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It is shown that the cumulant expansion for linear stochastic differential equations, hitherto
used to compute one-time averages of the solution process, is also capable of yielding the
two-time correlation and probability density functions. The general case with a coefficient matrix,
an inhomogeneous part and an initial condition which are all random and mutually correlated, is
discussed. Two examples are given, the latter of which treats the harmonic oscillator with
stochastic frequency and driving term studied before. Finally we investigate the relation of our

method with the so-called smoothing method.

1. Introduction

This article is concerned with linear stochastic differential equations of the
form

%u(t)=A(t, w)u(t) +f(t, w), (1.1)

where u(t) is a vector, A(t, w) a random coefficient matrix or linear operator
and f(t, o) arandom vector*. The random nature of these quantities is indicated
by the parameter @ which will often be omitted in the following. The initial
condition u(t,) may be taken as fixed or in general as a random quantity uy(w).

In a previous article'), hereafter referred to as I, we considered the case in
which A(t, w), f(t, ») and ul(w) are mutually correlated. It was shown that the
average of u(t) obeys itself a differential equation of the form

%(u(t» = K(t/toXu()) + F(t/t)) + I(t/to), (1.2)

provided that ar. is small, where «a is a measure for the strength of the

* Although the variable t in (1.1) in this article is interpreted as denoting a physical time, it
could be any one-dimensional physical variable.
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fluctuations in A(t) and 7. is the largest of three correlation times: the
autocorrelation time of A(t), the crosscorrelation time of A(t) with f(t) and
that of A(t) with u,. Here the angular brackets denote an average over the
probability measure P(w) which determines the prescribed statistics of all the
random quantities involved. Both the matrix K(t/t,) (involving the ordered
cumulants of A(t) alone) and the vectors F(t/t,) and I(t/t,) (involving the joint
cumulants of A(t) with f(t) and u, respectively) were obtained as expansions
in the parameter ar.. Moreover, after a transient time of order 7., K(t/t,) and
F(t/t,) become independent of t, while I(t/t;) vanishes.

In this paper we will be concerned with the problem of obtaining the
time-correlation function (u(t) ® u(t’)) of u(t), hereafter denoted by C,(t,t').
Here the & symbol denotes a Kronecker product. The essential step in our
method is to derive from the cumulant expansion for (u(t)) first an expansion
for the characteristic functional of A(t). First we consider the homogeneous
case with A(t) of the form A(t) = Ag+ aA(t, w), with Ay non-random. It is
shown that if ar. <1, the correlation function of u, the latter satisfying (1.1)
with f(t)=0 and fixed initial condition, obeys differential equations of the
form

20ttt 1) = Mot + 75 )Gl £+ 7) (1.3)

and
-% Colt, t +7) = [Ma(t + 72 t/te) + Nalt + 75 1] Cult, t + 7), (1.4)

where 7= 0, t = t,. To second order in «a, the matrices M, and N, are given by

!
M, = Aj+ (At + 1)+ a’ f ds (ANt +7)e T MAs))y e TN

to
t+r

+ (12 j ds <(A,l, t+ ’T) e(r+77siA6A/];(s)>> e’(t*‘T‘S)A&’ (]5)
t

0

Ny = Apt Al +a? [ ds (Al e A e

to
t+7

+al J’ ds (AL e IMAT(5))y e TG, (1.6)
o

where the brackets ({...)) denote ordinary (second order) cumulants and for
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any matrix C we have defined
C=Cc®i, c'=1®Qc, (1.7)

where 1 is the unit matrix of the same dimension as C. In (1.3) the 1nitial
condition C,(t, t) is the equal-time second moment (u(t) ® u(t)), while in (1.4)
it is C,(ty, to+ 7) = u(ty) @ {u(ty+ 7)) (u(ty) is not random). Both initial con-
ditions can in their turn be calculated from the one-time expansion as in (1.2).
The matrices M, and N, involving the ordered cumulants of A, are again
expansions in at.. Both are independent of the initial time t, if t — t,> 7.

It is also shown how one can deal with the general case (1.1), where A(t),
f(t) and u, are all random and mutually correlated. Moreover, analogs of the
eqgs. (1.3) and (1.4) are derived for the two-time probability density functions
of u.

Among previous approaches to obtain the correlation functions we mention
the two-time method of Papanicolau and Keller?), diagram methods**), and
that of Morrison and McKenna®), which is an extension of the “smoothing
method” of Bourret®) and Keller’). The latter method, which leads to an
integro-differential equation for the correlation function, will be discussed
below in more detail. Related projection operator methods were recently
employed by Agarwal®). Still other methods, as that of Keller®) and McCoy'"),
lead to complicated partial differential equations. Finally we would like to
mention that in the case where the coefficient matrix A(t) is a Markov chain,
the problem can be reduced to solving a linear (matrix) differential equation
for the correlation function®’) (without the need of assuming a small cor-
relation time).

The organization of the paper is as follows: first we study the homogeneous
case and derive eqs. (1.3) and (1.4) (section 2) (the generalization to multi-time
averages is given in an appendix). Then we investigate in section 3 the
behaviour of the matrices M, and N, for times exceeding the transient time
which is of order 7. The general case, i.e. including random inhomogeneous
and initial value terms, is considered in section 4. Next the method is
illustrated by two examples, one for the homogeneous case (section 5) and
another for the inhomogeneous case (section 6). The second example
concerns the harmonic oscillator with random frequency and driving term for
which we previously derived the differential equations for the equal time first
and second order moments'). In section 7 we show that the method of section
2 can also yield the equations satisfied by the two-time probability dis-
tributions of u themselves*. Finally an exact integral equation for the cor-

*In this paper the expression “probability distribution™ is synonymous with ‘‘probability
density”.
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relation function is derived which is compared with the results of the
smoothing method (section 8).

2. The correlation functions in the homogeneous case

In this section we derive the differential equations (1.3) and (1.4). First we
review some results from I and introduce a convenient notation. By consider-
ing the cumulant expansion for the characteristic functional of A(t) we next
derive a formal expression for C,(t,t+ 7). From this the egs. (1.3) and (1.4)
are found by differentiation.

The method presented here can easily be extended to derive differential
equations for multi-time averages (see appendix A).

