

nT c ~q mT c 

s 1 . . . . . .  s n t t I . . . . . .  t t 
m o 

Fig. 2. Extension of the integration domains in (3.4). 

(b)  
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4. The general case 

In this section we construct  the differential equations for the correlation 
functions in the inhomogeneous case (1.1). The situation, where also the initial 
condition is random, is handled by reducing the problem to the in- 
homogeneous  case with sure initial condition (section 4.2). 

4.1. ,The inhomogeneous case 

We start again with the equation 

u(t) = A(t ,  co)u(t) + f( t ,  o)) (4. I) 

with u(to) = Uo (fixed). The random matrix A(t ,  ~o) and vector  f ( t ,  oJ) may be 
statistically dependent.  First we reduce (4.1) to a homogeneous  equation by 
the following trick. Define a new vector  w(t)  by 

(u(t)~, (4.2) w(t)  = \ z ( t ) /  

where z(t)  is a scalar function with z(t)  = 1. Then w(t)  obeys the equation 

~i,(t) = B ( t ) w ( t )  (4.3) 

with* 

{_A(t) i f(t)_~ B( t )  = 1(--~----]---6--~/ (4.4a) 

and initial condition 

w(to)= ( u ~  °)). (4.4b) 

Applying the results (2.24) and (2.30) to (4.3) one finds equations for the 

correlation function Cw(t, t + "r) =- (w(t)  @ w(t  + ~)), from which equations for 
Cu(t, t + T) can be extracted.  We will carry out this scheme only for eq. 

(2.30a). One finds 

~t Cw(t, t + = + t/to) + NB(t + t/to)]Cw(t, t + .r). (4.5) '7") [MB(t T T 

Here MB and NB are defined as in (2.30b, c) with A replaced by B (and 
consequent ly  A' by B'  etc.) and B given by (4.4a). 

Now suppose u is a vector  with n components .  Then we are only interested 
in the first n components  of w(t)  and w(t  +.r) in (4.5), for which we now 
establish the equation. To this end we first note that the quantities MB and NB 

* The  s y m b o l  I~ i nd i ca t e s  a ma t r i x  (or vec to r )  w i th  all e l e m e n t s  zero.  
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N~(t  + 

with 
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in (4.5) can  be wr i t ten  as 

t/to) = ( : E( t )  ~ D( t  + ~-) : )p, 

t/to) = ( : D(t )  Q E( t  + -:) : )p 

E ( t )  = B(t)QB(t/ to) ,  D ( t )  = QB(t/to). 

H e r e  we  made  use of  identi t ies  as 

QA,,(t + r/t)Qa(t/to) = QA,,(t + r/to)QA,(t/to) 

569 

(4.6a) 

(4.6b) 

(4.6c) 

{ E(1) [ E(2)~ (.D")I D(2)_~ 
E . . . . . . . .  " ....... -7 D = 

o o ,  

where  

(4.7) 

(4.8) 

E(t)(t) = A(t)D(l)(t),  E(Z)(t) = f ( t )  + A(t)D(2)(t) (4.9a) 

and 

t 

0(I)(0 = QA(t/to), D(E)(t) = f ds Qa(t /s) f (s) .  (4.9b) 

to 

E (1) and D (t) are n x n -ma t r i ces ,  and E (2) and D (2) are n -d imens iona l  (co lumn)  
vec to r s .  

N o w  we res t r ic t  ou r se lves  in (4.7) to 1 ~ < i ~  < n, 1 ~< k ~< n. The  s u m m a t i o n  
o v e r  j and l can  be split  up in four  regions:  {1 ~<j ~<n; 1 ~<l ~< n}; {1 ~<i ~< n;  

The  mat r i ces  E and D have  the fo l lowing s t ruc ture  

~t (wi(t)wk(t  + "r)) 

n+l 

= ~ [( : Eij(t)Dkl(t + 1") : )p + ( : Do(t)Ekl(t + T) : )p] (wi(t)wl(t  + "r)). 
j ,l=l 

and subs t i tu ted  t hem into the exp res s ions  (2.30b, c). H o w e v e r ,  it has to be  
kep t  in mind that  if one expl ic i t ly  wants  to c o m p u t e  the o rde red  cumulan t s  one 
should  first p lace  in (4.6a, b) all quant i t ies  within the o rde red  cumulan t -  
b r acke t s  ( . . . )p  in decreas ing  t ime o rder  (see " r e m a r k "  at the end of  sec t ion  2). 

F r o m  (4.5) and (4.6) we  find for  the c o m p o n e n t s  
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j = n + 1}; {1 ~ j  ~ n; I = n + 1}; {j = n + 1 = l}. We  find 

O 
O~ (ui(t)uk(t + T)) 

(1) (1) (1) (1) = [( : Eii (t)Dkt (t + I-) : )p + ( : Dij (t)Ekt (t + r) : )p](Ui(t)udt + r)) 
j , l = l  

(21 (1) (2) (I)  + [ ( : E ~  ( t ) D k ~ ( t + z ) : ) v + ( : D ~  ( t)Ek~(t+'r):)p](u~(t+'r))  
I=1 

+ ~ [( : .) (2) )p + ( : Dii ( t )Ek (t + z) : )pl(ui(t)) Eii ( t)Dk (t + "r) : ~1~ (2) 

