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Abstract— We present a general wavelet-based denoising scheme for

functional magnetic resonance imaging (fMRI) data and compre it to
Gaussian smoothing, the traditional denoising method usedn fMRI
analysis. One-dimensional WaveLab thresholding routinesvere adapted
to two-dimensional images, and applied to 2D wavelet coeffents. To
test the effect of these methods on the signal-to-noise rati(SNR), we
compared the SNR of 2D fMRI images before and after denoisingusing
both Gaussian smoothing and wavelet-based methods. We sitated a
fMRI series with a time signal in an active spot, and tested tB methods
on noisy copies of it. The denoising methods were evaluated fwo ways:
by the average temporal SNR inside the original activated s, and
by the shape of the spot detected by thresholding the tempokreéSNR
maps. Denoising methods that introduce much smoothness areetter
suited for low SNRs, but for images of reasonable quality thg are not
preferable, because they introduce heavy deformations. Wealet-based
denoising methods that introduce less smoothing preservéné sharpness
of the images and retain the original shapes of active regian We
also performed statistical parametric mapping (SPM) on thedenoised
simulated time series, as well as on a real fMRI data set. Fagsdiscovery
rate control was used to correct for multiple comparisons. he results
show that the methods that produce smooth images introduce ane false
positives. The less smoothing wavelet-based methods, atlgh generating
more false negatives, produce a smaller total number of erms than
Gaussian smoothing or wavelet-based methods with a large smthing
effect.

Index Terms— Functional neuroimaging, wavelet-based denoising,
Gaussian smoothing, statistical parametric mapping, fals discovery rate
control.

I. INTRODUCTION

Most of the standard statistical tests assume Gaussiarbdisd
noise. However, in the MR literature, noise in MR images ievah
to be Rician distributed [2]. We analyse the BOLD contrasttes
difference between two MR images (active minus baselingh bo
containing Rician distributed noise, and show that theridistion
of BOLD noise is a close approximation of a Gaussian distitiou
Thus, the standard tests requiring normally distributeidencan still
be used.

The use of wavelets for the statistical analysis of fMRI andifon
emission tomography (PET) studies is not new. Feilner ef3l.
use the wavelet transforms of difference images consttufrem
epoch-related fMRI experiments. Assuming a normal distidn of
values in the difference images, activation is found by wppl a
t-test to the wavelet coefficients, using Bonferroni coiectfor
multiple testing. The statistical map is found by applyihg inverse
wavelet transform. Ruttimann et al. [4] follow a similar apach.
Their algorithm performs a two-stage test in the waveletaiomThe
first test analyses the wavelet coefficients per directicenobl: the
coefficients are ordered by resolution and by direction i¢doottal,
vertical, and diagonal). It assumes the cumulative enenggdch
direction channel to bg>-distributed. All coefficients in a direction
channel at a certain resolution are discarded if its curivelanergy
is lower than the value predicted via thig-distribution. The second
test thresholds the wavelet coefficients in the remainingnokls
individually via a two-sidedz-test. Both the channelwise test and
the voxelwise test use the Bonferroni correction for midtigsting.

Functional neuroimages often need preprocessing beforg beThe inverse wavelet transform is applied to the output ofsteond

subjected to statistical analysis. A common preprocessiep is
denoising, which is usually done via Gaussian smoothingb&hing
suppresses noise, but it also changes the intensity wariatf
the underlying image. This suppresses, or even removeaijletkt
features of the original image. In this paper, we study weivieased
denoising as a possible alternative to Gaussian smootkilagelet-
based denoising has the advantage over low-pass filterngetevant
detail information is retained, while small details, duentmse, are
discarded. The performance of both approaches is compaitkd
respect toi the improvement of the signal-to-noise ratio (SNH)), (
the preservation of the shapes of active regions during émeiding

test, yielding an activation map. Raz et al. [5] perform aalgsis
of variance (ANOVA) in the wavelet domain, by thresholdiret
wavelet coefficients according to their score in a statstiest. The
testing is done blockwise: at the lowest resolution, eadffioient

is a block, and at higher resolutions the same number of bligk
used. The false discovery rate (FDR) is used to correct fdtiphel
testing. Hilton et al. [6] use a wavelet-based denoisingcedore
known from the WavelLab project [7], an open source collectio

vof wavelet routines, and compare this to their own data gicaly

thresholding procedure. The denoised time series are ctabjeo
statistical testing by means of a voxelwis¢est. Turkheimer et al.

process, andii{) the improvement in the statistical analysis vig8] model PET images in wavelet space by applying statisticadels

statistical parametric mapping (SPM).

to the frame-by-frame wavelet transformations of PET tirages.

The focus of this paper is on functional magnetic resonanceThe main novelty of this paper is an extensive comparison of

imaging (fMRI) time series. In an fMRI experiment, a persging

wavelet-based denoising and Gaussian smoothing, whidteistan-

inside an MRI scanner is asked to perform a certain task whiledard denoising tool for functional neuroimages. All watdiased

series of scans of the brain are made. Brain regions invdlvedis
task show increased concentrations of oxygenated bloatlicing
local signal changes [1]. These signal changes are reféored the
blood oxygenation level dependent (BOLD) contrast, aneatatg
and characterising these changes is the main goal of MR siemies
analysis.

denoising methods mentioned above except Hilton's [6] grerf
the ensuing statistical tests in the wavelet domain. We uiatbe
approach used by Hilton et al. for two reasons. First, periog a
statistical test in the original domain enables a comparizetween
the wavelet-based methods and Gaussian smoothing as geepirtg
steps. The statistical analysis process is exactly the $arradl data
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sets and can be kept outside the discussion. Secondly,rpénfp written as a weighted sum of explanatory signals. Let therimat
the statistical test in the wavelet domain requires an seavavelet Y (r.~; denote the fMRI data measured in the experiment, where
transform afterwards, which spreads out the activationhi final each matrix elemeny,; denotes the value measured at time-

statistical map. Whether or not another threshold is neexdfethis 1,...,7 and voxel locatiorj = 1, ..., N. According to the general
map before display is questionable. Separating the dewpaid the linear model,
statistical analysis has another advantage. The data sedsim this Y =X3+e, (1)

study only require a simple statistical test, but most redbiRI

experiments often require much more complex procedurds.fbt Where Xr«a is @ matrix, called the design matrix, whose
likely that all these tests can be done in the wavelet dontsmever, column vectors are the signals that represent the modeffedis

if the denoised images are transformed back to the origioalain, called the explanatory variables. The row vectors of therimat
this problem does not occur. Biurxn @re the weighting factors for those signals, and the values

Another difference between the current study and previaus p in the matrixe;rx~) are the residual errors of each voxel in each
lications on this subject is that we include tests on sinedaime Scan. A least-squares estimatéor 3 is given by(X* X) ' X"Y.
series of which the SNRs and noise characteristics are knGun Given a model ok, the significance of the coefficients bf and thus
definition of the BOLD signal allows a very precise chardstion Of the modelled effects, can be found in each voxel via hygsith
of the noise in all test cases, so that the effect of each maihahe testing.

SNR can be accurately determined. A statistical parametric map dV voxels consists of the-values

Thirdly, we simulate brain activity in the time series by stip- i, 1 < @ < N. Given a distribution of outcomes, prvalue is
posing a time signal on a selected area. From the differeeteclen the probability of getting an outcome at least as extremeénahe
the shape of the original active spot and the shape of thedspetted Observed when the null hypothesi% is correct. The SPM method
by statistical parametric mapping, we can make quantéativalyses allows for many statistical tests-{ests, analysis of (co-)variance,
of the denoising methods in terms of false positive and fatgmtive regression analysis). In this paper, we will only discuss tme-
error rates. samplet-test. The temporal noise in fMRI data sets is assumed to be