2.1. The characteristic functional of A(t)

Consider the stochastic differential equation
u(t) = A(t)Hu(t) 2.1

with A(t) a random matrix and the initial condition u(ty) = u, fixed. The
formal solution of (2.1) is

u(t) = Qalt/to)uo, (2.2)

where we define for any matrix A(t)

Q. (t/te) = T[expfds A(s)], (t=ty) (2.3)

with T denoting the time-ordering operator (latest times to the left).
As shown by Van Kampen') the average of (2.3) can be expressed as

(Quttito) = T[exp [ ds Katslto) ], (2.4)

0

where the time-ordering operator T in (2.4) now acts with respect to the first
time variable in K4(-/ty). The matrix K, is given by the following expansion

tm—y

Ka(tite) = (A(t) + 21[dt1 f dts . .. f dtn (AAY . .. Aty (2.5)



TIME CORRELATION FUNCTIONS 561

Here the brackets (.. .), denote a partially time-ordered cumulant* (as defined
in I) which is a combination of moments of A with a prescribed order of the
time variables. If [A(t), A(t)]=0, for all ¢, t’, it reduces to an ordinary
cumulant.

For convenience we introduce the following short-hand notation

Ka(t/t)) = (A®) : Qa(t/to) : )y, (2.6)

meaning that to compute K, one should first expand the matrix Q4 between
the colons in powers of A, take the p-ordered cumulant of each term with
A(1), carry out the integrals and finally sum all the terms, as in (2.5).

Now we replace A(s) in (2.3) by k(s)A(s) where k(s) is a scalar test
function with finite support. Then we can define the functional

Yalk] = Qua(/t)) = T[exp j ds k(s)A(s)]. 2.7)

0
If k(s) = 6(¢t — s)T we find again (2.3). Because of the finite support of k, we can
take t—>x in (2.4) with A replaced by kA. Then we have the following
expansion for the characteristic functional G,[k] of A (compared with the
usual definition there is an imaginary unit i missing in the exponent of (2.7))

Galk] = (alkD) = T exp [ ds Kin(s/to 2.8)

with K, the same as (2.6) with A replaced by kA.
2.2. The formal expression for the correlation function

Consider the following Kronecker product (t = t,, 7 = 0)

u(t) @ u(t + 1) = [Qat/to) ® Qat + 7/t0)Jue & uo

= [Qat + 7/te)Qa(t/to)]uo @ uy, 2.9
where for any matrix (or vector) A we define
A=AQI1;, A'=1QA; A=A+A" (2.10)

Here 1 is the unit matrix of the same dimension as A. Q4 and Qg4 are again
deﬁned_by (2.3).
Now notice the important property of the commutator

[A'(t), A"(t)] =0, allt,t. (2.11)

* Often we will write “‘p-ordered cumulant” or ““p-cumulant”.
t 9 denotes the Heaviside-stepfunction.
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This implies that we can write

T

Ot + Tt Qaltlte) = T[exp{ } ds A"(s)+ f ds A’(s)}]. (2.12)

fo fo

Compared to (2.9) only the mutual order of A-and A"-matrices has been
altered, but this allowed because they commute. Next we put

B(s)=0(t—s)A'(s)+ 8(t + 17— s)A"(s). (2.13)

Then we can write

u(t) ® u(t +7) = Uy @ uo), (2.14)
where
Yp = Qp(®/ty) (2.15)

since B is a matrix function of s with finite support. Now we use (2.8) with
the matrix B instead of kA

() = T[eijds KB(s/to)], (2.16)

ta

where Ky is defined as in (2.6).
From (2.13) one deduces

A(s), tyss<t
A'(s), t<sst+71’ 2.17)
0, otherwise

B(s) =

where A is defined in (2.10), and therefore

La(s/to), thoss<t
Ky(s/t) =4 Ma(s;tlty), t<s<t+r7 (2.18)
0 otherwise.

Here we define (for any matrix A)L, and M, as
La(s/to) = (A(s) : Qalslte) ), (s =to), (2.19)
M(s ; tt)) = (A"(s) : Qals/)Qa(t/tg) ), (s =1t = 1), (2.20)

where the colons have the same meaning as in (2.6). Inserting (2.18) in (2.16)
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one has

t+T t

woy={Texp [ dsKs(slto} {T exp [ ds Kutslto)}

t+r t

= {T exp j ds Mu(s ; t/to)} {T exp f ds LA(s/tO)}

= Qu,(t + 7/)Qr (t/to). (2.21)

Here it is essential to note that the time ordering operators in (2.21) act with
respect to the first time variable s of the quantities Kz, M, and L,.
Summarizing, we have found that the correlation function of u is given by

Cu(t, t +7) = (Ps)uo @ uo) (2.22)
with (iz) as expressed in (2.21).

2.3. The differential equations for C,

Differentiating (2.21) with respect to the variable r for fixed t one im-
mediately gets

a

37 (Us) = Ma(t + 7 5 tto)m), (2.23)
so in view of (2.22) we have as the first central result

S Clt, 4 7)= Mt + 75 ) Cult, 1+ 7) (2.24)

with M4(t + 7 ; t/ty) given by (2.20) with s =t + 1.
Next differentiate (2.21) with respect to t with fixed r:

(s = Mt + 73 1119 Qu,Qr, — Qu,Ma(t 5 H10)Q1,

t+r t+r

+T[{exp f ds M,(s ;t/to)} f ds’%'tfﬁ(s'; t/to)]QLA. (2.25)

+ Qum, La(t/t))Qy,.

Here we omitted the time variables in the expressions for Q., etc. Using the
fact that

A'()QulS'11) = o5 Quls'ID),
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we find
[ as B stitg = [ ds (A%): QuisINAQAHt) o),
= Na(t + 75 t/t)) — Nalt ; t/to), (2.26)
where
Na(s ; t/t) = (: Qals/)A'(D)Qa(t/te) )y (s =1t =1y). (2.27)

Now we insert the result (2.26) in (2.25). Because of the time ordering
operator in (2.25) the factor N,(t+ 7 ;t/ty) can be shifted in front of the
T-operator (which acts on the first variable of the expressions N,(- ; t/ty)),
while the factor N,(t ;t/ty) can be shifted backwards outside the brackets
TI...]. Thus (2.25) becomes

2 (o) = (Mt + 75 1t + Nt + 7 5 119 ha)
+ QMA[LA(t/tO) — Ma(t 5 tltg) — Na(t ; t/tO)]QLA (2.28)

and in view of the relation

La(t/te) — MA(t ; titg) — NA(t 5 t/to)
= (A(t) : Qat/ty) 1 )= (A"(1) : Qalt/te) : )y — (A'(t) : Qalt/ty) 1 ), =0,
(2.29)

we finally arrive by (2.22) at the following equation for the correlation
function

% Cut,t +7) = [Ma(t +7 2 t/to) + Na(t + 7 : t]£0)] Cult. t + 1), (2.30a)
where

M(t+ 75 t/tg) = (A"(t + 7)1 Qalt +7/t)Qalt/to) : )ps (2.30b)

Nt + 75 tt0) = (2 Qadt + /YA (1)Qaltty) 2 ), (2.30c)

Note that the operator M, in (2.30a) is the same as in (2.24). To compute M,
and N, one should again use the prescription below eq. (2.6).