~2) (2) Dl2~(t)E~2)(t + ~.) : )p ( : E i  ( t)Dk (t + 3"): )p+( : + 

or in vec to r  

O--- C . (  t, 
Ot 

nota t ion  

t + z) = G ~' I)(t, t + "r)C,(t, t + z) + G (2" ll(t, t + T) (u( t  + 7)) 

(4. I O) 

G,2, i) = (f'(t)) + f ds ( (A"(s) f ' ( t ) ) )  + ds (({A'(t) + A"(t + ~-)}f'(s))), 

tO to 

(4.12b) 

+ G"'2~(t, t + z ) (u ( t ) )+  G~2"2)(t, t + "r), (4. l la)  

where  we define 

G " " ( t ,  t + r )  = ( : E")(t) @ D~il(t + "r) : )r 

+ ( : D")(t) @ Eq~(t + ~-) : )p (i = 1, 2). (4.1 lb)  

the E ~) and D () mat r ices  be ing g iven by  (4.9) ( r e m e m b e r  the r e m a r k  succeed ing  
(4.6)). Eqs.  (4.11) cons t i tu te  the final resul t  for  the cor re la t ion  func t ion  in the 
i n h o m o g e n e o u s  case .  I f  C, is d i f ferent ia ted  with r e spec t  to r we obta in  the 

same  exp re s s ion  (4.11a) where  h o w e v e r  only  the second par t  of  (4.11b) 
cont r ibu tes .  The  mat r ix  G " ' "  conta ins  the o rde red  cumulan t s  of  A alone,  

G(2. i~ and G "'2) those  of  A with one f and G ~2"2~ those  of  A with two f 's .  I f  we 
fo rma l ly  regard  A and f to be  of  the same  order  of  magni tude ,  the resul t  

(4.11b) to second  order  yields 

t 

G ~1"" = (A'( t ) )  + (A"(t  + z)) + f ds (({A'(t) + A"(t + r )}A'(s)) )  

to 

t+7 

+ [ ds ( ({A ' ( t )+  A"(t + ~')}A"(s))), (4.12a) 

t o 
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t 

o = <r'( ,  + f ds ((A'(s)l"(t + z))) 
to 

+ f ds ( ( { A ' ( t ) + A " ( t + r ) } f " ( s ) ) ) ,  (4.12c) 

t o 

t + r  t 

G (2'2)= f ds ( ( f ' ( t ) f ( s )} )+ f ds ((f"(t + r)f(s))), (4.12d) 

t o t o 

where ((...)> again denotes ordinary cumulants. 
In the special case that A and f in (4.1) are statistically independent the general 

result (4.11) reads 

(9 Cu(t, t + r) = [MA(t + "r • t/to) + NA(t + r " t/to)] C~(t, t + r) at ' ' 

+ (f ' ( t))  (u(t  + T)) + (f"(t + q')) (It(t)) 
t + ' r  t 

+ f ds( ( f ' ( t ) f ( s ) } )+ f as ((f"(t + r) f (s ) ) )  (4.13) 
t o t 0 

with Ma and NA given by (2.30b, c). 

4.2. Random initial conditions 

Consider finally (4.1) with random initial condition U(to)= u0(to), where the 
random initial condition can be correlated with both A and f. Then the 
quantity 

v ( t )  = u ( t ) -  U(to) 

satisfies 

6(t) = A(t ,  to)v(t) + g(t, to), v(to) = 0 (non-random!) (4.14) 

with 

g(t, to) = A(t ,  tO)Uo(to) + f( t ,  to). (4.15) 

Equation (4.14) is again of the type considered in section 4.1 so that (4.11) 
immediately leads to an equation satisfied by Cv(t, t + "r) = (v( t )  ~ v( t  + -r)), 
from which Cv(t, t + ,r) has to be determined with initial condition Co(to, to+ 
r )  = O. 

The correlation of u itself can be expressed as 

C u ( t , t + ' r ) = C v ( t , t + ' r ) + ( u ( t ) ( ~ u o ) + ( U o ( ~ U ( t + ' r ) ) - ' ( U o ( ~ U o ) .  (4.16) 
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So what remains to be done is to find the quantities ( u ( t ) @  uo) and 
(uo@ u(t + "~)) in (4.16). This can be achieved in the following way. It was 
shown in I that the average (u(t)) of (4.1) with random initial condition u0 
obeys  the equation 

Oi(t)) = KA(t/to)(u(t))+ FA(t/to)+ IA(t/to), (4.17) 

where 

KA(t/to) = (A(t)  : QA(t/to) :)p, (4.18a) 

t 

Fa(t/to) = i f ( t ) )+ f ds (A(t)  : QA(t/s) : f(s))p, (4.18b) 

ttl 

! 

Ia(t/to) = (A(t)(uo - (Uo))) + f ds CA(t) : QA(t/s) : [A(s)(uo-  (uo))])p. 

(4.18c) 

Here we used the shorthand notation introduced in this paper also for FA and 

IA. 
By integrating (4.17) we have 

l 

(u(t))-~ ( :  QA(t/to) : u0)+ f ds ( :  qA(t/s) : f ( s ) )  
t 0 

! 

