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Abstract— We present a general wavelet-based denoising scheme for
functional magnetic resonance imaging (fMRI) data and compare it to
Gaussian smoothing, the traditional denoising method usedin fMRI
analysis. One-dimensional WaveLab thresholding routineswere adapted
to two-dimensional images, and applied to 2D wavelet coefficients. To
test the effect of these methods on the signal-to-noise ratio (SNR), we
compared the SNR of 2D fMRI images before and after denoising, using
both Gaussian smoothing and wavelet-based methods. We simulated a
fMRI series with a time signal in an active spot, and tested the methods
on noisy copies of it. The denoising methods were evaluated in two ways:
by the average temporal SNR inside the original activated spot, and
by the shape of the spot detected by thresholding the temporal SNR
maps. Denoising methods that introduce much smoothness arebetter
suited for low SNRs, but for images of reasonable quality they are not
preferable, because they introduce heavy deformations. Wavelet-based
denoising methods that introduce less smoothing preserve the sharpness
of the images and retain the original shapes of active regions. We
also performed statistical parametric mapping (SPM) on thedenoised
simulated time series, as well as on a real fMRI data set. False discovery
rate control was used to correct for multiple comparisons. The results
show that the methods that produce smooth images introduce more false
positives. The less smoothing wavelet-based methods, although generating
more false negatives, produce a smaller total number of errors than
Gaussian smoothing or wavelet-based methods with a large smoothing
effect.

Index Terms— Functional neuroimaging, wavelet-based denoising,
Gaussian smoothing, statistical parametric mapping, false discovery rate
control.

I. I NTRODUCTION

Functional neuroimages often need preprocessing before being
subjected to statistical analysis. A common preprocessingstep is
denoising, which is usually done via Gaussian smoothing. Smoothing
suppresses noise, but it also changes the intensity variation of
the underlying image. This suppresses, or even removes, detailed
features of the original image. In this paper, we study wavelet-based
denoising as a possible alternative to Gaussian smoothing.Wavelet-
based denoising has the advantage over low-pass filtering that relevant
detail information is retained, while small details, due tonoise, are
discarded. The performance of both approaches is compared with
respect to (i) the improvement of the signal-to-noise ratio (SNR), (ii )
the preservation of the shapes of active regions during the denoising
process, and (iii ) the improvement in the statistical analysis via
statistical parametric mapping (SPM).

The focus of this paper is on functional magnetic resonance
imaging (fMRI) time series. In an fMRI experiment, a person lying
inside an MRI scanner is asked to perform a certain task whilea
series of scans of the brain are made. Brain regions involvedin this
task show increased concentrations of oxygenated blood, inducing
local signal changes [1]. These signal changes are referredto as the
blood oxygenation level dependent (BOLD) contrast, and detecting
and characterising these changes is the main goal of fMRI time series
analysis.

Most of the standard statistical tests assume Gaussian distributed
noise. However, in the MR literature, noise in MR images is shown
to be Rician distributed [2]. We analyse the BOLD contrast asthe
difference between two MR images (active minus baseline) both
containing Rician distributed noise, and show that the distribution
of BOLD noise is a close approximation of a Gaussian distribution.
Thus, the standard tests requiring normally distributed noise can still
be used.

The use of wavelets for the statistical analysis of fMRI and positron
emission tomography (PET) studies is not new. Feilner et al.[3]
use the wavelet transforms of difference images constructed from
epoch-related fMRI experiments. Assuming a normal distribution of
values in the difference images, activation is found by applying a
t-test to the wavelet coefficients, using Bonferroni correction for
multiple testing. The statistical map is found by applying the inverse
wavelet transform. Ruttimann et al. [4] follow a similar approach.
Their algorithm performs a two-stage test in the wavelet domain. The
first test analyses the wavelet coefficients per direction channel: the
coefficients are ordered by resolution and by direction (horizontal,
vertical, and diagonal). It assumes the cumulative energy in each
direction channel to beχ2-distributed. All coefficients in a direction
channel at a certain resolution are discarded if its cumulative energy
is lower than the value predicted via thisχ2-distribution. The second
test thresholds the wavelet coefficients in the remaining channels
individually via a two-sidedz-test. Both the channelwise test and
the voxelwise test use the Bonferroni correction for multiple testing.
The inverse wavelet transform is applied to the output of thesecond
test, yielding an activation map. Raz et al. [5] perform an analysis
of variance (ANOVA) in the wavelet domain, by thresholding the
wavelet coefficients according to their score in a statistical test. The
testing is done blockwise: at the lowest resolution, each coefficient
is a block, and at higher resolutions the same number of blocks is
used. The false discovery rate (FDR) is used to correct for multiple
testing. Hilton et al. [6] use a wavelet-based denoising procedure
known from the WaveLab project [7], an open source collection
of wavelet routines, and compare this to their own data analytic
thresholding procedure. The denoised time series are subjected to
statistical testing by means of a voxelwiset-test. Turkheimer et al.
[8] model PET images in wavelet space by applying statistical models
to the frame-by-frame wavelet transformations of PET time series.