The initial conditions (u(t) @ u(t)) and u(ty) ® (u(t,+ 7)) corresponding to
(2.24) and (2.30a) can be determined from the cumulant expansion (2.4) for
equal-time averages (see I).

If A is of the form A(t)= Ao+ aA(t), with A, a sure matrix and A,
random, one can apply (2.24) and (2.30) to the eq. (2.1) in the interaction
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representation:
o(t) = aAP(Do(1),
where
v(t) =e “T0%y(t), AP(t) =e 1TMA (1) et WM

and transform the result back to the original representation. Here we give only
the result to order a’:

% Cu(tt +7)= [Ao + a(AlD) + al ALt + 7))

+a’ j ds (A1) + AUt + 7)) e D4 AI(s))) e 4
Y

t+r
+a? f ds (((A(1) + At + 7)) e I%AY(s))) e“”’_”""‘]Cu(t, t+ 1),

(2.31)

where the brackets ({...)) denote ordinary cumulants. The cumulants in
(2.31) are of order two, i.e. the evolution operators occurring within them
have to be considered as forming one operator with the operator A{(s) or
A'l(s) succeeding them. The expression for 3C,/dt to order a? is the same as
(2.31) with Aj and all terms which contain Aj(t) omitted (so from the second
line of (2.31) one should omit the first term, but not the second). If A(t) is
Gaussian and [A(t), A(t)] =0 (for all t# t'), such as for a scalar or delta-
correlated vectorial Gaussian process, the second order approximation (2.31)
is exact.

Remark. If one wants to calculate higher order corrections to the result
(2.31) one should always keep all the operators A’ and A” in (2.30b, ¢) within
the cumulant brackets (...), in decreasing time order (even though they
commute). That the order of the operators within the time ordered cumulants
is important follows from the prescription to be used for expressing the
cumulants in terms of the moments'). For example

(A"(t +T)A'(DA'(s)), # (A'(HA"(t + 1)A'(s)), if[A'(t), A'(s)]# 0.

In the result (2.31) to order o’ the order of the A}- and Aj-operators doesn’t
matter, because only ordinary cumulants are involved.
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3. Estimates for times exceeding the transient time

In I we showed that if t — t,> 1. the expression (2.5) approaches K(t/—>).
Using completely analogous arguments we will now show that

MA(t+T ,t/to)zMA(t“‘T ,t/——OO)’ t_t0>’T£ (313)
=Mu(t+71-%/-%), —th>T.; TP (3.1b)

and
Na(t+ 75 t/tg) = Nyt + 75 t/—%), t—ty> 1. (3.2a)
= NA(OO N t/—OC)’ t— t()> Te s T> Teo (32b)

This implies in particular that in (2.31) we can replace to by —< if t —to> 7.
To show (3.1) we consider a typical term in the expansion of M4(t + 7 ; t/t,):

Sn- 1

t+r t

M = J' ds, ... I ds,.Idt,...
t l“
fn—1

t

f dt, (A"(t +1)A"(s) ... A"(sDA(L) ... Alt,), (3.3)

ty

Due. to the finite correlation time 7. of A and the cluster property of the
ordered cumulant'), subsequent time variables in (3.3) are at most a distance
of order . apart, otherwise the ordered cumulant vanishes. So we can
imagine the time variables as points being interconnected by flexible strings
with maximum length 7.. If the time increases in (3.3) all time-points are
carried along by the first one, t+ 7 Thus if t—t,= mr. (and therefore
certainly t + 7 — to= mr) M$™ becomes independent of t, (there is no string
between t, and t;) and we may as well put t,— — in (3.3) (see fig. 1a).

If in addition 7 = nt. the cumulant vanishes altogether because the maximal
distance between t + 7 and t, is (n + 1)1, thus certainly that betweent + r and t
(fig. 1b). Therefore if 7 > 7. only the terms M {-* remain and in these remaining
terms we can put t > —c because all the s; time-variables are carried along by
t + 7 and therefore become eventually independent of t (fig. 1¢). This com-
pletes the proof of (3.1).

Now consider a typical term of N (t + 7 ; t/ty):

t+1 Sp—

; t
Nm = f ds, . .. f ds,,fdt]...
t ' ty
13

j dt,(A"(s)). .. A"(s)A(DA(L) ... A(tm))p. (3.4)

0
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Fig. 1. Extension of the integration domains in (3.3) (time running from right to left).

In this case the variable t carries the subsequent t;-variables along. So if
t —to= mr. the expression (3.4) becomes independent of t, (fig. 2a). On the
other hand, s, can be at most a distance n7. apart from t, so if 7 = nr. we can
extend the s, integration to « because the cumulant is zero anyway if s, = nr,
(fig. 2b). Hence also (3.2) follows.

From the above considerations we can deduce the following estimates,
taking A of order a and t — t;> 7., 7> 1.

MYP= q(ar)", NO™=q(ar)"™ (3.5)

Hence we find the condition ar.<1 for the convergence of the expansions
(2.24) and (2.30), which is the same condition as found previously for the
validity of the one-time expansion™').

— mTC ——
e NN i + (a)
t+T 5. - s_t t t
1 n 1 m [}

+ + (b)
t+T S, - - . .o .08 t t, ...
1 n 1 m o

Fig. 2. Extension of the integration domains in (3.4).
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4. The general case

In this section we construct the differential equations for the correlation
functions in the inhomogeneous case (1.1). The situation, where also the initial
condition is random, is handled by reducing the problem to the in-
homogeneous case with sure initial condition (section 4.2).