The remainder of this paper is organised as follows. Sedfion Gaussian distributed\ (11, 0*). The null hypothesisH, states that
reviews a number of procedures to correct for multiple higpsis 1 = 0. We test for increased activation, which means that we perfo
testing. Section Il first describes the noise in MR imagesq a & one-sided test; states that > 0. We do not know the reat” of
introduces BOLD noise as the noise in the difference of two MEpe temporal noise distribution, so it must be estimatedhgssample
images. In section IV, we present the wavelet-based dmis,\/ariancesg, which can be computed using the residual time signals
methods available in WavelLab [7]. Adjustments have beenentad in e. Using this estimate, we can test for increased activatian v
these methods, to)(make hem suitable for processing 2D images arme t-test. BOLD contrasts are constructed as linear combinsitad
(ii) to support noise with unknown autocorrelations. Theseigimy ows of b (each of which is an image a¥ voxels), and their values
methods, as well as various degrees of Gaussian smoothintgsied are t-distributed. The relation betweemvalues andi-values is as
on 2D images in section V. In sections VI and VII, the waveletfollows. If a¢-value in the BOLD contrast is in the upper% of the
based and Gaussian methods are tested on an artificial tiries,sedistribution, itp-value is belowa. In other words: a smalp-value
and compared in terms of their effects on the temporal SNRhef tProvides strong evidence against the null hypothesis.vAotbxels
denoised time series and on the quality of the statisticedrpatric are those wittp-values below a significance level For one teste
map. Finally, we compare the effects of these methods intistital IS the probability of erroneously rejectingo.
analysis of a real fMRI data set in section VIII. Section IXnemins ~ Testing multiple independent hypotheses with the sameifsign
some general conclusions. cance levelx leads to false positives. For one test, a leveDdf5
is acceptable, but foiV simultaneous tests, approximateh05 N
detected activations will be false positives. Simultarsetests deal
with the ‘omnibus’ null hypothesis [10], which states thhete is

Neuroimage analysis often entails hypothesis testingsi@enan no activation in any of the individual tests. Testing the dms null
experiment in which a subject is asked to perform a task whilgpothesis at level can be used to decide if there is activity in the
being recorded by the MRI scanner. The null hypothégisstates image, but not where it is. The omnibus null hypothesis isl $ai
that a brain region is not involved in that task. There may bigave weak type I error control.
more than one alternative hypothesis, indicating diffepatterns of  One way to deal with this is Bonferroni correction, where the
activity. In general, rejectingdd, means that brain activation relatedsigniﬁcance levely is replaced bya/N. This guarantees that the
to the experiment has been detected. If a large number ofthg®is  proportion of false positives does not exceedn any subset of the
tests are done simultaneously, the expected number oftedjetill  simultaneous tests. Bonferroni is therefore said to hawmgttype |
hypotheses increases. This introduces the risk of falséivess also error control [11], meaning that rejectinkl, in a certain region in
called type | errors (see Table I). the brain is evidence for activation in that very region. f&oroni
correction not only affects the number of type | errors: @dg the
probability of rejecting the omnibus null hypothesis aldfeets the
number of true positives. This introduces false negatieesype Il
errors (see Table I). For fMRI signals, which are spatiatiyrelated,
Bonferroni correction may be too conservative.

In most neuroimage analysis programs that use the SPM method
for the statistical part of the analysis, images are smabthih
Gaussian filters [12]. The motivation for this is twofoldk) (it

Statistical parametric mapping (SPM, [9]) is the commonhuédt increases the signal-to-noise ratio (SNR), aiidl if controls the
to analyse functional neuroimages. SPM is based on thegdimerar smoothness of the noise in the images when viewed as a lattice
model, which states that the response in an fMRI experimantbe representation of a continuous, stationary Gaussian manfield

Il. THRESHOLDING STATISTICAL MAPS MULTIPLE HYPOTHESES

TABLE |
CLASSIFICATIONS AND MISCLASSIFICATIONS IN STATISTICAL TES'S.

inactive voxel| active voxel
keep Hy correct type 1l error
reject Ho | type | error correct




A.M. WINK AND J.B.T.M. ROERDINK: DENOISING FUNCTIONAL MR IMAGES (IEEE TRANS. MEDIAL IMAGING 23/3, 374-387, 2004)

(GRF). In order to use GRF theory, smoothing may be necessary,
to bring the data more into agreement with the model assomgpti
Once the smoothness of an image is known or controlled veifil,
threshold values for statistical maps can be computed ubmguler
characteristic of Gaussian random fields to correct for ipleltesting

[13], [14]. The method has strong type | error control. Thip@ach

has two drawbacks. Firstly, even after filtering, the noisettie
smoothed images often still differs from a GRF. Noise andalig
are smoothed together, so smoothing makes it even moreudtiffic
to separate signal from noise. The underlying image is ketylito -
represent a continuous GRF, so the corrected thresholdely Ito (b)

be biased. This will influence all correctedvalues. This problem

is even more serious when the smoothing kernel has anothier ftig. 1. (&) A simulated MR image. (b) A 2D nonstandard fast etety
width at half maximum (FWHM) than the intrinsic FWHM of the ransform (FWT) of (a).

underlying images. Secondly, the smoothing process sspgseand

removes details in the images. This hampers the detectidetafled

regions during subsequent analysis. I1l. NOISE MODELS FOR MRI
The false discovery rate (FDR) is another alternative fottipie _ ) ) )
test correction, that is also applied in functional neumging [11].  The computation op-values in fMRI research is usually done with

It does not require spatial smoothness. The FDR is defined sgndard tests, such as théest or F-test. The use of these tests is
the expected proportion of false positives among the rejeciull justified by assuming the BOLD noise to be Gaussian under uhie n
hypotheses [15]: hypothesis. In the MR literature, however, the noise in MRges is
assumed to be Rician distributed [16], [2], [17]. Riciansweodiffers
#type | errors (= #false positivey ) @) from Gaussian noise in that it is multiplicative instead déligive, i.e.

#H, rejected (= #detectiony, it depends on the signal intensity, and the probability derfisnction
(pdf) of the noise is very asymmetric for low signal interest

FDR:E<

E denoting expectation, and is identicalGavhen#detections= 0.

The following algorithm results in an FDR approximately afto g,
with 0 < ¢ < 1. Given N voxels withp-valuesp;,...,py and an
FDR parameter, an FDR-controlling threshold selection procedure
is given by:
1: define
n(N) = { 1, when thep-values are uncorrelated : : ;
ZIJ_V:1 1/17 OtherW|3e 0 2 4 6 8 10 -10 -5 0 5 10 -10 -5 0 5 10
2: order thep-values so thap; < p;y; for every0 < ¢ < N; @ (0) ©
3: letr be the largest for which p; < ¢i/Nn(N); Fig. 2. (a) Rician pdfs for different signal intensities.gHer intensities
4: reject the null hypotheses of the voxels wjth< p, have noise distributions similar to a Gaussian. (b) pdfshef difference of

two Rician distributed sets for a fixed signal intensity, hnitifferent standard

This method has weak type | error control. Notice that, wheN) = deviations. (c) Gaussian pdfs, with different standardatens.