The main novelty of this paper is an extensive comparison of
wavelet-based denoising and Gaussian smoothing, which is the stan-
dard denoising tool for functional neuroimages. All wavelet-based
denoising methods mentioned above except Hilton’s [6] perform
the ensuing statistical tests in the wavelet domain. We favour the
approach used by Hilton et al. for two reasons. First, performing a
statistical test in the original domain enables a comparison between
the wavelet-based methods and Gaussian smoothing as preprocessing
steps. The statistical analysis process is exactly the samefor all data
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sets and can be kept outside the discussion. Secondly, performing
the statistical test in the wavelet domain requires an inverse wavelet
transform afterwards, which spreads out the activation in the final
statistical map. Whether or not another threshold is neededon this
map before display is questionable. Separating the denoising and the
statistical analysis has another advantage. The data sets used in this
study only require a simple statistical test, but most recent fMRI
experiments often require much more complex procedures. Itis not
likely that all these tests can be done in the wavelet domain.However,
if the denoised images are transformed back to the original domain,
this problem does not occur.

Another difference between the current study and previous pub-
lications on this subject is that we include tests on simulated time
series of which the SNRs and noise characteristics are known. Our
definition of the BOLD signal allows a very precise characterisation
of the noise in all test cases, so that the effect of each method on the
SNR can be accurately determined.

Thirdly, we simulate brain activity in the time series by superim-
posing a time signal on a selected area. From the difference between
the shape of the original active spot and the shape of the spotdetected
by statistical parametric mapping, we can make quantitative analyses
of the denoising methods in terms of false positive and falsenegative
error rates.

The remainder of this paper is organised as follows. SectionII
reviews a number of procedures to correct for multiple hypothesis
testing. Section III first describes the noise in MR images, and
introduces BOLD noise as the noise in the difference of two MR
images. In section IV, we present the wavelet-based denoising
methods available in WaveLab [7]. Adjustments have been made to
these methods, to (i) make hem suitable for processing 2D images and
(ii ) to support noise with unknown autocorrelations. These denoising
methods, as well as various degrees of Gaussian smoothing, are tested
on 2D images in section V. In sections VI and VII, the wavelet-
based and Gaussian methods are tested on an artificial time series,
and compared in terms of their effects on the temporal SNR of the
denoised time series and on the quality of the statistical parametric
map. Finally, we compare the effects of these methods in a statistical
analysis of a real fMRI data set in section VIII. Section IX contains
some general conclusions.

II. T HRESHOLDING STATISTICAL MAPS: MULTIPLE HYPOTHESES

Neuroimage analysis often entails hypothesis testing. Consider an
experiment in which a subject is asked to perform a task while
being recorded by the MRI scanner. The null hypothesisH0 states
that a brain region is not involved in that task. There may be
more than one alternative hypothesis, indicating different patterns of
activity. In general, rejectingH0 means that brain activation related
to the experiment has been detected. If a large number of hypothesis
tests are done simultaneously, the expected number of rejected null
hypotheses increases. This introduces the risk of false positives, also
called type I errors (see Table I).

TABLE I
CLASSIFICATIONS AND MISCLASSIFICATIONS IN STATISTICAL TESTS.

inactive voxel active voxel
keepH0 correct type II error
reject H0 type I error correct

Statistical parametric mapping (SPM, [9]) is the common method
to analyse functional neuroimages. SPM is based on the general linear
model, which states that the response in an fMRI experiment can be

written as a weighted sum of explanatory signals. Let the matrix
Y [T×N ] denote the fMRI data measured in the experiment, where
each matrix elementyij denotes the value measured at timei =
1, . . . , T and voxel locationj = 1, . . . , N . According to the general
linear model,

Y = Xβ + e, (1)

where X [T×M] is a matrix, called the design matrix, whoseM
column vectors are the signals that represent the modelled effects,
called the explanatory variables. The row vectors of the matrix
β[M×N ] are the weighting factors for those signals, and the values
in the matrixe[T×N ] are the residual errors of each voxel in each
scan. A least-squares estimateb for β is given by(XT X)−1XT Y .
Given a model ofe, the significance of the coefficients ofb, and thus
of the modelled effects, can be found in each voxel via hypothesis
testing.