= [ • e x p f  dsKA(s/to)](Uo} 
tl) 

Now the quantities 

t 

(u(t) @ Uo) = ( : QA.(t/to) : {Uo@ Uo})+ f ds ( : QA,(t/s) : i f ( s )  @ u0}) (4.20) 
t 0 

and 
(Uo @ u( t  + "r)) = ( : QA,,(t + "r/to) : {uo @ Uo}) 

t + T  

+ f ds ( :  QA,,(t +'r/s) :{uo@f(s)}}  (4.21) 
t o 

obey the same identity (4.19) with the replacements A ~ A ' ,  Uo--* Uo@ Uo, 
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f --} f @ u0 in the case of (4.20) and A -} A", u0-~ Uo Q Uo, f -~ u0 @ f, t ~ t + ~" in 
case of (4.21). Therefore  also (u(t) ~ Uo) and (UoQ u(t + ~)) obey (4.17) with 
the replacements just mentioned in KA, FA and IA. From these equations the 
quantities (4.20) and (4.21) can be determined with initial condition (u0 Q uo). 

This completes the solution in the most general case (4.1). The correlation 
times involved now are not only those of A with itself and with f and u0 
(which have to be finite for the above expansions to be valid) but also those of 
f with itself and with u0. 

5. F irs t  e x a m p l e :  the  h o m o g e n e o u s  case  

As a first illustration we consider the following homogeneous equation 
(already introduced in I) 

u(t) = {cr~ + a~(t)crx}u(t) (5.1) 

with u a two-component  vector,  tr~ and o,x Pauli matrices and ~(t) a stationary 
dichotomic Markov process with values -1 .  In this case we take a fixed initial 
condition u0. 

By application of the approximate result (2.31) (with t 0 - 0 )  one gets from 
(5.1) 

O_ C,(t  + r, t) = B(t, r)Cu(t + z, t), (5.2) 
Ot 

where 
t 

= + a2f ds {e 2vlt-*ltr~ + e-2rlt+*-'ltr'}tr"(t - B(t, T) S) 

0 
t+T 

+ a :  f ds {e-2vlt-slcr~+ e-Evlt+T-~ltr'x}tr'(t + ~ - $) ,  (5.3) 
0 

where 

Crx(t) -- e'~crx e ,~z (5.4) 

and we used 

( ~ ( t ) )  = 0,  ( ( ~ ( t ) ~ ( t ' ) ) )  = e -2'1'-'1. (5 .5)  

Note that we calculated Cu(t + ~, t) instead of Cu(t, t + ~) as in (2.31). Carrying 
out the integrals in (5.3) and considering times t >> rc - (~/-+ 1)-~(~/> 1), we find 

2 0t 
B(t, ~-) = 6~ + ~ [2~/- O~ + i e-2W(tr'tr~ + crier') 

+ 23,(cr'tr" cosh 2~" + i tr ~tr" sinh 2T)]. (5.6) 
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Introducing the vector 

U(t,  r) = Col{(ul(t + r)ul(t)) ,  (u2(t + r)u2(t)), 

(u,(t  + "r)u2(t)), (u2(t + r)ul(t))}, 

we derive from (5.2) and (5.6) the equation 

a 2 {B, i 0) 

where 

B , = (  y - I  3' e2" + e  z~) ( 
3'e 2T--e 2w 3'+1 ; B2= Y " re  2~ 

(5.7) 

(t > T~), (5.8) 

2/e2"~. (5.9) 
3' / 

So it turns out that (at least to order a2) the first and last two components of 
U are decoupled. 

In appendix B we briefly indicate how the results (5.8) and (5.9) can be 
checked*. There it also turns out that the decoupling found above is in fact 
exact to all orders in a (at least if t >> r~). 

6. Second example: harmonic oscillator with stochastic frequency 

In this section we will consider again the harmonic oscillator problem of 
West et al. ~2) as an example of the inhomogeneous case discussed in section 
4.1. In I we already derived the equations for the equal-time second moments. 

The model is defined by the equation 

ti(t) = [Ao + A~(t) lu( t)  + f ( t )  (6. la) 

with U(to) fixed and 

( j] l ) ;  A, ( t )=3" ( t )B ,  B = ( ) [ ) ,  (6.1b, A0 = _ 2_2A I 

i(,, So: (1) (6.1c) 

Here u ( t ) =  Col{x(t), p(t)} where x and p are the displacement and momen- 
tum of the oscillator; f2(t) and 3'(t) are two statistically independent scalar 
random processes. The process 3'(t) has zero mean and delta-correlated 
cumulants 

((3'(tOy(t2)...  3'(tin))) = m[Dm 8 ( t , -  t 2 ) . . .  8(tin ~-  tin) (m >1 2). (6.2) 

* See also ref. 5, §5. 
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The  p roces s  f2(t) is s t a t ionary  wi th  zero  m e a n  and its cor re la t ion  func t ion  

(which is not  ye t  specified) is deno ted  by  

(f2(t)f2(t - 1")) = 2/)d~('r). (6.3) 