1, the graph ofyi/N vs. 1 is a straight line from(1, ¢/N) to (V, q),
and thatg/N andq correspond to the Bonferroni-corrected threshold
and the ‘omnibus’ threshold, respectively.iifN) = 3", 1/i, the  The difference between two images with Rician distributese
method is much more conservative [11], so {éV) = 1 option is has a symmetric distribution (see Fig. 2). In such diffeesimages,
preferable if it is allowed. the distribution of noise is very close to Gaussian noisegas be
This correction method has a number of advantages over Bonfgeen in table Il. This table shows, for each listed image, dize
roni correction and correction based on GRF theory. It is Enser- meanp-values of the Kolmogorov-Smirnov (KS) test statistic on 32
vative than Bonferroni correction and it does not requir@sthing, images of that size, fori)Y the difference between two images with
in contrast to GRF theory. The most important advantage Ss Rician noise and signal intensity oné) the difference between two
adaptivity: the threshold is selected on the basis of thgildigion of images with Rician noise and signal intensity five, aodan image
p-values, so after hypothesis testing. Therefore, it cangmdied to  containing N (0, 1) noise. The null hypothesis of the KS test is that
any set ofp-values resulting from a statistical test. It is indeperidenhe noise is normally distributed, and it is rejected if fhealue of
of the type of test and the number of hypotheses, so that atsopa the KS test statistic is below 0.05. For very low signal isigas, a
between studies with equal FDRs are possible. deviation from Gaussianity is noticeable only in very laigeges.
The valuen = 1 is not only valid for uncorrelated p-values, butWe conclude that it is safe to use techniques based on thepsen
also for sets op-values that are positive regression dependent withpf Gaussian noise for BOLD images. For a more detailed aisalys
subsets (PRDS). Genovese et al. [11] explain the PRDS pyopewe refer to [18].
briefly, and they argue that statistical parametric mapse hidns The BOLD effect involves spatial autocorrelation due to the
property. In section VIl we discuss the distribution of thevalues spatial extent of neuronal events, but this autocorrelai® not
under the null hypothesis and their spatial correlatiorreater detail. exactly known [19], [20]. We tested two types of spatial etation:
A uniform distribution ofp-values under the null hypothesis provesvhite noise, andl/f noise, which has a/f power spectrum. The
the validity of the statistical test. The spatial corredatof the residual motivation for the latter type of noise is that, due to the M&jliency
noise is tested because a time series with Gaussian noisdsthaencoding, a unit pulse gets the shape of a peak with expahenti
positively correlated among voxels, is PRDS [11]. slopes [21]. Section V describes how we simulated MR noise.
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TABLE Il T —
p-VALUES PRODUCED BY THEKS TEST FOR THE DIFFERENCE BETWEEN original image wavelet coefficients
IFWT in the time domain
IMAGES WITH RICIAN DISTRIBUTED NOISE (R), WITH SIGNAL
AMPLITUDES (A) OF 1 AND 5, AND FOR IMAGES OF THE SAME SIZE WITH
R FFT per level, IFFT per level,
N(0,1)-NOISE(N). @FT) (IFFT) [ per channcl} [per channel }
size| p-value R(A=1) p-value R(A=5) p-value N ¢
2x2| 06573 0.5607 0.4569 ] P FWD wavelet coefficionts
4 x4 0.5761 0.5565 0.4249 requency coetiicients FWR in the frequency domain
8 x 8 0.5511 0.5493 0.4894
16 x 16 0.5801 0.5564 0.5854 Fig. 3. The FWT and FWD of a signal are interchangeable viafése
32 x 32 0.5833 0.5378 0.5946 Fourier transform (FFT).
64 x 64 0.5629 0.4869 0.4816
128 x 128 0.5270 0.5426 0.5147
256 x 256 0.4390 0.5554 0.5225 ) ]
512 x 512 0.3210 0.5219 0.4006 and WavelJS [32], [33]. These routines are based on thresgold
1024 x 1024 0.0587 0.5236 0.5037 detail coefficients in the wavelet domain. An important eteéeristic

of these schemes is the amount of smoothness they introdube i
denoised image [6].
InvShrink uses the VisuThresh threshold, which & log N
i . for a vectord; of detail coefficients of lengthV. The signal is
Wavelet bases are bases of nested function spaces, whichecanajeq pefore thresholding so that it has unit standardatiesi In
used to analyse signals at multiple scales. Wavelet casfisicarry mytilevel transforms, the height of threshold is doubled éach
both time and frequency information, as the basis functieay g ,psequent level. MultiMAD also uses VisuThresh, and fescthe
in position and scale. The fast wavelet transform (FWT) ieffity ;. of each level so that its median absolute coefficient value is
converts a signal to its wavelet representation [22]. In e-level o g745 which is the median absolute deviation (MAD) of¥if0, 1)-
FWT, a signalco is split into an approximation paré: and @ jstribution. MinMaxThresh uses a minimax threshold [38hich
detail partd:. In a multilevel FWT, each subsequent is split minimises the maximum risk. SUREThresh uses Stein's Usbiias
into an approximatiorr;+, and detaild;.;. For 2D images, each gisk Estimate [32]. VisuShrink uses VisuThresh with sheigi
¢i 1S Sg“t into an approximatiorr;.1 and three detail channels ot sma)l coefficients, called soft thresholding, as the diefabut
dit1, dita, @nd diyy, for horizontally, vertically, and diagonally harg thresholdingj.e. removal of small coefficients, is also used.
oriented details, respectively (see Figs. 1b and 4a). TWerse FWT g Thresh uses VisuThresh for sparse vectors and SURETh
(IFWT) reconstructs each from ci+1 anddi.. If the wavelet basis ¢4 gense vectors. WaveJS uses a threshold based on the-James
functions do not have compact support, the FWT is computest M&;ein estimate [32]. InvShrink and MultiMAD change the sireld
efficiently in the frequency domain. This transform anditeeirse are 5 aach decomposition level, while MinMaxThresh, SURES,

called the Fourier-wavelet decomposition (FWD) and Fauriavelet VisuShrink, HybridThresh, and WaveJS use one global tidsh
reconstruction (FWR), respectively, see [23] for more ifieta

IV. WAVELET-BASED DENOISING

A. Wavelet bases

As it is difficult to mathematically characterise functibrizain & d !
signals, a basis with general properties is preferableh®tbmmon ? ?
wavelet bases, like Daubechies wavelets [24], symmlet#leto
[25], and splines, spline bases have been shown to possess th
best approximation properties, such as the smalleserror [26].
Because of their smoothness, splines are well localisedbth the
frequency and time domains. Earlier studies about the usaetlets
in fMRI analysis [4], [27] favour the use of symmetric wausl@and @) (b)
scaling functions, because they do not introduce phasertiests. Fig 4. (a) Ordering of the approximation and detail coeffits of a two-
Orthogonal bases are recommended, because they transfioiten Wevel 2D nonstandard FWT. (b) Symmetric orthonormal culiine scaling
noise into white noise [28]. Unser et al. have proposed an FWunction (top) and corresponding wavelet (bottom).
that uses fractional spline wavelets [29], [30]. Fractlospalines are
splines of a real-valued degree, which can be used to prodacelet
bases. They come in many flavours, such as symmetric andlca
orthogonal and biorthogonal.

In view of the above, symmetric, orthonormal cubic splineglats
(see Fig. 4b) are the best choice for this study. Symmetrikbpgonal,
smooth wavelet basis functions cannot have compact supqadrt
exponential decay [31]. For this reason, we use a frequennyath
implementation via the FWD to compute the FWR.

If a 1D threshold selection scheme were used in a 2D FWT,
U example by applying a 1D thresholding scheme in bothiabat
dimensions, assumptions used by the WavelLab routines waeild
violated, because the threshold for detail coefficientsldvau some
cases be determined from both approximation and detaificiggits,
and in some cases from detail coefficients only (see Fig.S@jt is
necessary to respect the ordering of coefficients in a 2D FIM&.
WaveLab thresholding schemes are based on the assumptidritef
Gaussian noise. If the autocorrelation of the noise is uwkna level-
B. Denoising images by wavelet domain thresholding dependent threshold should be used [34]. To meet thesaeamgiits,
The WavelLab package by Donoho et al. [7] contains a numbee have made 2D versions of the denoising routines in whith al
of schemes for wavelet-based denoising, including HybridSh, channels with detail coefficients (see Fig. 4a) can be tlotdsid
InvShrink, MinMaxThresh, MultiMAD, SUREThresh, VisuShk, individually. Each direction channel at each resolutioacfe square
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in Fig. 4a) is thresholded independently using the Waveloaitimes.
This setting works for each FWT of stationary noise with aknown
autocorrelation:; there is a difference in variance betweéetalil
channels at different resolutions, but within each charthete is
constant variance [34].

V. DENOISING 2D IMAGES

The BOLD contrast is defined as the difference between an MR
image of a brain with increased local activity and an imagehef
same brain under resting conditions [35]. We used the BramW
Simulator [36] to obtain a noise-free T2*-weighted MR image
template. The parameters of the simulator were as follovwesdaiity:

T2; voxel size: X1x1 mnt; Noise: 0 %; intensity non-uniformity: 2

0 %. The Brain Extraction Tool [37] was used to remove norirora b

voxels, by setting their intensities to 0. One slice (slice h08) of (d) (e) 0]
this image was selected, and used as a noise-free MR brapiaiem

Rician noise was added to this template as follows. hetc) Fig. 5. Image without noise and the active spot magnified dmve in
denote the template slice, ang, its standard deviation. Two images‘é"(;‘r']ttzig?%é Nv%si%/ew(lt?) 'amnfﬁl/e; \é\g;hl?l?cci;iai%?sgﬂgfn?gejéaf:ng:;zzl ;IO;J}HE
n1(z) andna(z) cor_lta!nlng Li.d.V (0, aﬁ)-dlstrlbute_d noise W'tt' @ noise-free BOLD image (d) and BOLD images created from nMR/imaées
known standard deviatiom, were made, and the noisy MR image  with white (e) and1/f (f) noise of 15 dB, respectively.
was computed agi(z) = /(m(z) + ni(x))? + n2(x)2. The Ri-
cian distributed noise im, computed as(x) = m(x) — m(x), has
a standard deviation, with approximatelyo, = oy.\/2 — /2 [2]. decomposition level of 4 were used for all tests. After dsimgj with