A statistical parametric map ofN voxels consists of thep-values
pi, 1 ≤ i ≤ N . Given a distribution of outcomes, ap-value is
the probability of getting an outcome at least as extreme as the one
observed when the null hypothesisH0 is correct. The SPM method
allows for many statistical tests (t-tests, analysis of (co-)variance,
regression analysis). In this paper, we will only discuss the one-
samplet-test. The temporal noise in fMRI data sets is assumed to be
Gaussian distributed,N(µ, σ2). The null hypothesisH0 states that
µ = 0. We test for increased activation, which means that we perform
a one-sided test:H1 states thatµ > 0. We do not know the realσ2 of
the temporal noise distribution, so it must be estimated viathe sample
variances2, which can be computed using the residual time signals
in e. Using this estimate, we can test for increased activation via
the t-test. BOLD contrasts are constructed as linear combinations of
rows of b (each of which is an image ofN voxels), and their values
are t-distributed. The relation betweenp-values andt-values is as
follows. If a t-value in the BOLD contrast is in the upperα % of the
distribution, it p-value is belowα. In other words: a smallp-value
provides strong evidence against the null hypothesis. Active voxels
are those withp-values below a significance levelα. For one test,α
is the probability of erroneously rejectingH0.

Testing multiple independent hypotheses with the same signifi-
cance levelα leads to false positives. For one test, a level of0.05
is acceptable, but forN simultaneous tests, approximately0.05 N
detected activations will be false positives. Simultaneous tests deal
with the ‘omnibus’ null hypothesis [10], which states that there is
no activation in any of the individual tests. Testing the omnibus null
hypothesis at levelα can be used to decide if there is activity in the
image, but not where it is. The omnibus null hypothesis is said to
have weak type I error control.

One way to deal with this is Bonferroni correction, where the
significance levelα is replaced byα/N . This guarantees that the
proportion of false positives does not exceedα in any subset of the
simultaneous tests. Bonferroni is therefore said to have strong type I
error control [11], meaning that rejectingH0 in a certain region in
the brain is evidence for activation in that very region. Bonferroni
correction not only affects the number of type I errors: reducing the
probability of rejecting the omnibus null hypothesis also affects the
number of true positives. This introduces false negatives,or type II
errors (see Table I). For fMRI signals, which are spatially correlated,
Bonferroni correction may be too conservative.

In most neuroimage analysis programs that use the SPM method
for the statistical part of the analysis, images are smoothed with
Gaussian filters [12]. The motivation for this is twofold: (i) it
increases the signal-to-noise ratio (SNR), and (ii ) it controls the
smoothness of the noise in the images when viewed as a lattice
representation of a continuous, stationary Gaussian random field
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(GRF). In order to use GRF theory, smoothing may be necessary
to bring the data more into agreement with the model assumptions.
Once the smoothness of an image is known or controlled via filtering,
threshold values for statistical maps can be computed usingthe Euler
characteristic of Gaussian random fields to correct for multiple testing
[13], [14]. The method has strong type I error control. This approach
has two drawbacks. Firstly, even after filtering, the noise in the
smoothed images often still differs from a GRF. Noise and signal
are smoothed together, so smoothing makes it even more difficult
to separate signal from noise. The underlying image is not likely to
represent a continuous GRF, so the corrected threshold is likely to
be biased. This will influence all correctedp-values. This problem
is even more serious when the smoothing kernel has another full
width at half maximum (FWHM) than the intrinsic FWHM of the
underlying images. Secondly, the smoothing process suppresses and
removes details in the images. This hampers the detection ofdetailed
regions during subsequent analysis.

The false discovery rate (FDR) is another alternative for multiple
test correction, that is also applied in functional neuroimaging [11].
It does not require spatial smoothness. The FDR is defined as
the expected proportion of false positives among the rejected null
hypotheses [15]:

FDR = E

„

#type I errors (= #false positives)
#H0 rejected (= #detections),

«

(2)

E denoting expectation, and is identical to0 when#detections= 0.
The following algorithm results in an FDR approximately equal to q,
with 0 ≤ q ≤ 1. Given N voxels withp-valuesp1, . . . , pN and an
FDR parameterq, an FDR-controlling threshold selection procedure
is given by:

1: define

η(N) =



1, when thep-values are uncorrelated
PN

i=1
1/i, otherwise

2: order thep-values so thatpi ≤ pi+1 for every0 < i < N ;
3: let r be the largesti for which pi ≤ qi/Nη(N);
4: reject the null hypotheses of the voxels withpi ≤ pr

This method has weak type I error control. Notice that, whenη(N) =
1, the graph ofqi/N vs. i is a straight line from(1, q/N) to (N, q),
and thatq/N andq correspond to the Bonferroni-corrected threshold
and the ‘omnibus’ threshold, respectively. Ifη(N) =

PN

i=1
1/i, the

method is much more conservative [11], so theη(N) = 1 option is
preferable if it is allowed.

This correction method has a number of advantages over Bonfer-
roni correction and correction based on GRF theory. It is less conser-
vative than Bonferroni correction and it does not require smoothing,
in contrast to GRF theory. The most important advantage is its
adaptivity: the threshold is selected on the basis of the distribution of
p-values, so after hypothesis testing. Therefore, it can be applied to
any set ofp-values resulting from a statistical test. It is independent
of the type of test and the number of hypotheses, so that comparisons
between studies with equal FDRs are possible.