4.1. The inhomogeneous case

We start again with the equation
u(t) = A(t, o)u(t) + f(t, ) 4.1

with u(te) = uy (fixed). The random matrix A(t, w) and vector f(t, ®) may be
statistically dependent. First we reduce (4.1) to a homogeneous equation by
the following trick. Define a new vector w(t) by

-4
where z(t) is a scalar function with z(t) = 1. Then w(t) obeys the equation

w(ty= B(t)w(t) 4.3)
with*

B(t) = (Aét)fg)) (4.42)
and initial condition

wte) = (“(1“’)). (4.4b)

Applying the results (2.24) and (2.30) to (4.3) one finds equations for the
correlation function C,(t, t + ) = (w(t) ® w(t + 1)), from which equations for
C,(t,t+ 1) can be extracted. We will carry out this scheme only for eq.
(2.30a). One finds

% Cult,t +7) = [Mp(t + 73 t/te) + Np(t + 7 ; /t)]Coy t + 7). (4.5)

Here Mg and Nj are defined as in (2.30b, ¢) with A replaced by B (and
consequently A’ by B’ etc.) and B given by (4.4a).

Now suppose u is a vector with n components. Then we are only interested
in the first n components of w(t) and w(t + 7) in (4.5), for which we now
establish the equation. To this end we first note that the quantities Mz and Njp

* The symbol @ indicates a matrix (or vector) with all elements zero.
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in (4.5) can be written as

Mp(t+7;1t/t) =(: E) @ D(t + 7) : )y, (4.6a)

Np(t+7;5tlt)=(: D) Q E(t+1): ), (4.6b)
with

E(t) = B(t)Qs(t/to), D(t) = Qp(t/ty). (4.6¢)

Here we made use of identities as

Qa(t + 7/)Qa(t/te) = Qadt + 7/t)Qalt/ty)

and substituted them into the expressions (2.30b, ¢). However, it has to be

kept in mind that if one explicitly wants to compute the ordered cumulants one

should first place in (4.6a, b) all quantities within the ordered cumulant-

brackets (. . .), in decreasing time order (see “‘remark” at the end of section 2).
From (4.5) and (4.6) we find for the components

2 i (tywilt + 1)

n+l

= 3 [(: E(t)Du(t + 1) 2 )y + (2 Di() Eu(t +7) £ )] {wi()wi(t + 7).

=1

4.7
The matrices E and D have the following structure
_(E"1 E?Y _(D®i D?

ERﬂiro‘,D\g:;O), (4.8)
where

E®(t) = A@)D(t), E2(t)=f(t)+ A(t)D?(t) (4.92)
and

DY) = Qutit), D)= [ ds Qu)f(). (4.9b)

E® and D® are n X n-matrices, and E® and D are n-dimensional (column)
vectors.

Now we restrict ourselves in (4.7) to 1<i<n, 1 <k <n. The summation
over j and | can be split up in four regions: {I<j<n;l<l<n};{Isl<n;
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ji=n+1{isjsn;l=n+1}{j=n+1=1} We find

2 u e+ 1)

n

= 3 [(: EQODY( + 7))+ (: DPOER( + 1) ) (Du(t + 7))

jir=1

+£ [(: EQODY + 1)1 )+ (: DAWEN(E +7) 1 )t + 1)
=

+ 2 [(: EPODR(t + 1) 2 )y + (: DPMEL( +7) 2 )Kuy(1))

+(:EPMDP(t+7): )+ (: DPOEP(E + 1) 1), 4.10)

or in vector notation
% C.t,t+7)=G"t, t + )C,(t, t + 1)+ GZ"(t, t + 7)Xul(t + 1))

+ G2t t+ XU+ Gt + 1), (4.112)
where we define

Gt t+1)=(:E°t)QD"(t+71):),
+(:DYMQEt+71):), (i=1,2). (4.11b)

the E"” and D"’ matrices being given by (4.9) (remember the remark succeeding
(4.6)). Eqgs. (4.11) constitute the final result for the correlation function in the
inhomogeneous case. If C, is differentiated with respect to = we obtain the
same expression (4.11a) where however only the second part of (4.11b)
contributes. The matrix G"" contains the ordered cumulants of A alone,
G®" and G"? those of A with one f and G those of A with two f’s. If we
formally regard A and f to be of the same order of magnitude, the result
(4.11b) to second order yields

G'""= (A + (A"t + 1)+ j ds ({A'(t) + A"(t + T)}A'(5))

ty

t47

+ [ ds a+ A AT, (4.122)

0

G*V=(f(t)+ f ds ((A”(S)f’(t)))+jds {A' M+ A+ DI (),

to fo

(4.12b)
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G"?=(f"(t+ )+ f ds ((A'(s)f"(t + 7))

0

+ [ ds @+ A+ e, (4.120)
6= [ ds rfem+ [ ds (@ + i, (4.124)

where ({...)) again denotes ordinary cumulants.
In the special case that A and f in (4.1) are statistically independent the general
result (4.11) reads

% Cult t+7) = [Ma(t + 7 : t]t)) + Na(t + 7 : t]t9)] Cult, t + 7)

+(FO) (ut + 1))+ ('t + 7)) (ult))

t+r t

+ [ dsarmpon+ [ as @+ nrem (“.13)

with M, and N, given by (2.30b, ¢).
4.2. Random initial conditions

Consider finally (4.1) with random initial condition u(ty) = u¢(w), where the
random initial condition can be correlated with both A and f. Then the
quantity

v(t) = u(t)— u(ty

satisfies

o(t) = A(t, w)v(t) + g(t, w), v(ty)) =0 (non-random!) 4.14)
with

8(t, ) = A(t, 0)u(w) + f(t, ). (4.15)

Equation (4.14) is again of the type considered in section 4.1 so that (4.11)
immediately leads to an equation satisfied by C,(t,t + 7) = (v(t) @ v(t + 7)),
from which C,(t, t + 1) has to be determined with initial condition C,(to, to+
7)=0.