Since A~(t) and f ( t )  in (6.1a) are s ta t is t ical ly  independen t ,  the appropr i a t e  

equa t ion  for  the cor re la t ion  func t ion  in this case  is (4.13), which  h o w e v e r  is 

be s t  appl ied first to the equa t ion  fo r  the in te rac t ion  r ep re sen t a t i on  v(t)  = e -tA° 
u(t)  ( take t0---0) and subsequen t ly  t r a n s f o r m e d  b a c k  to the original r ep re sen -  

ta t ion u. We  find 

~t C,(t,  t + ~) = [fi-0 + et~+(t+~)A~{Ma,(t + "r ; t/to) 

+ N~t(t + T ; t/to)}e "~+"+~A@]C,(t, t + ~') 
t t + ~  

f ds((f'(t)f(s)))], 
0 0 

(6.4) 

where  the hat  s y m b o l  . . . . .  defines the in te rac t ion  r ep re sen ta t i on  

fi, l(t) = e -'a° A , ( t )  e'A°; f ( t )  = e -'A° f ( t ) .  (6.5) 

No te  tha t  QA, = (QA)' etc. 
N o w  cons ide r  the quant i t ies  MA1 and NA~ in (6.4). L e t  us first look at MAt: 

MAt(t + "r; t/to) = (,~'~(t + r) : QA/'(t + r/t)Q~t(t/to) : )p. (6.6) 

Since the p roce s s  3,(t), and the re fo re  also A~(t), is de l ta -cor re la ted ,  there  is 
only  a cont r ibu t ion  to (6.6) if a f te r  expand ing  all the Q - o p e r a t o r s  all t ime 
var iab les  of  A~'(.) and A~(-) are equal  to (t + "r). I f  "r > 0 this c anno t  be  t rue for  
any  of  the Armat rmces  since the uppe r  t ime-l imit  in QAt is t*. So only 
Aq'-matrices remain .  The  mth order  t e rm  of  Q~, in (6.6) then  yields  a con-  

t r ibut ion  

Dm+t e-~t+~)A~(B") m+l e (t+~)A~, 

which  van i shes  for  all m I> 1 since (B") m+~ = 1 Q B m+~ and B ~+~ = 0, m / >  1. 

Also the t e rm with  m = 0 van i shes  (~( t )  has  zero  average)  so 

MAt(t + ~" ; t/to) = 0. (6.7) 

N e x t  turn  to NAt: 

NAt(t + • ; t/to) = ( : Q'~it(t + Tlt)A~(t)Q~t(tlto) : )p. (6.8) 

• If ~-= 0 both (6.6) and (6.8) contribute. However, one easily checks that the result (6.10), 
derived for ~" > 0, is in fact also correct for ~" = 0. 
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By similar arguments as above one finds that the expression (6.8) is of the 
form 

of which again only the term with m = 1 survives, so 

~,~,(t + 7 ; t/to) = 2D2 e- *%BF e%e -fAi;~“~ etA; 

Inserting (6.lb, c), (6.3), (6.7) and (6.9) in (6.4) we get 

$ C,(t, t + 7) = [A,+ 2DzB @ {eTAO B e ‘AO}]C,(t, t + T) 

I 

+ 2D ds +(t + T - s){e(‘~‘)*o @ fo}fo 

The matrix e’” is of the form’) 

(6.9) 

(6.10) 

(6.11) 

where 

(6.12a) u(7) = 
A 

cos rw, + 0, sin 7wl b(7) = ($ sin w,) emTA, 

C(T) = - d(7) = ( 
A . 

cos 7wI - w, sin 7wI emTA (6.12b) 

and 

w, = (fl’- Al)“‘. 

From (6.lb, c) and (6.10) - (6.12) we find the following equations for the 
components of C,(t, t + T): 
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where  

a l  = b(~ ' )a ( - , r ) ;  a2 = b ( ' r ) b ( - T ) ;  a3 = d ( , ) a ( - 1 " ) ;  a 4 =  d( ' r )b ( - ' r )  

(6.14) 

and 

(xp)~ = ( x ( t ) p ( t  + T)), etc.  

N o w  we can  calcula te  the  equi l ibr ium cor re la t ion  func t ions  (which cer ta in ly  
exis t  if the equal  t ime second  m o m e n t s  exist ,  i.e. if D2 < 2AD 2) by  put t ing the 

de r iva t ive  in (6.13) equal  to zero  and solving the resul t ing mat r ix  equa t ion  for  
t ~ ~,  1" fixed. We  find 

(x2)~ q = {p(A+ - A_)  + 4hA+ + C}{4AO 2 -  2D2a3 + 2D2a~p} -I, (6.15a) 

(xp)eq = _ (px)erq = {A+ - A _ -  2D2a ,(x2)eq}{2D2ot2 + 4A }-' ,  

(p2)~q = (02  _ q)(x2)~q + [2A{2D2t~2 + 4A}-~(A+ - A_)] - A+, 

where  

p = ( 2 D 2 a 4 -  8A2)(2D2a2 + 4A)-l;  q = 4AD2al(2D2a2 + 4A) -l, 

o o  

A+= 2r {f ds$(s+_'r)b(s)}, 
0 

 : oIl 
0 

(6.15b) 

(6.15c) 

I t  is not  difficult to show tha t  for  r = 0  the resul ts  (6.15) r educe  to the 

equi l ibr ium m o m e n t s  (6.25) of  I. I f  f2(t) is de l ta -cor re la ted ,  i.e. ~b(s) = ~(s) ,  it 
fo l lows tha t  (~- > 0) 