The valueη = 1 is not only valid for uncorrelated p-values, but
also for sets ofp-values that are positive regression dependent within
subsets (PRDS). Genovese et al. [11] explain the PRDS property
briefly, and they argue that statistical parametric maps have this
property. In section VII we discuss the distribution of thep-values
under the null hypothesis and their spatial correlation in greater detail.
A uniform distribution ofp-values under the null hypothesis proves
the validity of the statistical test. The spatial correlation of the residual
noise is tested because a time series with Gaussian noise that is
positively correlated among voxels, is PRDS [11].

(a) (b)

Fig. 1. (a) A simulated MR image. (b) A 2D nonstandard fast wavelet
transform (FWT) of (a).

III. N OISE MODELS FOR FMRI

The computation ofp-values in fMRI research is usually done with
standard tests, such as thet-test orF -test. The use of these tests is
justified by assuming the BOLD noise to be Gaussian under the null
hypothesis. In the MR literature, however, the noise in MR images is
assumed to be Rician distributed [16], [2], [17]. Rician noise differs
from Gaussian noise in that it is multiplicative instead of additive, i.e.
it depends on the signal intensity, and the probability density function
(pdf) of the noise is very asymmetric for low signal intensities.
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Fig. 2. (a) Rician pdfs for different signal intensities. Higher intensities
have noise distributions similar to a Gaussian. (b) pdfs of the difference of
two Rician distributed sets for a fixed signal intensity, with different standard
deviations. (c) Gaussian pdfs, with different standard deviations.

The difference between two images with Rician distributed noise
has a symmetric distribution (see Fig. 2). In such difference images,
the distribution of noise is very close to Gaussian noise, ascan be
seen in table II. This table shows, for each listed image size, the
meanp-values of the Kolmogorov-Smirnov (KS) test statistic on 32
images of that size, for (i) the difference between two images with
Rician noise and signal intensity one, (b) the difference between two
images with Rician noise and signal intensity five, and (c) an image
containingN(0, 1) noise. The null hypothesis of the KS test is that
the noise is normally distributed, and it is rejected if thep-value of
the KS test statistic is below 0.05. For very low signal intensities, a
deviation from Gaussianity is noticeable only in very largeimages.
We conclude that it is safe to use techniques based on the assumption
of Gaussian noise for BOLD images. For a more detailed analysis,
we refer to [18].

The BOLD effect involves spatial autocorrelation due to the
spatial extent of neuronal events, but this autocorrelation is not
exactly known [19], [20]. We tested two types of spatial correlation:
white noise, and1/f noise, which has a1/f power spectrum. The
motivation for the latter type of noise is that, due to the MR frequency
encoding, a unit pulse gets the shape of a peak with exponential
slopes [21]. Section V describes how we simulated MR noise.
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TABLE II
p-VALUES PRODUCED BY THEKS TEST FOR THE DIFFERENCE BETWEEN

IMAGES WITH RICIAN DISTRIBUTED NOISE (R), WITH SIGNAL

AMPLITUDES (A) OF 1 AND 5, AND FOR IMAGES OF THE SAME SIZE WITH

N(0, 1)-NOISE (N).

size p-value R(A=1) p-value R(A=5) p-value N
2 × 2 0.6573 0.5607 0.4569
4 × 4 0.5761 0.5565 0.4249
8 × 8 0.5511 0.5493 0.4894

16 × 16 0.5801 0.5564 0.5854
32 × 32 0.5833 0.5378 0.5946
64 × 64 0.5629 0.4869 0.4816

128× 128 0.5270 0.5426 0.5147
256× 256 0.4390 0.5554 0.5225
512× 512 0.3210 0.5219 0.4006

1024× 1024 0.0587 0.5236 0.5037

IV. WAVELET-BASED DENOISING

Wavelet bases are bases of nested function spaces, which canbe
used to analyse signals at multiple scales. Wavelet coefficients carry
both time and frequency information, as the basis functionsvary
in position and scale. The fast wavelet transform (FWT) efficiently
converts a signal to its wavelet representation [22]. In a one-level
FWT, a signal c0 is split into an approximation partc1 and a
detail part d1. In a multilevel FWT, each subsequentci is split
into an approximationci+1 and detaildi+1. For 2D images, each
ci is split into an approximationci+1 and three detail channels
d1

i+1, d2
i+1, and d3

i+1, for horizontally, vertically, and diagonally
oriented details, respectively (see Figs. 1b and 4a). The inverse FWT
(IFWT) reconstructs eachci from ci+1 anddi+1. If the wavelet basis
functions do not have compact support, the FWT is computed most
efficiently in the frequency domain. This transform and its inverse are
called the Fourier-wavelet decomposition (FWD) and Fourier-wavelet
reconstruction (FWR), respectively, see [23] for more details.