This approximation was used to create noisy MR images with a . . . -
known signal-to-noise ratio (SNR). The SNR of the noisy iemg one of the methods listed in subsection IV-B, a 2D IFWT yieldee

) denoised imagef.. Denoting the standard deviation of an arbitrary

was computed as: . . 5
image f by o, the following procedure was carried out for each of

SNRy, = 10 log,, Im (3) the tested methods:

Ir 1: the noisec: () present inf: (x) before denoising was computed
Gaussian noise with &/ f power spectrum was produced by trans-  ase, (z) = fi(z) — fo(x)
forming bothn; andn, to the frequency domain and multiplying 2: the SNR before denoising, denoted SNRias computed as:
their frequency spectra with &/+/f mask, yielding power spectra SNR; = 10 log, %7 (4)

. : ; o

with a 1/f_ ff_illoff. Both the real and imaginary parts of the _s_pectra3: the residual noises(z) after denoising Was obtained afx) =
were multiplied, so the phase spectra did not change. Mickion

. g, : g . fa(z) = fo(x)
in the. frequency donjalp is equwalent to _convolutlon_ln tpats_al 2: the SNR of the denoised image, denoted SNRas computed
domain. Because this is a linear operation, the noise lligton

. ) ) _ _ as of
in the 1/f versions of then, and no images remains Gaussian. SNR; = 10 log;, L, (5)

These transformed versions of andns were used to obtain Rician Figure 7 shows SNR plotted against the€2input SNR of the MR
distributed noise with d/f power spectrum. images.

The BOLD image was constructed from two of these noisy MR

images as follows:
1: create two noisy MR imagesn: and m. using the above
procedure;

2: define an ‘active region’ inside the template brain and ereat
noise-free BOLD imagef, as:

1, if « is inside the active region
fo_(w) N { 0, otherwise _ @
3: add activity torm2 by addinge fo, wherec = 5% of the maximum  r 6 |mages from the 2D denoising test, each with a crosose(solid
intensity of the MR template. line) of a line in the image (dotted line) plotted inside: @jiginal (fo), (b)
4: compute a BOLD imag¢ as fi(x) = ma(x) — mi(x) noisy (f1), (c) denoised f2) with Gaussian smoothing, FWHM = 3 pixels,

The top row of Fig. 5 shows the active spot (bright area), aval t (@) denoised £2) with VisuThresh (s).

noisy imagesn1, with white andl/ f noise, respectively. The bottom

row shows the noise-free BOLD image, and BOLD images withtevhi Of the Gaussian smoothing methods, the wider kernels perfor

noise andl/f noise, respectively with an SNR of 15 dB. Becausbeetter for low input SNRs, and smaller kernels perform bette

there is hardly any signal in the noise-free BOLD image imgge for higher input SNRs. The maximum input SNR where Gaussian

(see Fig. 5d), the BOLD images have a much lower SNR than temoothing still shows SNR improvement decreases as the\iitkth

MR images used to construct them. MR images with an SNRRGof increases. Figs. 7a+c show that even for Gaussian smoothih@n

10, 15, 20, 25, 30, 35dB yield BOLD images with an SNR of FWHM of one pixel, the maximum output SNR is about 7 dB.

{-15.2, -10.2, -5.2, -0.2, 4.8, 9.8, 14.8B, respectively. The wavelet methods perform as well as Gaussian smoothing fo
For these input images, we compared wavelet-based degoisiow SNRs, and better than Gaussian smoothing for higher SNRs

and various degrees of Gaussian smoothing. Each of the stavelll wavelet-based methods show maximum output SNRs above 10

based schemes started with a 2D FWTfpf computed as shown in dB. For white noise and low SNRs, there is a marked differénce

Fig. 4b. Symmetric orthonormal cubic spline basis fundi@md a output SNRs. HybridThresh, InvShrink, MultiMAD, and Vishiesh



A.M. WINK AND J.B.T.M. ROERDINK: DENOISING FUNCTIONAL MR IMAGES (IEEE TRANS. MEDIAL IMAGING 23/3, 374-387, 2004)

with both hard (h) and soft (s) thresholding increase the SNR

most. WaveJS, MinMaxThresh, and SUREThresh (both h and s) os

thresholding increase the SNR less. For higher SNRs thereiftes H H H T
are smaller, but InvShrink, WaveJS, SUREThresh (h), andisesh o

(s) now produce visibly lower SNRs. There is another diffiese

between these methods: The images produced by HybridThresh

WavelJS, and VisuThresh (s) smear the active spot out muck mor -05
than the other methods do. We refer to these schemes as lingpot

wavelet methods’. MinMaxThresh and SUREThresh (both h gnd s

produce sharp output images. The other methods produceesrafg Fig. 8. The time signal in the active spot of the simulatedetiseries.

intermediate smoothness. In general, the smoothing wanelthods
perform better for low input SNRs, but the less smoothing eletv

methods are better when the input SNR is higher. In this éx@ert jnage according to the procedure described in section V. okkol
SUREThresh (h) performs bad with a low input SNR, but withhbotsjgnalp(¢) (see Fig. 8) was superimposed on the time signals at the
noise types it performs best for higher input SNR. voxel locations inside the active region (see Fig. 5a). Tige sf the

2 . 2 I superimposed signal altered after evel) gme point. The size of
the original active region was 762 pixels.

The time series consisted of 8 blocks of 8 images: 4 blocke wer
labelled ‘rest’, and 4 were labelled ‘task’. The ‘task’ bkscwere
those in which the time signal is positive (see Fig. 8). Thel#ode
of the time signal was set to% of the maximum intensity in the

8 16 24 32 40 48 56 64

HybridThresh ——
InvShrink —<—

SNR of denoised BOLD image in dB
SNR of denoised BOLD image in dB

5 5L A aD o MR template. Starting with the imagé () from section V, we
MinMaxThresh —s— .. . . . . .
40k 0¥ SURETeshi) —o— use]-‘_o to denote t_he orlgl_nal time series with the time sighél)
P WU Ve — superimposed on it, but without the noise:
5 10 15 20 25 30 35 5 10 15 20 25 30 35 . .
SNR of noisy MR image in dB SNR of noisy MR image in dB 7 (1: t) { fo (m) + b(t) in the active spot (6)
hite noise, Gaussi thi hite noise, let démwi 0 = i i
2\va Iite noise, Gaussian §moo‘ Ing 20 Wi |‘e no,se V\(ave(? ml ) fO (.’I?) in the rest Of the |mage

FWHM=1 ——

The noisy time serieg; was computed as:
.7:1(1:,15) :fo(x,t)+€1(m,t), (7)

where 1 and €1 (x,t) denote the noisy time series and the value
of the input noise, respectively. A BOLD image was computed
from each individual image by subtracting the time serieame\s

SNR of denoised BOLD image in dB
SNR of denoised BOLD image in dB

a0} %‘gﬁ%’ﬁiiﬁ?gi e demonstrated in section I, the noise distribution in sddference
Isulhresl — - . . . . .
15 e st VisuThresh(s) ——~— images is approximately Gaussian. The BOLD image was detois
5 10 15 20 25 30 35 5 10 15 20 25 30 35 . . . . .
SNR of noisy MR image in dB SNR of noisy MR image in dB using the methods from the previous section, after whichtitine
1/ f noise, Gaussian smoothing 1/ f noise, wavelet denoising series mean was added to the denoised image_