A+ = O, A_ = 2/)b(~-), C = 2/)d( ' r )  

and we find 

+ A__ sin I"tol) e -~', (x~)~ ~ = E ( c o s  ~o~1 
£01 

(xp)~ q = -(px)~, q = - E  sin r~ol e , (6.16) 

A ) e_~.  ' (p2)~q = E O  2 cos  I " o J i - -  sin ~-co, 
tO 1 

E = / ) ( 2 X O  2 - D2) -I 

in a g r e e m e n t  wi th  the resul t  (4.24) of  W e s t  et  a1.12). The  equi l ibr ium cor-  



578 J.B.T.M. ROERDINK 

relations (6.16) define a correlation matrix CT 

C T = / ( x 2 ) e q  (Xl~)erq~ (6.17) 
\(px)~" (p')~q/' 

which satisfies 

C~ = C0(e'a°) +. (6.18) 

Here Co is the matrix of equal-time equilibrium second moments. In other 
words, the fluctuations satisfy the regression theorem~S), hence a quantity as 
(x:)~ q can be calculated as follows 

(x2)er q = (X0(X(T))uO)eq, (6.19) 

meaning that one should first evaluate i x ( r ) )  from (6.1) with fixed initial 
condition uo ( ( x ( r ) ) ,  o is not affected by the fluctuations but only involves the 
unperturbed matrix A0 t.~2)) and subsequently average xo(x(r)), ,  o over initial 
values Uo distributed according to the equilibrium distribution. However,  that 
this is a correct procedure in this case is due to the fact that the process (x, p) 
is Markovian if both y and f in (6.1) are delta-correlated. It is no longer true 
(at least in general) if the process is not Markovian. Let us take an explicit 
example. From the exact result (6.13) one can conclude that in this case an 
infinite autocorrelation time of the additive noise term f ( t )  in (6.1a) is 
allowed* since the system still equilibrates as ,~ > 0 (however, a finite cor- 
relation time of A~(t)  in (6,1a) remains essential*). So if we take ~b(s)= 1, we 
find from (6.15) 

(x2)~q = ~---7 { - 2D~- sin2 r~ol + 4A }, 

while 

(6.20) 

+~ (x0(x(z)),o) eq= E(~--~A){e ~(cos  w~r sin w~')}. (6.21) 
COl 

To remedy this, one would have to replace (6.1a) by an equation containing a 
memory kernel such that the fluctuation-dissipation relation is restored12'~4). 

7. The two-time distribution function 

The method of section 2 can also be exploited to derive expansions for the 
t w o - t i m e  p r o b a b i l i t y - d e n s i t y  f u n c t i o n  P2/l(ut " u ' t ' /uoto)(t  >I t' >~ to) of u. 

* Our general assumptions  made previously concerned only those auto- and crosscorrelat ion 
times, where the multiplicative process A f r o  was involved (see section 4.2). 
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To this end consider (1.1) with a sure initial condition u0. The quantity 

p(u, t) = ~ ( u ( t ) -  u) (7.1) 

with initial condition p(u, to) = ~(u - uo), satisfies 

Op(u, t) = L~(t)p(u,  t), (7.2) 
Ot 

where the operator L , ( t )  acts on the u-dependence of p and is given by 

0 
L,( t ) .  . . = - a--ft" [{A(t)u + f(t)}. . . ] .  (7.3) 

The two-point distribution function is now calculated as 

P2/l(ut ; u't'/uoto) = (p(u, t)p(u' ,  t')) 

t t '  

= ( [ '  exp f d s L , ( s ) ] [ • e x p  f as '  L,,(s ' )]) .  (7.4, 
to t 0 

Using the fact that the crucial identity (2.11) is in this case replaced by 

[L~(t), L~,(t')] = 0 (all t, t'), (7.5) 

where u and u' are regarded as independent variables, we can write on the 
analogy of (2.21) 

P2/l = [ ' exp f ds (Lu(s) : QLo(s/t')QL.+Lu.(t'/to) : )p] 
t '  

t '  

t0 

From (7.6) one can again derive the following " forward"  and "backward"  
equations 

OP2/I 
Ot - (L,( t )  : QL. ( tlt')QL, +L, ( t'/to) : )p P2;,, (7.7a) 

3P2/I t ' ' at' - (:  QL,( / t  )L,( t  )QL,+L.. (t ' / to):)pPz;v (7.7b) 

If u(t)  is a Markov process, i.e. if both A( t )  and f( t )  in (7.3) have delta- 
correlated cumulants, the operator acting o n  P2n in the RHS of (7.7a) depends 
only on u and t, while that in (7.7b) depends on u, u' and t'. In this case (7.7a) 
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can also be written as 

O P211( ut u'tlJuoto) f 
= | du" W,(u/u")P2/l(u"t • u't'/uoto), (7.8) 

c~t a 

where W, is the Master operator  and (7.7a) is just the Kramers-Moyal  
expansion of the equation (7.8) (for example in the case of the harmonic 
oscillator problem in section 6, W, is the same operator  as that occurring in 
eqs. (7.17) and (7.18) of I). Of course one could also derive an expansion for 
OP21~(u, t + "r ; u't/Uoto)/Ot which will yield the analogue of (2.30) with A' and 
A" replaced by Lu and Lu. respectively. 