A. Wavelet bases

As it is difficult to mathematically characterise functional brain
signals, a basis with general properties is preferable. Of the common
wavelet bases, like Daubechies wavelets [24], symmlets, coiflets
[25], and splines, spline bases have been shown to possess the
best approximation properties, such as the smallestL2 error [26].
Because of their smoothness, splines are well localised in both the
frequency and time domains. Earlier studies about the use ofwavelets
in fMRI analysis [4], [27] favour the use of symmetric wavelets and
scaling functions, because they do not introduce phase distortions.
Orthogonal bases are recommended, because they transform white
noise into white noise [28]. Unser et al. have proposed an FWT
that uses fractional spline wavelets [29], [30]. Fractional splines are
splines of a real-valued degree, which can be used to producewavelet
bases. They come in many flavours, such as symmetric and causal,
orthogonal and biorthogonal.

In view of the above, symmetric, orthonormal cubic spline wavelets
(see Fig. 4b) are the best choice for this study. Symmetric, orthogonal,
smooth wavelet basis functions cannot have compact supportbut
exponential decay [31]. For this reason, we use a frequency domain
implementation via the FWD to compute the FWR.

B. Denoising images by wavelet domain thresholding

The WaveLab package by Donoho et al. [7] contains a number
of schemes for wavelet-based denoising, including HybridThresh,
InvShrink, MinMaxThresh, MultiMAD, SUREThresh, VisuShrink,

Fig. 3. The FWT and FWD of a signal are interchangeable via thefast
Fourier transform (FFT).

and WaveJS [32], [33]. These routines are based on thresholding
detail coefficients in the wavelet domain. An important characteristic
of these schemes is the amount of smoothness they introduce in the
denoised image [6].

InvShrink uses the VisuThresh threshold, which is
√

2 log N
for a vector di of detail coefficients of lengthN . The signal is
scaled before thresholding so that it has unit standard deviation. In
multilevel transforms, the height of threshold is doubled for each
subsequent level. MultiMAD also uses VisuThresh, and rescales the
di of each level so that its median absolute coefficient value is
0.6745, which is the median absolute deviation (MAD) of anN(0, 1)-
distribution. MinMaxThresh uses a minimax threshold [33],which
minimises the maximum risk. SUREThresh uses Stein’s Unbiased
Risk Estimate [32]. VisuShrink uses VisuThresh with shrinkage
of small coefficients, called soft thresholding, as the default, but
hard thresholding,i.e. removal of small coefficients, is also used.
HybridThresh uses VisuThresh for sparse vectors and SUREThresh
for dense vectors. WaveJS uses a threshold based on the James-
Stein estimate [32]. InvShrink and MultiMAD change the threshold
for each decomposition level, while MinMaxThresh, SUREThresh,
VisuShrink, HybridThresh, and WaveJS use one global threshold.

(a) (b)

Fig. 4. (a) Ordering of the approximation and detail coefficients of a two-
level 2D nonstandard FWT. (b) Symmetric orthonormal cubic spline scaling
function (top) and corresponding wavelet (bottom).

If a 1D threshold selection scheme were used in a 2D FWT,
for example by applying a 1D thresholding scheme in both spatial
dimensions, assumptions used by the WaveLab routines wouldbe
violated, because the threshold for detail coefficients would in some
cases be determined from both approximation and detail coefficients,
and in some cases from detail coefficients only (see Fig. 4a).So it is
necessary to respect the ordering of coefficients in a 2D FWT.The
WaveLab thresholding schemes are based on the assumption ofwhite
Gaussian noise. If the autocorrelation of the noise is unknown, a level-
dependent threshold should be used [34]. To meet these requirements,
we have made 2D versions of the denoising routines in which all
channels with detail coefficients (see Fig. 4a) can be thresholded
individually. Each direction channel at each resolution (each square
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in Fig. 4a) is thresholded independently using the WaveLab routines.
This setting works for each FWT of stationary noise with an unknown
autocorrelation: there is a difference in variance betweendetail
channels at different resolutions, but within each channelthere is
constant variance [34].

V. DENOISING 2D IMAGES

The BOLD contrast is defined as the difference between an MR
image of a brain with increased local activity and an image ofthe
same brain under resting conditions [35]. We used the BrainWeb
Simulator [36] to obtain a noise-free T2*-weighted MR image
template. The parameters of the simulator were as follows. Modality:
T2; voxel size: 1×1×1 mm3; Noise: 0 %; intensity non-uniformity:
0 %. The Brain Extraction Tool [37] was used to remove non-brain
voxels, by setting their intensities to 0. One slice (slice no. 108) of
this image was selected, and used as a noise-free MR brain template.