) . - . Let denote the denoised time series. After denoising, we tested
Fig. 7. Performance of various wavelet denoising schenmms, Gaussian 72 g

smoothing for several values for the FWHM parameter. The SiiRhe eaF:h voxel location: for the presence of the signé(t). The residual
denoised image is plotted against the SNR of the noisy image. noisee> was computed as:
e2(x,t) = Fa(x,t) — fo(z) — b(t). 8)
fojr\:\?higﬁigggesﬂ']?s phec)rlfgsm:‘z?cti;swj\?;!:rn:g'; ﬁogs?ls:s t\?vaeﬂ We denote the temporal residual noise _in a vaxels a function_ c_>t
. ' . . €3 (t) = e2(x, t). The temporal SNR in a voxet after denoising
for Gaussian smoothing. For all wavelet methods exceptHring, was computed as:
WavelJS, and VisuTresh(s), the output SNR is a linear functib
the input SNR: unlike Gaussian smoothing, the wavelet nustho SNR:x(z) = 10 log;, b , 9
improve the SNR of input images that already have a high SN T Teg
suggests that in terms of SNR improvement, wavelets areteattite  where o, and oz are the standard deviations 6ft) and 3 (1),
alternative to Gaussian smoothing. With white noise andléer respectively.
SNRs, the less smoothing wavelet methods, such as MinMashhr
and SUREThresh (h and s), produce relatively lower outpuRSN A, Effect on the temporal SNR
than the other methods. This indicates that introducingashmess,  igyre 9 shows SNRz), averaged over all locations inside the
th_ereby discarding image features, is necessary to Improgges  ,ctive spot, plotted against the input spatial SNR. The hgafor
with very low SNRs. Of the methods mentioned above, MultiMAR; 5ssian denoising show the same behaviour as in the 2D image
and VisuThresh(h) give good results for all tested SNRs. experiment,i.e. the SNR curve eventually reaches a plateau value.
The wavelet-based methods improve the temporal SNR botlofior
V1. DENOISING A SIMULATED TIME SERIES and high input SNR. The same relation observed in the previou
In most neuroimaging applications it is not possible to safga experiment between smoothness of the output image and tpetou
signal and noise, so the SNR is not known. Therefore, a stinnla SNR is visible here. The smoothing wavelet methods and wide
study was performed in which the SNR is known a priori. W&aussian smoothing filters produce the highest temporal SStdR
constructed an artificial time series of 64 copies of the MRlate low input SNRs, and the less smoothing wavelet methods amdwa
image of the previous experiment, and superimposed noiseaoh Gaussian filters perform better for high input SNRs.
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14 HybridThresh ——

MinMaxThresh —s—

SureThresh —e—
10 VisuShrink(h) ——
VisuShrink(s) ——

output: SNR of time signal in dB
output: SNR of time signal in dB

8 11 14 17 20 23 8 11 14 17 20 23
input: SNR of MR images in dB input: SNR of MR images in dB

white noise, Gaussian smoothing white noise, wavelet démpi

FWHM=1 —— 14 HybridThresh ——
FWHM=2 —— InvShrink ——
FWHM=3 —*— JamesStein —»—
12 MUutiMAD —a—
MinMaxThresh —s—

SureThresh —e—
10 VisuShrink(h) —e—
VisuShrink(s) ——

output: SNR of time signal in dB
output: SNR of time signal in dB

8 11 14 17 20 23 8 11 14 17 20 23
input: SNR of MR images in dB input: SNR of MR images in dB

1/ f noise, Gaussian smoothing 1/ f noise, wavelet denoising

Fig. 9. Performance of the wavelet denoising schemes, dsawd&baussian
smoothing for six FWHM values. The average temporal SNRdmshe
original active spot in the denoised image is plotted agaims spatial SNR

of the noisy input image.

T2

Hybrid InvShrink WavelS MultiMAD MinMax

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThrgsh(sFWHM =1

222X

FWHM =2 FWHM =3 FWHM =4 FWHM =5 FWHM =6

Fig. 10. Temporal SNR maps (inverted) of the area around ¢hieeaspot.
The original images contained white noise with a spatial SMR1 dB.

Bt

T T

MultiMAD

InvShrink

222

Hybrid WavelS MinMax

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThrgsh(sFWHM =1

22T

FWHM =2 FWHM =3 FWHM =4 FWHM =5 FWHM =6

Fig. 11. Temporal SNR maps (inverted) of the area around ¢hieeaspot.
The original images containet)/ f noise with a spatial SNR of 11 dB.

T2

Hybrid InvShrink WavelS MultiMAD MinMax

222

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThrgsh(sFWHM =1

222

FWHM =2 FWHM =3 FWHM =4 FWHM =5 FWHM =6

Fig. 12. Temporal SNR maps (inverted) of the area around ¢hieeaspot.
The original images contained white noise with a spatial SXR4 dB.

2272

Hybrid InvShrink WaveJS MultiMAD MinMax

R22ER

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThrgsh(sFWHM =1

222X

FWHM =2 FWHM =3 FWHM =4 FWHM =5 FWHM =6

Fig. 13. Temporal SNR maps (inverted) of the area around d¢heeaspot.
The original images containet)/ f noise with a spatial SNR of 14 dB.

B. Effect on the shape of the detected spots

Apart from comparing the average temporal SNRs in the active
spot, we also look at spatial maps of temporal SNR values ef th
denoised time series. Ideally, these maps should have hagles
inside the active spot and low values outside it. Figures 18 show
the temporal SNRs in the area containing the active spot fatew
noise andl/f noise of 11 dB and 14 dB, respectively. Note that
the images were inverted (reverse video mode) for enhanispthy
purposes.

Gaussian smoothing with small smoothing kernels and thetmo
ing wavelet methods show bright spots, even for a low inpatiap
SNR like 11 dB. Wider kernels, with FWHM- 3 pixels, produce
maps with a very smooth spot, which is less bright. The sniogth
wavelet methods show bright spots, while those producedhéyess
smoothing wavelet methods are darker, cf. Fig. 10. The sheodhe
output image, the more the shape and the SNR value distibuti
of the visible spot differs from the original active spot.noral
SNR maps of methods that produce smooth images (both Gaussia
and wavelet-based) show spots with a somewhat elliptic estzayal
a peaked (non-uniform) intensity distribution. The lessosthing
wavelet methods retain the shape of the original spot anghifsrm
intensity distribution. For noise of 14 dB, InvShrink, Mi@MThresh,
SUREThresh and Gaussian smoothing with FWHM = 1 return
almost exactly the original spot, with a very uniform distriion of
temporal SNR values. Other less smoothing wavelet methadd)
as MultiMAD and VisuThresh (h), and Gaussian smoothing with



A.M. WINK AND J.B.T.M. ROERDINK: DENOISING FUNCTIONAL MR IMAGES (IEEE TRANS. MEDIAL IMAGING 23/3, 374-387, 2004)

FWHM = 2, retain the shape of the spot quite well, with most of In the experiment, we looked at two measures: the number of
the changes in the temporal SNR values near the contour afpitte  false positive classificationse. points outside the original active spot
labelled ‘active’, and false negative classificatiares points inside

C. Segmentation via SNR thresholding the original active spot labelled ‘non-active’'.

Segmentation of MR images based on thresholding is a conymonl TABLE 1l
used technique, and it has also been used on statisticahpii@a = NUMBER OF FALSE POSITIVE CLASSIFICATIONS FOR WHITELEFT) AND
maps, see [38], [39] for examples and references. We asstimeed 1/f (RIGHT) NOISE. THE SNRMAPS WERE ASSUMED TO HAVE BIMODAL
temporal SNR maps to have bimodal histograms: one peak of low HISTOGRAMS.
values for the background and another peak of high valueshtor
active spot. This assumption was used to segment the maps int

. . . spatial SNR spatial SNR
‘non-active’ area and an ‘active’ area. We used the follgviteps —_metnod 8 11 14 17 20 23 method 8 11 14 17 20 23
. Hybrid 767 651 356 168 74 ) Hybrid 2 114 164 150 59 0
to determine a threshold. InvShrink o 1 3 0 0 0 InvShrink [ 17965 1 1 0 0 0
. . . . JAMES 599 589 78 2 154 75 JAMES 2 107 169 21 15 85
1: Smooth the histogram with a moving average filter MuliMAD | 54 123 96 9 0 0 MultiMAD 9 120 12 7 0 0
. . . MinM 2 42 42 3 0 0 MinM 23649 10 27 4 0 0
2: Take the logarithm of each entry in the smoothed histogram  sureey | 4 6 o o o o SUREM | 36 0 1 o o o
3: Model the log-histogram as the sum of two Gaussian peaks  va | 16 s 10 o o v o o w3 000
. 0, H H Visu(s) 680 552 313 165 35 0 Visu(s) 225 386 293 151 29 0
4: Use the 99.9% level of the cumulative histogram of the lettkpe 15/ _ (%) 52 55 1 5 VI
FWHM =2 | 198 62 15 35 24 23 FWHM = 2 28 209 18 17 35 26
asa threSh0|d FWHM = 3 | 348 35 65 98 85 86 FWHM = 3 130 337 39 58 87 82
H H H H 4 FWHM =4 | 116 68 148 155 182 166 FWHM = 4 262 411 59 105 172 150
Fllte”n_g th_e h|5t09_ram Was_lmplemente_d by applymg a th_&IEB FWHM =5| 84 104 188 221 200 229 FWHM=5| 359 339 85 141 225 203
averaging filter ten times. Taking the logarithm was applieeadmplify FWHM =6 99 132 216 245 249 265 FWHM =6] 460 240 104 165 249 243

the second peak: the number of background pixels is geperaith
larger than the size of the active spot, and large valuesedser
more by taking their logarithm than small values. The histogwas
approximated by the sum of two Gaussian peaks with the Lergnb
Marquardt curve fitting algorithm. The threshold was basedte
distribution of the noise.