The correlation of u itself can be expressed as

C.lt, t+ 1) =C,(t, t + )+ (u(®) @ up) + (e @ u(t + 7)) = (uUo Q ug). (4.16)
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So what remains to be done is to find the quantities (u(t)Q uy) and
{ue @ u(t + 1)) in (4.16). This can be achieved in the following way. It was
shown in I that the average (u(t)) of (4.1) with random initial condition u,
obeys the equation

(u(t))y = Ka(t/to)(u(t)) + Fa(t/to) + La(t/t), (4.17)
where

Ka(t/to) = (A(t) : Qalt/to) : )y (4.18a)

Fa(t/te) =(f(t)) + f ds (A(t) : Qalt/s) : f(s))p, (4.18b)

fo

L4(t/to) = (At (ug — {up))) + f ds (A(t) : Qa(t/s) : [AGs) 1y — {up)) Dy

(4.18¢c)

Here we used the shorthand notation introduced in this paper also for F, and
L.
By integrating (4.17) we have

WD) = (: Qaltite) : up) + j ds (: Qa(tls) : f(5))

fo

- [T exp j ds KA(S/to)](u0>

fy
' ¢

+fds [T eijdS’ KA(s//tO)][FA(s/tO)+IA(S/tO)]- (4.19)

Now the quantities

t

() ® o) = : Qultlte) : {uto @ uah) + j ds (: Qultls) : If(s) @ ugh) (4.20)

to
and

(uo @ u(t + 1)) ={: Qult + 1/t0) : {ug @ uo})

+ J ds (: Qalt +1/5) : {ue R f(s)H) (4.21)

obey the same identity (4.19) with the replacements A— A’, uy— uy X uy,
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f—=>fQ u,in the case of (4.20) and A—> A", up=> ug @ o, f 2 ue @ f,t >t +7in
case of (4.21). Therefore also (u(t) ® ue) and (uo @ u(t + 7)) obey (4.17) with
the replacements just mentioned in K,, F, and I,. From these equations the
quantities (4.20) and (4.21) can be determined with initial condition (uy & ug).

This completes the solution in the most general case (4.1). The correlation
times involved now are not only those of A with itself and with f and u,
(which have to be finite for the above expansions to be valid) but also those of
f with itself and with u,.

5. First example: the homogeneous case

As a first illustration we consider the following homogeneous equation
(already introduced in I)

u(t) = {o. + af(t)o,u(t) (.1

with u a two-component vector, o, and o, Pauli matrices and £(t) a stationary
dichotomic Markov process with values *1. In this case we take a fixed initial
condition u,.

By application of the approximate result (2.31) (with t,=0) one gets from
G.1)

% C.(t +1,8) = B(t, 1)C,(t + 1, 1), (5.2)

where
t

B(t,7) =6, +a’ J' ds {e o+ e g Jot — )
0

t+r

+ a? I ds {e " lgt 4+ e M Slg g Ut + 17— 5), (5.3)

0
where

o, ()=e“ 0o, e

—to

X 5.4

and we used

(E@)Y =0, (E@EEL)=e M, (5.5)

Note that we calculated C,(t + r, t) instead of C,(t, t + 7) as in (2.31). Carrying
out the integrals in (5.3) and considering times t > 7.~ (y = 1)"'(y > 1), we find

2
a [

B(t,1)=4,+ 3 =1 2y -6.+ie ™ (oo + a0

+2y(o 0% cosh 27 +i oo sinh 27)]. (5.6)
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Introducing the vector

U(t, 7) = Col{u,(t + m)uy(£)), (ux(t + m)us(t)),

(uy(t + 1ux(1)), (us(t + Hu(th)}, (5.7
we derive from (5.2) and (5.6) the equation
9 = 20"5) o’ Blﬂ) 5
i U= (g (o e) om . ¢
where
_ 'y—'l y627+62w). =< _y yeZT)
Bi=(, Y oo 01 ) B=(,070) (5.9

So it turns out that (at least to order a°) the first and last two components of
U are decoupled.

In appendix B we briefly indicate how the results (5.8) and (5.9) can be
checked*. There it also turns out that the decoupling found above is in fact
exact to all orders in o (at least if t > 7.).

6. Second example: harmonic oscillator with stochastic frequency

In this section we will consider again the harmonic oscillator problem of
West et al.'>) as an example of the inhomogeneous case discussed in section
4.1. In I we already derived the equations for the equal-time second moments.

The model is defined by the equation

u(t)y=_[Ao+ A()]Ju(t)+ f(t) (6.1a)
with u(ty) fixed and
Ap= (_’nz_;)‘); A(t)=y(t)B, B= (—.1 ) (6.1b)

fO = £:0fo, fo=(})- (6.1¢)

Here u(t) = Col{x(t), p(t)} where x and p are the displacement and momen-
tum of the oscillator; f,(t) and y(t) are two statistically independent scalar
random processes. The process y(t) has zero mean and delta-correlated
cumulants

{y(t)y(t) ...y =m!D, 8(t,—t) ... 8(tp_ 1 — t,) (M =2). (6.2)

* See also ref. 5, §5.
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The process f(t) is stationary with zero mean and its correlation function
(which is not yet specified) is denoted by

(FAOfAt = 7)) = 2D (7). (6.3)

Since A(t) and f(t) in (6.1a) are statistically independent, the appropriate
equation for the correlation function in this case is (4.13), which however is
best applied first to the equation for the interaction representation v(t) = e
u(t) (take t,=0) and subsequently transformed back to the original represen-
tation u. We find

2 Cultyt+ 1) = [Ag+ DR M (1 475 1]t

+ Ni(t+ 75 tltge N IRIC,(L, t+7)

t+1

+e o] [ a5 (e nfom+ [ ds o]
° 0

6.4)
where the hat symbol “*”* defines the interaction representation
Aty=e ™A e™; f()=e ™ f(). (6.5)

Note that Q4 = (Qy) etc.
Now consider the quantities M4 and N4 in (6.4). Let us first look at M4 :
My (t + 75 tit)) = (At + 1) 0 Qa,"(t + 7/)QA (H0) 2 ). (6.6)

Since the process y(t), and therefore also A(t), is delta-correlated, there is
only a contribution to (6.6) if after expanding all the Q-operators all time
variables of A;"( ) and Al(-) are equal to (t + 7). If 7 > 0 this cannot be true for
any of the A,-matrices since the upper time-limit in Qj, is t*. So only
A’-matrices remain. The m™ order term of Q',’;1 in (6.6) then yields a con-
tribution

Dm+| e —(H—‘r)AO(B ”)m+l e(t+'r)A0,

which vanishes for all m =1 since (B)""'=1® B™"' and B™"'=0, m=1.
Also the term with m =0 vanishes (y(t) has zero average) so

Mi(t+7;t/t)=0. (6.7)
Next turn to N, :
Na(t+7 5ty =(: Q4 (t +1NANDQi(t/te) 2 )y (6.8)

*If r=0 both (6.6) and (6.8) contribute. However, one easily checks that the result (6.10),
derived for >0, is in fact also correct for r = 0.
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By similar arguments as above one finds that the expression (6.8) is of the
form

evtAd B/elA(] Z (m + 1)Dm+1 e—(A& B//m eIA(’;
m=1

of which again only the term with m = 1 survives, so
Ni(t+71;tt)=2D,e "B e e "MB"™ '™ (6.9)
Inserting (6.1b, ¢), (6.3), (6.7) and (6.9) in (6.4) we get

5‘9? Cu(t.t +7) = [Ag+2D,B® fe™ B e ™ Cu(t, t + 1)

+2D[ [ ds gt + 7= He" N @ fio

+ f ds d>(t—s){fo®e“”""“°}fo}. (6.10)

0

The matrix ¢™ is of the form")

7AO= a(T) b(T)>
¢ (c(T) d(r))’ (6.11)
where
A —A 1. —7A
a(r) = (cos Tw, +— sin m,) e ™ b(r)= (— sin ml) e, (6.12a)
W w1y
02 . —TA A : —TA
c(r) = — (— sin 'rw1> e d(r)= (cos o, =2 sin ml) e (6.12b)
wq Wi
and
0 = (QZ_ AZ)]/Z.