Rician noise was added to this template as follows. Letm(x)
denote the template slice, andσm its standard deviation. Two images
n1(x) andn2(x) containing i.i.d.N(0, σ2

n)-distributed noise with a
known standard deviationσn were made, and the noisy MR imagẽm
was computed as̃m(x) =

p

(m(x) + n1(x))2 + n2(x)2. The Ri-
cian distributed noise iñm, computed asr(x) = m̃(x)−m(x), has
a standard deviationσr with approximatelyσr = σn

p

2 − π/2 [2].
This approximation was used to create noisy MR images with a
known signal-to-noise ratio (SNR). The SNR of the noisy images
was computed as:

SNRm̃ = 10 log10

σm

σr

, (3)

Gaussian noise with a1/f power spectrum was produced by trans-
forming both n1 and n2 to the frequency domain and multiplying
their frequency spectra with a1/

√
f mask, yielding power spectra

with a 1/f falloff. Both the real and imaginary parts of the spectra
were multiplied, so the phase spectra did not change. Multiplication
in the frequency domain is equivalent to convolution in the spatial
domain. Because this is a linear operation, the noise distribution
in the 1/f versions of then1 and n2 images remains Gaussian.
These transformed versions ofn1 andn2 were used to obtain Rician
distributed noise with a1/f power spectrum.

The BOLD image was constructed from two of these noisy MR
images as follows:

1: create two noisy MR images̃m1 and m̃2 using the above
procedure;

2: define an ‘active region’ inside the template brain and create a
noise-free BOLD imagef0 as:

f0(x) =



1, if x is inside the active region
0, otherwise

3: add activity tom̃2 by addingc f0, wherec = 5% of the maximum
intensity of the MR template.

4: compute a BOLD imagef1 asf1(x) = m̃2(x) − m̃1(x)

The top row of Fig. 5 shows the active spot (bright area), and two
noisy images̃m1, with white and1/f noise, respectively. The bottom
row shows the noise-free BOLD image, and BOLD images with white
noise and1/f noise, respectively with an SNR of 15 dB. Because
there is hardly any signal in the noise-free BOLD image imagef0

(see Fig. 5d), the BOLD images have a much lower SNR than the
MR images used to construct them. MR images with an SNR of{5,
10, 15, 20, 25, 30, 35} dB yield BOLD images with an SNR of
{-15.2, -10.2, -5.2, -0.2, 4.8, 9.8, 14.8} dB, respectively.

For these input images, we compared wavelet-based denoising
and various degrees of Gaussian smoothing. Each of the wavelet-
based schemes started with a 2D FWT off1, computed as shown in
Fig. 4b. Symmetric orthonormal cubic spline basis functions and a

(a) (b) (c)

(d) (e) (f)

Fig. 5. Image without noise and the active spot magnified and shown in
white (a). Noisy MR images with increased intensities inside the active spot,
containing white (b) and1/f (c) Rician noise of 15 dB, respectively. The
noise-free BOLD image (d) and BOLD images created from noisyMR images
with white (e) and1/f (f) noise of 15 dB, respectively.

decomposition level of 4 were used for all tests. After denoising with
one of the methods listed in subsection IV-B, a 2D IFWT yielded the
denoised imagef2. Denoting the standard deviation of an arbitrary
imagef by σf , the following procedure was carried out for each of
the tested methods:

1: the noiseε1(x) present inf1(x) before denoising was computed
asε1(x) = f1(x) − f0(x)

2: the SNR before denoising, denoted SNR1, was computed as:
SNR1 = 10 log10

σf0

σε1

, (4)

3: the residual noiseε2(x) after denoising was obtained asε2(x) =
f2(x) − f0(x)

4: the SNR of the denoised image, denoted SNR2, was computed
as SNR2 = 10 log10

σf0

σε2

, (5)

Figure 7 shows SNR2 plotted against the input SNR of the MR
images.

(a) (b) (c) (d)

Fig. 6. Images from the 2D denoising test, each with a cross section (solid
line) of a line in the image (dotted line) plotted inside: (a)Original (f0), (b)
noisy (f1), (c) denoised (f2) with Gaussian smoothing, FWHM = 3 pixels,
(d) denoised (f2) with VisuThresh (s).

Of the Gaussian smoothing methods, the wider kernels perform
better for low input SNRs, and smaller kernels perform better
for higher input SNRs. The maximum input SNR where Gaussian
smoothing still shows SNR improvement decreases as the filter width
increases. Figs. 7a+c show that even for Gaussian smoothingwith an
FWHM of one pixel, the maximum output SNR is about 7 dB.