This is a very simple method, based on a simple assumption of
the bimodality of the histogram. We demonstrate its pertoroe

TABLE IV
NUMBER OF FALSE NEGATIVE CLASSIFICATIONS FOR WHITELEFT) AND
1/f (RIGHT) NOISE. THE SNRMAPS WERE ASSUMED TO HAVE BIMODAL
HISTOGRAMS.

in a number of cases, with SNRs ranging from low to high. If the spatial SNR spatial SNR
. . method 8 11 14 17 20 23 method 8 11 14 17 20 23
temporal SNR is very low, the histogram of the temporal SNR ma ~Fpra 0 0 0 Z» 0 0 Fybrd (560 1 0 0 0 0
is equal to the histogram of an image just containing noiseitAs s |5 o 18 200 o o Twes |as o0 0 % 3 o
not possible to distinguish two peaks in this case, the Hulesis BunMAD 1= 00 0 punvAD 1510 L0 0 0 0
i 1 i SURE(h) 684 15 0 0 o0 0 SURE(h) 730 88 0 0 0 0
determined incorrectly (see Fig. 14c). soree 1% % o 9 6 o eyt A e
In the worst case we tested (Fig. 14a), the temporal SNR map/sum |36 1 0 0 0 © Visuhy | 767 3 0 0 0 0
. ) Visu(s) 0 0 0 0o 0 0 Visu(s) 10 0 0 0 0 0
itself also has a very low SNR of -10 dB, and the histogram ef th Fwam=1) 45 0 1 374 3 158 FWHM=1|759 1 0 14 101 158
. . . . . FWHM = 2 0 37 78 18 55 54 FWHM=2( 80 0 78 66 18 45
SNR map has the shape of the noise distribution, so thatatpar rFwiv=3| o 144 43 15 33 27 FWHM=3| 14 ©0 125 61 34 46
. . . . . . . . FWHM =4 (103 124 22 28 14 22 FWHM = 4 6 4 160 53 25 36
of signal and noise is not possible. The histogram in Fig. yliélis FWHM =5 | 167 116 31 21 31 22 FWHM=5| 4 43 162 61 19 29
FWHM=6|203 123 39 30 31 28 FWHM =6 3 89 18 76 27 33

a sensible threshold, though the noise prevents a bettectatet (see
Fig. 14e). Figure 14c-d show that temporal SNR maps with aR SN

of at least 0 dB can be segmented well with this technique. . .
Tables 1l and IV show the false positive and false negative

classifications, respectively. Images with spatial SNR8 dB do not
yield SNR maps that can be analysed in this way, because tRs SN
of the BOLD images, as well as the SNRs of the temporal SNR maps
are too low (see the list of BOLD SNRs in section V and Fig. 14a-
b). They either yield many false positives or many false tiega

In general, the denoising methods that introduce much d¢mees
yield more false positive classifications for higher SNR&ijlevthe
less smoothing methods yield many false negatives for thedb
SNR. Of the wavelet-based methods, InvShrink and SURETH({®s
perform well for both noise types, and MultiMAD, MinMaxT uie,
and VisuThresh (h) yield good results for moderate and hiyRS
The relatively high numbers of type Il errors for Gaussiamsthing
with large FWHM relate to the blurring effect visible in Fig$0-

13. The intensity distribution in the spot changes from ammf to

2 peaked, which influences detections close to the boundahedafpot.
InvShrink, SUREThresh (h) and Gaussian smoothing with FWHM
(d) () ® 1 yield good results. MultiMAD and MinMaxThresh also perfor
well, the other methods yield more errors.

Fig. 14. Six situations in which the temporal SNR threshoétswetermined.
Dashed line: histogram entries; solid line: log-histograertical line: thresh-
old; x: background intensities;: activation intensities. BOLD images: SNR  VIl. STATISTICAL TESTS ON THE SIMULATED TIME SERIES
of -10 dB (a), -5 dB (b), 0 dB (c), 5 dB (d). (e) Activation (inted) detected

from (b), (f) activation (inverted) detected from (c). We also performed a standard statistical analysis on theiskh

time series with the SPM method [9]. The design matiX, in
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(1), had two columns: a block signal like in Fig. 8 and a column
containing a constant signal to capture the time series niederms
of (1), the matrix3 contained two columns, each representing an

0.8 0.8

0.6 0.6

p-value i
p-value i
p-value i

image. The first image3, (x), contained the covariance of the block = * sdp —— o sdp o -

signal with the time signal at each locatisnimageg3, (x) contained 02 §§§§ = 02 §§§§ = 0z i§§§ =

the time series mean of each voxel. T R e
Although the noise in the MR images is Rician distributeds th (@) (b) (©

noise in the BOLD image has, to very good approximation, a N N

Gaussian distribution, as explained in section lll. If tiemporal o o8 o5

noise is Gaussian distributed, the values@r) are ¢-distributed.
Using the sample variance’® (see section Il) we can compute a

0.6 0.6

p-value i
p-value i
p-value i

0.4 0.4

statistical parametric map pfvalues by means of thetest. We used e e e

FDR correction as described in section Il, with an FDR patame o2 i o2 i oz i

g of 0.05, to threshold3;. This yielded the statistically significant * tex ot sorea pvalie * 8 tex ot sortea pvaiie O dexi of sored pvalue
activations for all denoising methods. To obtain more robasults, (d) (e) )

this experiment was repeated 20 times and the outcomes of the

individual experiments were averaged. Fig. 15. Sortedp-values in the statistical map of denoised time series with

. . . - . white noise, without activation. (a) No denoising, (b) FWHM, (c) FWHM
Two important issues are critical to the validity of this med. 3, (d) IvShrink, (€) MUIMAD, (f) MinMaxThresh. The synols {0, x, +,

First, a¢-test is only appropriate if, after denoising, the temporal o} yepresent the time series of images with an input SNR5f10, 15,
noise is still Gaussian. Second, to use the 1 setting described in 20, 25 dB.

section Il, the data is required to be PRDS. The validity esthtwo
assumptions is discussed in the next subsections.

residual time signal (the matrix in (1)) at locationz as a function
A. Impact of spatial filtering on the distribution of tempbreise  of ¢t. We assumed the autocorrelation function to be localisad, a
The p-values resulting from a set of statistical tests are unifpr for each locationz in the image, the amount of spatial correlation
distributed on [0,1] if the ‘omnibus’ null hypothesis is &(40]. The a(x) was estimated by averaging the covariances of the voxais ti
sequence of ordereg-values from that set of tests should lie orsignal with those of a number of neighbouring voxels:
a straight line. We tested this by constructing time serigsla to 1 v om
those previously described, but without activation: thi Imypothesis a(z) :Nv Z cov(&y,€57), (20)
was true for all voxels. We applied all denoising methodshiesée *i
time series and sorted thevalues acquired in the statistical analysiswith =; from a small neighbourhood e of size N, (in our case,
Figure 15 shows representative results of both wavelet odsth IV, was11 x 11 voxels). Figure 16 shows this function for a number
and Gaussian smoothing. Some methods produce Gaussiaaregmf settings. The top rows show the amount of correlation doun
noise, others introduce a deviation from Gaussianity. Togerow without applying denoising. Wavelet methods introduce itpes
shows that Gaussian smoothing with FWHM = 1 yields uniformlgpatial correlations for lower input SNRs, and hardly angative
distributedp-values under the null hypothesis, while for FWHM =correlations for higher input SNRs. Gaussian smoothingpihices
3 or higher, non-uniformly distributegh-values are obtained. The strong positive correlations for all SNRs.
plots in the bottom row show results for three wavelet meshdtr Another way to characterise the autocorrelation functisntd
InvShrink and MinMaxThresh the distribution pfvalues is uniform, look at statistics of the distribution of(@). Figure 16 and Table V
but for MultiMAD it is non-uniform. show that every denoising method changes the spatial abmes$ in
The fact that even for Gaussian smoothing the distributibthe the residual time series. All methods, except MultiMAD,ratuce
noise may become non-Gaussian may seem puzzling, but canslgnificantly more positive correlations than negative né/avelet
explained by the fact that, for Rician noise, a higher intgris the methods change the spatial correlation much less than {@auss
image leads to a larger noise amplitude. This gives a kingpafial smoothing. We assume that without denoising, the residimlaot
structure to the noise, which is observable in the (BOLDjedince have significant negative correlations. In our test datatalty white
images. Denoising methods that produce smoother imagesyehaor 1/f Gaussian noise) we know that this is the case. Because the
this structure, thus introducing errors. Although the d#éwen from only significant correlations introduced by denoising assifive, the
normality varies between methods, we chose to keep all dstho residuals are either uncorrelated, or positively coreglain space.
the statistical analysis, since theest is quite robust to deviations These results indicate that thg = 1 setting is allowed in the
from normality. statistical tests.