From (6.1b, ¢) and (6.10) - (6.12) we find the following equations for the
components of C,(t,t+ 7):

(x%, . 1 1 - . R (x?,
a | xp) -0 =20 - : (xp).
at\ (px). - -0 - =21 +2D; o) Qa- o (px),
<P2>1 L =0 -0 -4 a; 0y (Pz)r

t+7

jds2Dd>(s—7) bisy |- 613
d(s) 0 d(s)

+[as2bois+n| P )+
0
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where

a;=b(r)a(=7); 2=>b(nb(-7); a;=d(1)a(-7); as=d(r)b(-1)
(6.14)

and
(xp), = (x(t)p(t + 7)), etc.

Now we can calculate the equilibrium correlation functions (which certainly
exist if the equal time second moments exist, i.e. if D, <2A£? by putting the
derivative in (6.13) equal to zero and solving the resulting matrix equation for
t >, 7 fixed. We find

(xD={p(A,— A)+4\A, + CH4AQ?* —2Dsa;3+ 2Dsap} ), (6.15a)

(xp);?=—(px)?* = {A, — A_— 2D,a(x)*H2Dsa, + 4A}"", (6.15b)

(P = (0% q)x")7+ 2A{2Dya, + 4A} (A, — A )] - A, (6.15¢)
where

p = (2Dyas— 8A)(2Dsa,+40)7";  q = 4ADya,(2Dsa, + 40) 7,

A.= ZD{f ds ¢(s = ’r)b(S)},
0

C= 2D{f ds (6(s —7) + (s + ‘T))d(s)}.
0

It is not difficult to show that for =0 the results (6.15) reduce to the
equilibrium moments (6.25) of 1. If f,(t) is delta-correlated, i.e. $(s) = 5(s), it
follows that (7 > 0)

A,=0, A_=2Db(r), C=2Dd(r)

and we find
(xH = E( Cos Tw; + wl sin Twl) e,
1
0. Car
(xp);*=—(px);*= —E(w— sin 'rw1> e, (6.16)
1

(pH3 = E.(22<Cos To;— ﬁ; sin 'rwl) e, E=D@r2*-Dy"

in agreement with the result (4.24) of West et al.'’). The equilibrium cor-
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relations (6.16) define a correlation matrix C,

D (xp)e
C’—<<px>i“ <p2>i‘*)’ (6.17)

which satisfies
C, = Cole™)". (6.18)

Here C, is the matrix of equal-time equilibrium second moments. In other
words, the fluctuations satisfy the regression theorem'), hence a quantity as
(x?)¢? can be calculated as follows

(x5 = (xo{x (1)), (6.19)

meaning that one should first evaluate (x(7)) from (6.1) with fixed initial
condition u, ({(x(7)),, is not affected by the fluctuations but only involves the
unperturbed matrix A, ")) and subsequently average x¢(x(7)),, over initial
values u, distributed according to the equilibrium distribution. However, that
this 1s a correct procedure in this case is due to the fact that the process (x, p)
is Markovian if both v and f in (6.1) are delta-correlated. It is no longer true
(at least in general) if the process is not Markovian. Let us take an explicit
example. From the exact result (6.13) one can conclude that in this case an
infinite autocorrelation time of the additive noise term f(t) in (6.1a) is
allowed* since the system still equilibrates as A >0 (however, a finite cor-
relation time of A(t) in (6.1a) remains essential*). So if we take ¢(s) =1, we
find from (6.15)

, D, .,
<x~>i“=gz{—%sm~ m1+4)\}. (6.20)
while
eq __ 4A —Ar A
(xo{x (1)) = E(ﬁz) {e (cos )T +;l sin wlr)}. (6.21)

To remedy this, one would have to replace (6.1a) by an equation containing a
memory kernel such that the fluctuation—dissipation relation is restored'>').

7. The two-time distribution function

The method of section 2 can also be exploited to derive expansions for the
two-time probability-density function Py, (ut ; u't' ugto)(t = t' = ty) of u.

* Our general assumptions made previously concerned only those auto- and crosscorrelation
times, where the multiplicative process A(t) was involved (see section 4.2).
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To this end consider (1.1) with a sure initial condition u,. The quantity
p(u, t) = 8(u(t)—u) 7.1

with initial condition p(u, to) = 8(u — uy), satisfies

"—P(a-‘:’_tl = L(t)p(u, 1), (1.2)

where the operator L,(t) acts on the u-dependence of p and is given by
3
Lt)... =— 3 HAMu+f()}. . .]. (7.3)

The two-point distribution function is now calculated as

Poj(ut ; u't'[ugte) = {p(u, t)p(u', t")
=<[T expjds Lu(s)][T expfds'Lu,(s')D. (7.4)

Using the fact that the crucial identity (2.11) is in this case replaced by
[L.(1), L,(t"]1=0 (allt, 1), (7.5)

where u and u’ are regarded as independent variables, we can write on the
analogy of (2.21)

Py = [T €Xp f ds (L.(s): Qu (s/thQp, .+, (t'[0): )p]

x [T exp [ ds' QLoD+ LulsD}: Quan, (571102, )

to

From (7.6) one can again derive the following “forward” and “backward”
equations

% =(L,(t): Qr (t/tYQr, +,(t'[to) 2 )y Popy, (7.72)
a;)tz!“ = ( : QLu(t/t,)Lu(tl)QLu+Lu, (t’/t()) H )p Pz/]. (7.7b)

If u(t) is a Markov process, i.e. if both A(t) and f(t) in (7.3) have delta-
correlated cumulants, the operator acting on P, in the RHS of (7.7a) depends
only on u and t, while that in (7.7b) depends on u, u’ and t'. In this case (7.7a)
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can also be written as

aPZ/l(ut étu t /uOtO) — J- duu W,(u/u”)Pg/](u"t : u’t’/uoto), (78)

where W, is the Master operator and (7.7a) is just the Kramers-Moyal
expansion of the equation (7.8) (for example in the case of the harmonic
oscillator problem in section 6, W, is the same operator as that occurring in
egs. (7.17) and (7.18) of I). Of course one could also derive an expansion for
APy (u, t+ 7 ; u'tlugty)/dt which will yield the analogue of (2.30) with A’ and
A" replaced by L, and L, respectively.