The wavelet methods perform as well as Gaussian smoothing for
low SNRs, and better than Gaussian smoothing for higher SNRs.
All wavelet-based methods show maximum output SNRs above 10
dB. For white noise and low SNRs, there is a marked differencein
output SNRs. HybridThresh, InvShrink, MultiMAD, and VisuThresh
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with both hard (h) and soft (s) thresholding increase the SNR
most. WaveJS, MinMaxThresh, and SUREThresh (both h and s)
thresholding increase the SNR less. For higher SNRs the differences
are smaller, but InvShrink, WaveJS, SUREThresh (h), and VisuThresh
(s) now produce visibly lower SNRs. There is another difference
between these methods: The images produced by HybridThresh,
WaveJS, and VisuThresh (s) smear the active spot out much more
than the other methods do. We refer to these schemes as ‘smoothing
wavelet methods’. MinMaxThresh and SUREThresh (both h and s)
produce sharp output images. The other methods produce images of
intermediate smoothness. In general, the smoothing wavelet methods
perform better for low input SNRs, but the less smoothing wavelet
methods are better when the input SNR is higher. In this experiment
SUREThresh (h) performs bad with a low input SNR, but with both
noise types it performs best for higher input SNR.

white noise, Gaussian smoothing white noise, wavelet denoising

1/f noise, Gaussian smoothing 1/f noise, wavelet denoising

Fig. 7. Performance of various wavelet denoising schemes, and Gaussian
smoothing for several values for the FWHM parameter. The SNRof the
denoised image is plotted against the SNR of the noisy image.

The differences in performance is smaller for1/f noise than
for white noise. This holds for the wavelet methods as well as
for Gaussian smoothing. For all wavelet methods except InvShrink,
WaveJS, and VisuTresh(s), the output SNR is a linear function of
the input SNR: unlike Gaussian smoothing, the wavelet methods
improve the SNR of input images that already have a high SNR. This
suggests that in terms of SNR improvement, wavelets are an attractive
alternative to Gaussian smoothing. With white noise and forlow
SNRs, the less smoothing wavelet methods, such as MinMaxThresh
and SUREThresh (h and s), produce relatively lower output SNRs
than the other methods. This indicates that introducing smoothness,
thereby discarding image features, is necessary to improveimages
with very low SNRs. Of the methods mentioned above, MultiMAD
and VisuThresh(h) give good results for all tested SNRs.

VI. D ENOISING A SIMULATED TIME SERIES

In most neuroimaging applications it is not possible to separate
signal and noise, so the SNR is not known. Therefore, a simulation
study was performed in which the SNR is known a priori. We
constructed an artificial time series of 64 copies of the MR template
image of the previous experiment, and superimposed noise oneach

Fig. 8. The time signal in the active spot of the simulated time series.

image according to the procedure described in section V. A block
signalb(t) (see Fig. 8) was superimposed on the time signals at the
voxel locations inside the active region (see Fig. 5a). The sign of the
superimposed signal altered after every 8th time point. The size of
the original active region was 762 pixels.

The time series consisted of 8 blocks of 8 images: 4 blocks were
labelled ‘rest’, and 4 were labelled ‘task’. The ‘task’ blocks were
those in which the time signal is positive (see Fig. 8). The amplitude
of the time signal was set to 1% of the maximum intensity in the
MR template. Starting with the imagef0(x) from section V, we
useF0 to denote the original time series with the time signalb(t)
superimposed on it, but without the noise:

F0(x, t) =



f0(x) + b(t) in the active spot
f0(x) in the rest of the image

(6)

The noisy time seriesF1 was computed as:

F1(x, t) = F0(x, t) + ε1(x, t), (7)

whereF1 and ε1(x, t) denote the noisy time series and the value
of the input noise, respectively. A BOLD image was computed
from each individual image by subtracting the time series mean. As
demonstrated in section III, the noise distribution in suchdifference
images is approximately Gaussian. The BOLD image was denoised
using the methods from the previous section, after which thetime
series mean was added to the denoised image.

Let F2 denote the denoised time series. After denoising, we tested
each voxel locationx for the presence of the signalb(t). The residual
noiseε2 was computed as:

ε2(x, t) = F2(x, t) − f0(x) − b(t). (8)

We denote the temporal residual noise in a voxelx as a function oft
by εx

2 (t) = ε2(x, t). The temporal SNR in a voxelx after denoising
was computed as:

SNR2(x) = 10 log10

σb

σεx

2

, (9)

where σb and σεx

2
are the standard deviations ofb(t) and εx

2 (t),
respectively.

A. Effect on the temporal SNR

Figure 9 shows SNR2(x), averaged over all locationsx inside the
active spot, plotted against the input spatial SNR. The graphs for
Gaussian denoising show the same behaviour as in the 2D image
experiment,i.e. the SNR curve eventually reaches a plateau value.
The wavelet-based methods improve the temporal SNR both forlow
and high input SNR. The same relation observed in the previous
experiment between smoothness of the output image and the output
SNR is visible here. The smoothing wavelet methods and wide
Gaussian smoothing filters produce the highest temporal SNRs for
low input SNRs, and the less smoothing wavelet methods and narrow
Gaussian filters perform better for high input SNRs.
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white noise, Gaussian smoothing white noise, wavelet denoising

1/f noise, Gaussian smoothing 1/f noise, wavelet denoising

Fig. 9. Performance of the wavelet denoising schemes, as well as Gaussian
smoothing for six FWHM values. The average temporal SNR inside the
original active spot in the denoised image is plotted against the spatial SNR
of the noisy input image.