Finally we remark that in principle the method of this section can also be 
applied to nonlinear equations, although in that case one cannot extract  closed 
equations for the correlation functions from (7.7). 

8. Comparison with the smoothing method 

In this section we will discuss the integro-differential equation for the 
correlation function Cu(t , t+'r)  which was derived by Morrison and 
McKenna  5) using the so-called "smoothing method"  and by Agarwal s) via 

projection operator  methods. It will be shown first that by considering the 
characteristic functional of A(t )  again, as we did in section 2, a formally exact  
integral equation for the correlation function can be derived. By differentiat- 
ing and retaining only the lowest two orders in A(t)  we arrive at the same 
result as obtained by the smoothing method. Moreover ,  it can be shown in 
general from the exact  result that this approximate equation is exact  if 
A(t )  = ~(t)B(t) ,  where B(t )  is a sure matrix and ~(t) a stationary dichotomic 
Markov process (also called random telegraph process; in the following 
abbreviated as D.M.P.). This is in agreement with the results of Agarwal and 
those of Morrison and McKenna  who proved this s tatement by comparison 
with the results of the phase space methodS). 

8.1. The integral equation for the correlation function 

Consider the homogeneous  equation 

u(t) = A( t )u ( t )  (8.1) 

with a sure initial condition u0. In I we showed that the average of u obeys the 
integro-differential equation 

t 

(f~(t)) = ~ ds F~(t/s)(u(s)), (8.2) 
t 0 
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where 

t 

FA(t/s) = (A ( s ) )&( t  - s) + f ds CA(t) : QA(t/s) : A(s))t (8.3) 

to 

and for any continuous test function f:  fg ds f ( s ) 8 + ( t -  s )=  f ( t ) .  In (8.3) the 
symbol ( . . . ) t  indicates the so-called "totally time ordered cumulant",  defined 
in I as 

( A ( t ) A ( t l ) . . .  A(tr~))t = (A(t)(1 - ~)A(tl)(1 - ~ ) . . .  (1 - ~)A(tm)) ,  (8.4) 

where ~ denotes the averaging operator:  ~ . . . - - ( . . . ) .  Before taking the 
t-ordered cumulant in (8.3) one should first expand QA(t/s) in powers of A 
(indicated by the colons) and calculate the cumulants for each separate term. 

Integrating (8.2) one finds the integral equation ("Dyson-equation ''a) 

! s 

uo+ as as' (8.5) 
l 

t o t 0 

and since (u(t))  = (QA(t/to))Uo we infer from (8.5) 

t s 

= 1 + ~ ds f ds '  FA(S/S')(QA(S'/to)). (QA(t/to)) (8.6) 

t o t o 

In exactly the same way as done in section 2 we can generalize (8.6) to the 
characteristic functional of a process B( t )  with compact  support 

= 1 + ~ ds [ ds' (Q~(o~/to)) FB( S/ S ')( QB( s ' / to) ). (8.7) 

t o t o 

For the matrix B we take again (2.13), so 

( QB(~/to)) = ( QA,,( t + "r/to)QA,( t/to)) = ( QA.( t + "r/t )Q~( t/to)) (8.8) 

and we find from (8.7) 

t $ 

t 0 t 0 

t + ' r  [ 

t t o 

I + T  S 

+f. f 
t t 

ds'  FA(sls')(QA(s'lto)) 

ds'  zlA(s, t/s')(Q~(s'/to)) 

ds'  FA,,(s/s')(QA,,(s'/t)Q~(t/to)), (8.9) 
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where 

AA(S, tls') = (A"(s) : QA..(s/t)Qa(tls') : fi,(s')),. (8.10) 

Remember ing  that 

C.(t,t +'r)~(u(t)@u(t +'r))=(Qv.(t +-dt~OQ~(t/to))uo@u,,. (8.11) 

one has from (8.9) the following integral equation ( "Be the -Sa lpe te r  equa- 
tion'"~)) for C. : 

t 

c, ( t . ,  + ~ ) - - . , , o  .,, + f as f d.,' ,'~l~/s')c,,(~'. ~,) 
t o tl} 

r + T  t t ~ r  

ds f ds',.C~(s, t/s')C,,(s', s ' )+ f ds f ds' Fx.(s/s')C,(t, s'). (8.12) 
t /11 [ t 

This integral equation is the central result of this section, f rom which earlier 
results of Morrison and McKenna  ~) and Agarwal s) immediately follow. The 

equal-time second moments  C,,(s',s') in (8.12) can be calculated from an 
equation like (8.2). 

Although (8.12) is formally exact ,  it is in general not allowed to cut off the 
expansions of FA and /~A unless ~r~ is small, where ~ and z~ are again the 
magnitude and correlat ion time of the fluctuations in A(t)~'~). 

Of course one can study the case with inhomogeneous  and/or initial value 
random terms by starting from (4.3) or (4.14) instead of (8.1), and applying the 
result (8.12) to the new equations. 