Finally we remark that in principle the method of this section can also be
applied to nonlinear equations, although in that case one cannot extract closed
equations for the correlation functions from (7.7).

8. Comparison with the smoothing method

In this section we will discuss the integro-differential equation for the
correlation function C,(t,t+7) which was derived by Morrison and
McKenna®) using the so-called “smoothing method” and by Agarwal®) via
projection operator methods. It will be shown first that by considering the
characteristic functional of A(t) again, as we did in section 2, a formally exact
integral equation for the correlation function can be derived. By differentiat-
ing and retaining only the lowest two orders in A(t) we arrive at the same
result as obtained by the smoothing method. Moreover, it can be shown in
general from the exact result that this approximate equation is exact if
A(t) = £(1)B(t), where B(t) is a sure matrix and £(t) a stationary dichotomic
Markov process (also called random telegraph process; in the following
abbreviated as D.M.P.). This is in agreement with the results of Agarwal and
those of Morrison and McKenna who proved this statement by comparison
with the results of the phase space method®).

8.1. The integral equation for the correlation function

Consider the homogeneous equation
u(t) = A(u(t) (8.1)

with a sure initial condition u,. In I we showed that the average of u obeys the
integro-differential equation

() = j ds Ta(t/sXu(s)), 8.2)

0
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where

Fa(t1s) = (ANt = )+ [ ds (A(®): Qult]s) : A 8.3)
and for any continuous test function f: fg ds f(s)8.(t — s) = f(t). In (8.3) the

symbol (...), indicates the so-called ‘“‘totally time ordered cumulant”, defined
inI as

(AMA() ... Aty = (A1 = P)AW)A = P) ... (1= P)A(tn)),  (8.4)

where # denotes the averaging operator: ?...={(...). Before taking the

t-ordered cumulant in (8.3) one should first expand Qa(t/s) in powers of A

(indicated by the colons) and calculate the cumulants for each separate term.
Integrating (8.2) one finds the integral equation (‘“‘Dyson-equation’”)

() = ug + J' ds ] ds’ Ta(s/sNu(s)) 8.5)

and since (u(t)) = {Qa(t/tx)}u, we infer from (8.5)
t s
(Qutite) = 1+ [ ds [ ds' Ta(sI'XQu(s 110, (8.6)
fo to
In exactly the same way as done in section 2 we can generalize (8.6) to the
characteristic functional of a process B(t) with compact support

(Qu(elte) = 1+ [ ds [ ds" Fus]'XQu(s'l10). 8.7)

For the matrix B we take again (2.13), so

(Qp(=/tg)) = (Qalt + 7/to) Qal(t/te)) = (Qalt + 7/t)Qi(t/to)) (8.8)
and we find from (8.7)

t

(Qs(ltey =1+ f ds [ ds’ Ta(s/sXQats' /1)

fg 1
t+r t

+ f ds [ ds’ Ax(s, ts'XQa(s'/t)

t
t+r s

+ j ds j ds’ Tu(sls"KQads'IQa(t/to)), 8.9)
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where

Aa(s, tls) = (A"(s) : Qals/DQalt]s") : A(s)),. (8.10)
Remembering that

Cultt + ) =(ult) @ ult + 7)) = (Qa(t + 7/ty) Qa(t/to))uy X uy, 8.1

one has from (8.9) the following integral equation (‘*‘Bethe-Salpeter equa-
tion””*)) for C,:

t

Cltyt+7)=uy @ uy+ f ds | ds' I'i(s/s)VCu(s', s")

1+

T r t+r Y
+ f dsJ'ds'AA(s. ts)Culs', s) + f dsJ'ds’FAvr(s/s’)C,‘(t,S'). (8.12)

t ty f

This integral equation is the central result of this section, from which earlier
results of Morrison and McKenna®) and Agarwal®) immediately follow. The
equal-time second moments C,{s’,s’) in (8.12) can be calculated from an
equation like (8.2).

Although (8.12) is formally exact, it 1s in general not allowed to cut off the
expansions of I'y, and A, unless ar. is small, where « and 7. are again the
magnitude and correlation time of the fluctuations in A()*").

Of course one can study the case with inhomogeneous and/or initial value
random terms by starting from (4.3) or (4.14) instead of (8.1), and applying the
result (8.12) to the new equations.

8.2 The integro-differential equation for C,

Simple differentiation of (8.12) with respect to the variable r yields*

t-7

%Cu(t,t+7)=fds At + 7 4/5)Co(s. 5) + f dsTlt + 113)C, (1. 5).

Ty

(8.13)

This equation should be supplemented with the initial condition C,(t, t).
Taking A of order a and retaining terms up to order a” one finds from (8.13),

* Compare also eq. (2.21) of ref. 8.
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(8.3) and (8.10)

387— C.t,t+7)= f ds o> {A"(t + T)AG))Cu(s, 5)

ty
t+7

+a(A"(t+mNC, (1t t+ 1)+ f ds a’ ((A"(t + T)A"(sNHC,(L, s). (8.14)

The equation (8.14) is completely equivalent (apart from the absence of an
unperturbed matrix) with the result (9.26) of Morrison and McKenna®)
obtained by the smoothing method. It is now also clear from (8.13) how one
can proceed to higher orders in «. However, to find the correlation function
one has to solve an integro-differential equation which is of course far more
difficult than solving the differential equations (2.24) or (2.30). Moreover, if
aTt. <1, the solution of (8.14) will be no more accurate to the order considered
here than that of (2.24)"), except in special cases. One such special case
occurs when A(t) = £(t)B(t), B(t) a sure matrix and £(t) a D.M.P. Namely, all
higher orders in (8.13) contain t-cumulants of the form (m +n = 1)

(A"(t+1)A"(t) ... A"(t,)A(s) . .. A(s.)A(s)),
=(Et+1)EL) .. E(t)E(s) . .. E(s)ES))B (t+ 7). .. B(s) (8.15a)
or(m=1)

(A"(t+1)A"(t) ... A"(t,)A"(s)),
= (€t +7)E(t) ... £t)E(ONB(t+ 1) ... B"(s) (8.15b)

which all vanish since third and higher t-cumulants of a D.M.P. are zero"').