B. Positive regression dependence of thealues C. Results

Benjamini et al. [41] show that the settimg= 1 can be used inthe In this experiment, we investigate the effect of denoisimgtioe
FDR-controlling procedure if the data are PRDS, and thativaulate outcomes of the usual statistical analysis. In particuler,looked at
positively correlated normally distributed data are PRB®novese two measures: the number of false positives and the numbiaisef
et al. [11] argue that most fMRI data sets satisfy this coonlit negatives. It is important to realize that denoising has éffects:

To test the spatial correlation of the noise after applyinigaoising first, the desired effect of noise reduction, and second,ravanted
method, we observed the time series (without activation)thef but unavoidable change of the shape of the active spot. kr todake
residual noise in the GLMi.e. the e images in (1). We used the the latter effect into account, false positives/negatmese defined
SPMdtoolbox [42] to compute a normalised residual time sefies as points outside/inside thariginal active spot (see Fig. 5d) after
The noise in this time series wa$(0, 1)-distributed. We tested for denoising, which are marked ‘active’/'inactive’ in thaest with FDR
a positive correlation as follows. L&ty (¢) denote the normalised control (7 = 0.05). These numbers are shown in Tables VI and VII.
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TABLE V
MINIMAL , MAXIMAL , MEAN, AND MEDIAN VALUES AND THE STANDARD
DEVIATIONS OF THE TEMPORAL STATISTICAL CORRELATION OF VOXES
WITH THEIR NEIGHBOURS THE INPUT TIME SERIES CONTAINED NO

ACTIVATION, AND THE SNRWAS 15DB. LEFT: WHITE NOISE, RIGHT: 1/ f

‘ o § " " NOISE.
o K L
a o o 40l o
o
e e statistic statistic
method min_mean max o med method min_mean max o med
(a) (b) (c) (d) (e) No Denoising| -0.03 _ 0.00 0.04 0.01 -0.00 No Denoising| -0.04 0.04 012 003 0.04
Hybrid 2005 000 007 002 0.00 Hybrid .02 007 019 004 0.06
InvShrink | -0.07  0.06 0.28 0.06 0.04 InvShrink | -0.01 0.8 051 010 0.16
WaveJs 0.04 -000 004 001 -0.00 Wavels 0.04 005 013 003 004
MultiMAD | -0.18 008 0.83 014 003 MuliMAD | -0.16 0.13 0.88 0.6 0.09
MinMax 0.06 -0.00 006 0.02 -0.00 MinMax 0.03 005 016 004 004
i SURE(h) 0.04 -000 004 001 -0.00 SURE(h) 0.04 004 013 003 004
SURE(s) -0.05 000 007 002 0.00 SURE(s) 0.02 007 019 004 0.06
Visu(h) 008 -0.00 010 002 0.00 Visu(h) 0.03 005 019 004 005
Visu(s) 008 003 014 004 002 Visu(s) 003 012 034 007 011
i FWHM =1 |-003 003 012 003 0.03 FWHM =1 | 002 016 032 005 015
1 FWHM=2 | 001 020 035 006 0.20 FWHM =2 | 013 037 057 009 037
h FWHM =3 | 015 039 057 009 0.40 FWHM =3 | 026 053 073 012 055
N FWHM=4 | 025 055 074 012 058 FWHM=4 | 029 065 084 014 0.67
| FWHM=5 | 032 066 085 013 0.70 FWHM=5 | 035 073 093 015 0.78
D FWHM=6 | 034 074 091 013 080 FWHM=6 | 036 079 096 014 0.86
®
TABLE VI

s
ui u i

! ‘Mﬂ‘

NUMBER OF TYPE|I ERRORS IN THESPMANALYSISWITH FDR CONTROL
(¢ = 0.05) FOR WHITE(LEFT) AND 1/f (RIGHT) NOISE.

“ “ ! o spatial SNR spatial SNR
= o B R method 8 14 20 23 method 8 11 14 17 20 23
= B Hybrid 105 161 12 14 10 7 Hybrid 1400 1047 164 100 52 25
E o 9 InvShrink 35 37 3 1 4 24 InvShrink 35 47 3 1 6 28
i B R e M JAMES  [114 199 13 14 14 10 JAMES | 1037 853 69 20 21 13
MultiMAD 206 234 27 19 20 15 MultiMAD 278 238 27 23 19 15
(k) ) (m) (n) (0) MinMax 5 71 2 1 1 0 MinMax 102 116 5 5 8 3
SURE(h) 28 29 3 0 0 0 SURE(h) 30 17 2 0 0 0
. ) ) . SURE(s) 77 119 6 5 5 9 SURE(s) 553 494 48 41 28 25
Fig. 16. Surface plots of the spatial autocorrelation fiomct(top) and  Visuth 80 109 4 4 5 3 Visu(h) 28 226 22 20 17 12
histograms (bottom) of individual correlations computed(10) of residual e _ |47 519 > &8 €2 45 Yoa | T S0 1 ATs 13T
time series. The original time series contained white ndiae2) SNR input m:m =§ ;gs igg g ;g ;g ;g m:wg i;é gig ;3 ég ;g ‘1&
images ={5, 10, 15, 20, 2% dB, without denoising. (f-) Idem, denoised -4 |431 536 30 47 63 74 FWHM=4| 668 673 53 68 77 85
with MinMaxThresh. (k-0) Idem, after Gaussian smoothinghvkWHM = 3 FWHM =5 | 563 671 60 100 127 145 FWHM=5| 864 828 116 139 152 165
VOXeIS FWHM =6 | 689 798 122 178 210 230 FWHM =6 | 1060 975 202 225 239 248

False discovery rates can be obtained from this table by atngp active spot is smaller than the original (type Il errors)bigThresh,

the number of false positives, divided by the number of di&es; WaveJS, and VisuThresh(s) and all the Gaussian smoothitigonse

the latter number equals the size of active spot(=762 pixglss the produce larger spots (type | errors).

number of false positives, minus the number of false negstiv

consequence of taking thariginal active spot as a reference is that

the observed false discovery rates after denoising mayeexite5% To test the denoising methods on real data, we used an example

threshold imposed by the FDR controlling procedure. fMRI data set provided by the Dartmouth Brain Imaging Cef4&i.
These tables show that the smoothing methods produce mates is a recording of an experiment in which a subject wassed

false positives, whereas InvShrink, MinMaxThresh, SURESh(h), for 4 minutes with a TR of 2000 ms. The subject's condition

VisuThresh(h) and Gaussian smoothing with FWHM = 1 producewitched every 30 s (15 scans) between ‘rest’ and ‘taskitista

very few false positives. The other wavelet methods and Saws with ‘rest’. During the ‘task’ periods, the subject had torfpem

smoothing with an FWHM of two voxels also perform well. Forgar an object manipulation task. The data set consists of 120nmed

Gaussian filters, the number of type | errors increases Witfitter with a resolution of 64 64x27 voxels. Each voxel has a volume of

width. The number of type | errors is larger foy f noise than for 3.75x3.75x5.50 mn7.

white noise. The less smoothing wavelet-based methods angdian The 3D volumes, each consisting of 27 axial planes ok &4

smoothing with an FWHM of one voxel produce more type Il esrorvoxels, were transformed plane-by-plane to the waveletadionThe

than the other methods. With/f noise, this effect is worse than decomposition level was set to 4. Denoising was done by Hath t

with white noise. In general, the wavelet-based method€Gmessian wavelet-based methods and Gaussian smoothing. For thee laé

smoothing with an FWHM of one voxel introduce more type llogs; used smoothing kernels ob&x5.5 mn?t, 10x10x5.5, and mm,

the other Gaussian filters introduces more type | errorsurBigy17 15x15x5.5 mnt. We compared the activation images, using the