8.2 The integro-differential equation for C,, 

Simple differentiation of (8.12) with respect  to the variable z yields* 

1 t ' T  

z c u ( , . , ~  +~)=  f as ~.(,  + T.,s)c~(~. ~)+ f ds~...(, +./.)c..( , .  sl. 
t~} t 

(8.13) 

This equation should be supplemented with the initial condition C,(t,  t). 
Taking A of order a and retaining terms up to order a 2 one finds from (8.13), 

* Compare also eq. (2.21) of ref. 8. 
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(8.3) and (8.10) 

Cu(t, t + 7) = i ds a2 ((A"(t  + r) f i , (s)) )C,(s ,  s) 
o__ 
07 

to 

t+T 

+c~(A"(t  + , r ) ) C , ( t , t  + , ) +  f d s , ~ 2 ( ( a " ( t  + ,~ )a" ( s ) ) )C , ( t , s ) .  (8.14) 
t 

The equation (8.14) is complete ly  equivalent (apart f rom the absence of an 
unper turbed matrix) with the result (9.26) of Morrison and McKenna  5) 
obtained by the smoothing method.  It  is now also clear f rom (8.13) how one 

can proceed to higher orders in a. However ,  to find the correlation function 
one has to solve an integro-differential equation which is of course far more 
difficult than solving the differential equations (2.24) or (2.30). Moreover ,  if 
a'rc "~ 1, the solution of (8.14) will be no more accurate  to the order considered 

here than that of (2.24)t~), except  in special cases. One such special case 
occurs when A ( t )  = ~( t )B( t ) ,  B ( t )  a sure matrix and ~(t) a D.M.P. Namely ,  all 
higher orders in (8.13) contain t-cumulants of the form (m + n/> 1) 

(A"(t  + ~)A"(tO . . . ,4"( t , , )A(s , )  . . . A ( s . ) A ( s ) ) ,  

= (~(t + "O~( f i ) . . .  £ ( t m ) ~ ( s O . . .  ~(s , )£(s) ) tB"( t  + "r ) . . .  B ( s )  (8.15a) 

or (m I> 1) 

(A"( t  + "c)A"(tl) . . . A"( t , , )A"(s)) t  

= (~(t + "c)¢( t l ) . . .  ~(tm)~(s))tB"(t + 7 ) . . .  B"(s )  (8.15b) 

which all vanish since third and higher t-cumulants of a D.M.P. are zeroL~6). 

Eq. (8.14) can be solved by Laplace t ransforms since the correlation 
functions of A ( t ) =  ~ ( t )B ( t )  depend only on time differences. In fact  one 
obtains a solution in the form of a sum of exponentialst6). The exponents  must  
be determined as roots of  a secular equation, i.e. poles of the Laplace trans- 

form. If  these roots are computed  to order 2 the result  is just what  one 

would get by solving (2.24) with MA approximated to order a2T c (where 
- 1  

rc - 3' , 3' being the same as in (5.5)). 

Finally we remark  that the smoothing method does not seem to give the 
exact  answer for the correlation function in case of the D.M.P.,  if this method 
is used to derive an integro-differential equation for C,(t ,  t + ,r), considered as 
a function of t17). And indeed, although (8.12) with Fa, /'A" and A A expanded 

up to order a 2 is exact  for a D.M.P.,  one does not  obtain a closed integro- 
differential equation f rom it by differentiation with respect  to the variable t 
(the last term in the RHS of (8.12) is responsible for this). 
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Appendix A 

Mult i - t ime  averages 

In this appendix we will generalize the results of section 2 to the calculation 
of multi-time averages.  Since the derivation is complete ly  analogous to the 
two-t ime case we will omit the details. The inhomogeneous  case (l.1) can be 
handled with the method of section 4. 

So consider the n-time correlation function of the solution of (2.1): 

Cu(t,, t: . . . . .  tn) = (u(t ,)  (~ u(t:) @ . . .  @ u(t,)) 

= (O(t,, t: . . . . .  t,,))uo@ u o @ . . .  @ uo 

where 

~b(tl, t2 . . . . .  tn) = FI QA"'(ti) 
i = l  

and 

(t~ >~ t: ~ . . . >1- t, ,),  

(A.1) 

(A.2) 

~(tt, t: . . . . .  tn) = QB(~/to) 

with 

B ( s )  = ~ O ( t i -  s )  A")(s). (A.6) 
i=1 

(A.5) 

So in (A.3) the i th operator  is A while the others are unit matrices of the same 
dimension as A. 

Instead of (2.11) we now have 

[A")(t), A(J)(t')] = 0, i:~ j, all t, t' (A.4) 

and 

i 

A(')(t,) = i @ i @ . . .  @ A(t,) @ i . . .  @ ]. (A.3) 
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Tak ing  the ave r age  of  (A.5) we  have  

(t~(tl, t2 . . . . .  t ,))  = ~ exp  f ds KB(s/to)  (A.7) 

t o 

with 

KB(s/to) = ( B ( s )  : QB(s/to) : )p. (A.8) 

Symbol i ca l ly  (A.7) can  be wr i t ten  as 

(t~(tl, t2 . . . . .  t ,)) = t exp  [( :  Qs(oO/to) - ' ) p -  1], (A.9) 

where  it has a lways  to be  unde r s tood  tha t  the ~ ope ra to r  acts  on the first t ime 
var iable  of  eve ry  expres s ion  in the exponen t .  