Eq. (8.14) can be solved by Laplace transforms since the correlation
functions of A(t)= £(t)B(t) depend only on time differences. In fact one
obtains a solution in the form of a sum of exponentials'®). The exponents must
be determined as roots of a secular equation, i.e. poles of the Laplace trans-
form. If these roots are computed to order o’ the result is just what one
would get by solving (2.24) with M, approximated to order a’r. (where
7.~ v, ¥ being the same as in (5.5)).

Finally we remark that the smoothing method does not seem to give the
exact answer for the correlation function in case of the D.M.P., if this method
is used to derive an integro-differential equation for C,(t, t + 1), considered as
a function of t'"). And indeed, although (8.12) with I's, 'y and A, expanded
up to order o’ is exact for a D.M.P., one does not obtain a closed integro-
differential equation from it by differentiation with respect to the variable t
(the last term in the RHS of (8.12) is responsible for this).



584 J.B.T.M. ROERDINK
Acknowledgements

Many stimulating discussions with Prof. N. G. van Kampen and cor-
respondence with Dr. S. Chaturvedi on the subject are gratefully ac-
knowledged.

This investigation 1s part of the research program of the Stichting voor
Fundamenteel Onderzoek der Materie (F.O.M.) which is financially supported
by the Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek
(Z.W.0)

Appendix A

Multi-time averages

In this appendix we will generalize the results of section 2 to the calculation
of multi-time averages. Since the derivation is completely analogous to the
two-time case we will omit the details. The inhomogeneous case (1.1) can be
handled with the method of section 4.

So consider the n-time correlation function of the solution of (2.1):

Cu(t\- tZs LI [n) = (u(tl) ® u(tl) ® AR ® u(tn)>
=Wt DR U .. Quy (h=h=...=1,),

(A.1)
where
T A e H Quilt;) (A.2)
and
. . L ) R
A =1R1R..ARI...® 1. (A.3)

So in (A.3) the i™ operator is A while the others are unit matrices of the same
dimension as A.
Instead of (2.11) we now have

[AY(t), AV(tY) =0, i=jallt,t’ (A.4)
and

Pt by, .o 1) = Qp(/ty) (A.5)
with

B(s) = 2 8(t — 5) As), (A6)
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Taking the average of (A.5) we have

(Wt ty, ..., t,))=T exp j ds Kg(s/to) (A.7)
with

Kg(s/to) = (B(s) : Qp(s/t) : ). (A.8)
Symbolically (A.7) can be written as

Wltr, by, ., 0y =T exp [(: Qu(fte) : ), — 1], (A.9)

where it has always to be understood that the T operator acts on the first time
variable of every expression in the exponent.
Eq. (2.21) is now generalized to

<wahnp”,u»=Tem{@j:QAMn@:X—l} (A.10)

where t,,; =t, and

!

A=Y AY. (A.11)

i=1

Differentiation with respect to t, yields, using (A.1)

a_é:_ Cu(th t'Z’ LR} tn) = M(/:)(tla t2’ LR S tn/tO) Cu(t]a t2, ey tn)a (Alz)

where
M(/.\()(tli tZ’ sy tn/to)

= <;(=l:-I| : Qafltiti): A(K)(tx);[j : Qa(tiltiin): > (A.13)

P
Putting t, =t + 7, in (A.10) with 7, = 7,,, and differentiating with respect to ¢
one finds

%Cu(t+71,t+72,...,t+’rn)
n
=D MR (U +r,t 47 t+7lt) Cualt + 71, ..., t+T) (A.14)
k=1

with all MY as defined in (A.13). To calculate these to a given order one
should again use the prescription given in section 2.

Again this method can also be used to derive the equations satisfied by the
n-time distribution functions Pyy(uity, . .., ust./usto) (ust replace A® by L,,
see also section 7).
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Appendix B

In this appendix we will briefly indicate how the result (5.8) can be checked.
Equation (5.1) defines a composite stochastic process (u, &) which is Marko-
vian. So the following phase-space equation for its two-time distribution
holds (t >t")

a d
— P, Sl E Yy = — . u+ N Y
a1 Py(uét s u'é't’) Fm [(o-u + atou)P(uét: u'£'t')]
+ > WeePj(ug't su'é't’), (B.1)
£==1
where

W&“f” = Y — 2'}’85.5". (B.?_)

Defining the ‘‘marginal correlation functions’ by
W ut)e =3 j du J’ du’ (u® u')Pa(uét 3 u'e't") (B.3)
<

one finds for the vector W(t,t") = Col{W ., W, Wi, W3, Wi, W,,, Wa,,
W} where Wi = (ui(t)u;(t)). the following matrix equation

% Wt t') = MWL t'). (B.4)

where M is the following 8 X 8-matrix

= M,J’ n_ﬂ___) r_ (l - Y + YOy : Qo >
M —(ﬂ Ml MU e ) (B.5)

From (B.4) one has
W(t+nt)y=e™W(t, 1) (B.6)

and we need W(t, t). From (B.1) also follows an equation for

Wt ® w) = [ du (4@ wP (e = ) @ it | (B.7)

t'=t
In components

d

aW(t,—t)= NW(t t), (B.8)
where
N=—yi+ (ﬁ‘gz‘) (B.9)
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NE= (i“vaw) N, = (Mﬂ) (B.10)

In (B.9) 1 denotes the 8 X 8 unit-matrix.
Now W(t + 7, t) can be calculated as follows

W+ t)=e™e™ W(0,0), (B.11)
where W(0, 0) is computed from the inifial distribution
P(u, & 0) = 8(u — ug) {18; +15¢}. (B.12)

From the solution (B.11) the desired correlation functions are obtained as

(ui(t + Dy (1)) = 2] (w(t+ () (,j=12). (B.13)

i==

When these are again arranged in a vector U as in (5.7) they can be shown to
satisfy a differential equation as in (5.8) where the decoupling of first and last
two components is now exact to all orders (t > .~ y ). Retaining only terms
up to order a® one recovers after a rather tedious calculation the results (5.8)
and (5.9).
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