- 20 show statistical parametric maps built from the derbisme activation map of the original data without preprocesssep(Fig. 21)

series with white noise and/ f noise of 11dB and 14dB, respectively.as a reference: the shape of the active region detecteddafteising

Generally, the less smoothing methods produce spots tbati@sest should not differ too much from that detected from the omdin

to the original. The spots detected after InvShrink, MinMasesh, time series. The data underwent the same statistical anagsthe

and SUREThresh (h) denoising and Gaussian smoothing with simulated time series. Figure 22 shows the voxels in a slquine

FWHM of one voxel are closest to the original spot (see Figs. 1whose t-statistic was above the FDR threshold, for all denoising

20). Because the boundary voxels are not detected, thetingsulmethods, overlayed on the first image of the original timéeser

VIII. STATISTICAL TESTS ON A REAL FMRI DATA SET
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TABLE VII
NUMBER OF TYPE Il ERRORS IN THESPMANALYSISWITH FDR
CONTROL (¢ = 0.05) FOR WHITE(LEFT) AND 1/f (RIGHT) NOISE.

spatial SNR spatial SNR
method 8 11 14 17 20 23 method 8 11 14 17 20 23
Hybrid 0O 0 67 70 85 112 Hybrid 9 0 131 101 107 109
InvShrink 3 0 168 139 122 113 InvShrink 17 0 175 144 124 114
JAMES o 0 72 71 77 84 JAMES 2 0 119 91 83 91
MultiMAD 5 0 163 151 136 123 MultiMAD |15 1 169 153 137 123
MinMax 9 0 179 157 137 123 MinMax 33 0 191 161 139 123
SURE(h) 72 0 198 164 140 125 SURE(h) 76 0 191 166 140 124
SURE(s) 0 0 121 114 113 112 SURE(s) 8 0 155 129 119 115
Visu(h) 5 0 163 151 136 123 Visu(h) 24 1 183 157 138 122
Visu(s) o o0 78 8 92 97 Visu(s) 1 0 102 95 97 101
FWHM=1| 0 0 123 93 79 77 FWHM=1|10 0 147 104 84 78
FWHM=2| 0 0 73 64 56 53 FWHM=2| 2 0 96 74 63 56
FWHM=3| 0 0 62 55 50 45 FWHM=3| 1 0 80 66 57 51
FWHM=4| 0 0 57 51 47 44 FWHM=4] 1 0 72 61 54 48
FWHM=5| 0 0 52 47 44 43 FWHM=5| 1 0 66 57 51 45
FWHM=6| 0 0 47 43 40 40 FWHM=6| 0 0 62 53 46 42

MultiMAD

InvShrink

WaveJS

222

Hybnd MinMax

W |

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThrgsh(sFWHM =1

22"

FWHM =3 FWHM =4

FWHM =5

Fig. 17. Statistical parametric maps of the area surrogntlie active spot.

The original images contained white noise with a spatial SMR1dB.

22(2/2(2

Hybrid InvShrink WaveJS MultiMAD MinMax

22222

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThrgsh(sFWHM =1

22%%%

FWHM =3 FWHM =4 FWHM =6

FWHM =2 FWHM =5

Fig. 18. Statistical parametric maps of the area surrognthie active spot.

The original images containet)/ f noise with a spatial SNR of 11dB.

MultiMAD MinMax

=
VisuThrgsh(sFWHM =1

WaveJS

Hybnd InvShrink

SUREThresh(h) SUREThresh(s) VisuThresh(h)

FWHM = 3

FWHM =2 FWHM =4 FWHM =5

FWHM =6

Fig. 19. Statistical parametric maps of the area surrogntlie active spot.
The original images contained white noise with a spatial SXR4dB.

202[2]2[%2

MultiMAD

Hybrid InvShrink WavelS

SUREThresh(h) SUREThresh(s) VisuThresh(h)

FWHM=3  FWHM=4

MinMax

VisuThrgsh(sFWHM =1

FWHM =2 FWHM =5

FWHM =6

Fig. 20. Statistical parametric maps of the area surrogntlie active spot.
The original images containet)/ f noise with a spatial SNR of 14dB.

As in the case of the simulated time series, the active spessta
an elliptic shape for Gaussian smoothing with large FWHMBe T
spots detected from the data sets denoised with MinMaxhhres
and SUREThresh look very similar, and those found with WayeJ
InvShrink, and VisuThresh(h) are also similar. HybridBireMulti-
MAD and VisuThresh(s) yield rather different maps. Afteraathing
with a Gaussian kernel with an FWHM ofx%x5.5 mn?, the de-
tected spot resembles the ones found after InvShrink angMiesh
with hard thresholding. The other smoothing kernels yietéily
deformed maps and show active spots very different from tiein
the reference image.

IX. CONCLUSIONS

We have compared wavelet denoising and Gaussian smoothing i
the context of functional MRI in three setting$) 2D images andii()
time series of 2D images, both contaminated by whité 6f noise
with a known SNR, andii{) a real fMRI data set with an unknown
noise type and SNR. The noise in BOLD images was described as
the difference of two MR images containing Rician noise, shown
to have a Gaussian-like distribution. The denoising methagre
compared with respect to SNR improvement, effect on the eslodp
activated regions, and the effect on the quality of statibparametric
maps. In contrast to most previous wavelet-based denossingmes,
we have chosen to do the subsequent statistical analydie ispatial
domain. This allowed us to directly compare the results afissan
and wavelet-based methods.
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Fig. 21. Activation detected by the SPM method in the origiiRI time
series, after FDR thresholding with the FDR parameter set+£00.05.

HybridThresh WaveJS InvShrink MultiMAD
MinMax SUREThresh(h) SUREThresh(s) VisuThresh(h)

VisuThresh(s) FWHM = %5 FWHM =10x10 FWHM =15x15

Fig. 22. Activation detected with the SPM method in the dsedifMRI
time series, after FDR thresholding with the FDR paramegéitsg = 0.05.

A discriminating characteristic of all tested denoisingtinaeels is
the amount of smoothing they introduce. This characteriptays
a significant role in the applicability of the methods. Whée t

input SNR is very low, denoising schemes that produce sneooth [5]

images are preferred, and the gain in SNR is highest. Howetem
the images have moderate to high SNRs, these denoising eshe

change the shapes of objects in the images. The more smgothin

is introduced, the heavier the deformation, and in this dass
smoothing wavelet-based denoising methods are prefe@adssian

smoothing may be the best choice for SNRs which are too low eve

for smoothing wavelet-based methods, but the resulting SNy
still not be high enough for a reliable analysis.

The experiment with artificial time series showed that ali@sing
schemes have an effect on the shape of the activation sposs@aa
smoothing and the more smoothing wavelet-based methodslirte
severe deformations and blur the edges of the active spotudae

spatial maps of the temporal SNR as a diagnostic to compare th

denoising methods. Segmentations based on the temporah@&R
showed that heavy smoothing obscures the border regionseof
active spot, introducing false negatives, while for low SNRe less
smoothing methods lead to false positives. In the interatedsNR
range, wavelet methods generally show smaller numbers rofser

than Gaussian smoothing. The same was observed in thaisahtis[

analysis. Via plots of the distribution gf-values under the null
hypothesis, we have shown that after the less smoothing letave

1

based denoising methods and after modest Gaussian snmdiirI
data do not violate the assumption of normally distributeahgoral
noise. All tested denoising method preserved the PRDS psopé
fMRI data, which allowed us to use the favourable- 1 setting for
the FDR controlling procedure.

For the real fMRI data set, only the smallest Gaussian snmpth
kernel yielded reliable results. The wide smoothing kesngkld
much larger detected areas (meaning more type | errorspritrast
to those obtained via less smoothing wavelet denoising adsth

Summarising all of these results, wavelet denoising mettbet
introduce relatively little smoothness are generally gratble over
Gaussian smoothing for denoising fMRI time series. In patfdr,
InvShrink, MinMaxThresh or SUREThresh (h) are safe choi€es
low SNRs, the methods MultiMAD and SUREThresh (s) are best
applied.

We expect to find similar results for PET data, although tleeee
differences with fMRI regarding noise models and the SNR.dide
not usetemporaldenoising of the time series in this study, but wavelet
denoising may prove a good alternative to smoothing in timevell.
This will be the subject of future work.
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