Eq. (2.21) is now genera l ized  to 

(~b(tl, t2 . . . . .  t ,)) = ~ exp  : QA,(b/h+l) : - 1 , (A.10) 
P 

where  tn+l -~ to and 

l 

Ai = ~'~ A (i). (A.11) 
i=1 

Different ia t ion  with r e spec t  to tK yields,  using (A.1) 

Cu(tb  t,, t , )  = M ~ ) ( h ,  t2, . . t,/to) Cu(tl ,  t2, . . t , ) ,  (A.12) 
atK " . . . . .  ' "'  

where  

M~)(tl, t2 . . . . .  t.lto) 

[1-['-' A( ' ) ( t , )  ~ I  ) \~=~ : QA,(b/t,+O : : QA~(t,/tl+~) : (A.13) = 

I=K p" 

Put t ing  b = t + r~ in (A.10) with "r~/> ~'j+~, and different ia t ing with r e spec t  to t 
one  finds 

~--Cu(t+'rl ,  t + r 2 , . ,  t + r , )  
at "' 

= £ M ~  ) (t + ";i, t + r2 . . . . .  t + ";,/to) C , ( t  + "rl . . . . .  t + r , )  (A.14) 
K=t  

with all MtA K) as def ined in (A.13). T o  calcula te  these  to a g iven order  one 
should again use  the p resc r ip t ion  g iven  in sec t ion  2. 

Again  this m e t h o d  can  also be  used  to der ive  the equa t ions  satisfied by  the 
n - t i m e  d i s t r ibu t ion  f u n c t i o n s  P./~(udl . . . . .  u.t./Uoto) (just  r ep lace  A ") by  L.~, 
see also sec t ion  7). 
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Appendix B 

In this append ix  we will br ief ly indicate  how the resul t  (5.8) can be checked .  
E qua t i on  (5.1) defines a c o m p o s i t e  s tochas t ic  p rocess  (u, ~) which  is Marko-  
vian. So the fo l lowing p h a s e - s p a c e  equa t ion  for  its two- t ime  dis t r ibut ion 

holds (t > t ') 

a 0 a~ P:(uSt " u'Ut') = - a u '  [(cr:u + c~5(~u)P~(uSt" u 'Ut ' ) ]  

+ ~, W~cP2(uU't " u'~'t'), (B.1) 
U'= : I  

where  

W ~  = 3' - 2ySac. (B.2) 

Defining the "marg ina l  cor re la t ion  f u n c t i o n s "  by  

(u ( t )@ u(t ' ) ) t  = ~,. I du f du' ( u@ u')e2(uet ; u',~'t') (B.3) 

one  finds for  the vec to r  W(t,  t ') = CoI{W~,, Wi~, Wit ,  W,~, W~2, Wt:,  W~> 
W~_2} where W~ = (ui(t)uj(t')): the fo l lowing mat r ix  equa t ion  

c9 W( t ,  t') = M W ( t ,  t'), (B.4) 
at 

where  M is the fo l lowing 8 x 8-matr ix  

(--M :- "r--~---~ M ' (1 - 3' + Ycr~ ! c~cr: "] 
M = \ 0 i M'} '  = \ .... a(r :  ...... ! --i-::-.} 4_-Ti~.:- 7. (B.5) 

F r o m  (B.4) one has 

W(t  + r, t) = &UW(t ,  t) (B.6) 

and we need W(t,  t). From (B.I )  also fo l lows an equa t ion  for  

(u(t) @ u(t))~ = J du ( u @  u)P,(uSt) 

In c o m p o n e n t s  

d W ( t c t )  = N W ( t ,  t), 
dt 

where  

+ '  N 
N = - + 

= ( u ( t ) ~  u(t'))~ I,=, (B.7) 

(B.8) 

(B.9) 
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and  

+ ( + 2  + 3,Crx ;: ao'z.~; (_.affZ_j____0 ' ~ 
N ?  = ~----~-d~ ...... ~--~-o:;-] N2 = \ 0 i acrz]" (B.10) 

In (B.9) i deno tes  the 8 × 8 uni t -matr ix .  

Now W ( t  + r, t) can  be ca lcula ted  as fol lows 

W ( t  + ¢, t) = e TM e tN W(O, 0), (B.11) 

where  W(O, O) is compu ted  f rom the initial d i s t r ibu t ion  

P(u ,  ~, O) = ~(u - Uo) {~8~,+ + ½~e-}. (B. 12) 

F r o m  the so lu t ion  (B.11) the desired cor re la t ion  func t ions  are ob ta ined  as 

(u¢(t + ~)ui(t)) = ~,  (u~(t + r)uj(t))~ ( i , j  = 1, 2). (B.13) 
f=±1 

W h e n  these  are again ar ranged in a vec tor  U as in (5.7) they c a n  be shown  to 

sat isfy  a differential  equa t ion  as in (5.8) where  the decoupl ing  of first and last 

two c o m p o n e n t s  is now exact  to all orders  (t >> rc - 3' 1). Re ta in ing  only  terms 

up to order  a 2 one recovers  after  a ra ther  tedious ca lcula t ion  the resul ts  (5.8) 

and (5.9). 
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