Hybrid InvShrink WaveJS MultiMAD MinMax

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThresh(s) FWHM = 1

FWHM = 2 FWHM = 3 FWHM = 4 FWHM = 5 FWHM = 6

Fig. 10. Temporal SNR maps (inverted) of the area around the active spot.
The original images contained white noise with a spatial SNRof 11 dB.

Hybrid InvShrink WaveJS MultiMAD MinMax

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThresh(s) FWHM = 1

FWHM = 2 FWHM = 3 FWHM = 4 FWHM = 5 FWHM = 6

Fig. 11. Temporal SNR maps (inverted) of the area around the active spot.
The original images contained1/f noise with a spatial SNR of 11 dB.

Hybrid InvShrink WaveJS MultiMAD MinMax

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThresh(s) FWHM = 1

FWHM = 2 FWHM = 3 FWHM = 4 FWHM = 5 FWHM = 6

Fig. 12. Temporal SNR maps (inverted) of the area around the active spot.
The original images contained white noise with a spatial SNRof 14 dB.

Hybrid InvShrink WaveJS MultiMAD MinMax

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThresh(s) FWHM = 1

FWHM = 2 FWHM = 3 FWHM = 4 FWHM = 5 FWHM = 6

Fig. 13. Temporal SNR maps (inverted) of the area around the active spot.
The original images contained1/f noise with a spatial SNR of 14 dB.

B. Effect on the shape of the detected spots

Apart from comparing the average temporal SNRs in the active
spot, we also look at spatial maps of temporal SNR values of the
denoised time series. Ideally, these maps should have high values
inside the active spot and low values outside it. Figures 10 -13 show
the temporal SNRs in the area containing the active spot for white
noise and1/f noise of 11 dB and 14 dB, respectively. Note that
the images were inverted (reverse video mode) for enhanced display
purposes.

Gaussian smoothing with small smoothing kernels and the smooth-
ing wavelet methods show bright spots, even for a low input spatial
SNR like 11 dB. Wider kernels, with FWHM> 3 pixels, produce
maps with a very smooth spot, which is less bright. The smoothing
wavelet methods show bright spots, while those produced by the less
smoothing wavelet methods are darker, cf. Fig. 10. The smoother the
output image, the more the shape and the SNR value distribution
of the visible spot differs from the original active spot. Temporal
SNR maps of methods that produce smooth images (both Gaussian
and wavelet-based) show spots with a somewhat elliptic shape and
a peaked (non-uniform) intensity distribution. The less smoothing
wavelet methods retain the shape of the original spot and itsuniform
intensity distribution. For noise of 14 dB, InvShrink, MinMaxThresh,
SUREThresh and Gaussian smoothing with FWHM = 1 return
almost exactly the original spot, with a very uniform distribution of
temporal SNR values. Other less smoothing wavelet methods,such
as MultiMAD and VisuThresh (h), and Gaussian smoothing with
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FWHM = 2, retain the shape of the spot quite well, with most of
the changes in the temporal SNR values near the contour of thespot.

C. Segmentation via SNR thresholding

Segmentation of MR images based on thresholding is a commonly
used technique, and it has also been used on statistical parametric
maps, see [38], [39] for examples and references. We assumedthe
temporal SNR maps to have bimodal histograms: one peak of low
values for the background and another peak of high values forthe
active spot. This assumption was used to segment the maps into a
‘non-active’ area and an ‘active’ area. We used the following steps
to determine a threshold.

1: Smooth the histogram with a moving average filter
2: Take the logarithm of each entry in the smoothed histogram
3: Model the log-histogram as the sum of two Gaussian peaks
4: Use the 99.9% level of the cumulative histogram of the left peak

as a threshold

Filtering the histogram was implemented by applying a three-tap
averaging filter ten times. Taking the logarithm was appliedto amplify
the second peak: the number of background pixels is generally much
larger than the size of the active spot, and large values decrease
more by taking their logarithm than small values. The histogram was
approximated by the sum of two Gaussian peaks with the Levenberg-
Marquardt curve fitting algorithm. The threshold was based on the
distribution of the noise.

This is a very simple method, based on a simple assumption of
the bimodality of the histogram. We demonstrate its performance
in a number of cases, with SNRs ranging from low to high. If the
temporal SNR is very low, the histogram of the temporal SNR map
is equal to the histogram of an image just containing noise. As it is
not possible to distinguish two peaks in this case, the threshold is
determined incorrectly (see Fig. 14c).

In the worst case we tested (Fig. 14a), the temporal SNR map
itself also has a very low SNR of -10 dB, and the histogram of the
SNR map has the shape of the noise distribution, so that separation
of signal and noise is not possible. The histogram in Fig. 14byields
a sensible threshold, though the noise prevents a better detection (see
Fig. 14e). Figure 14c-d show that temporal SNR maps with an SNR
of at least 0 dB can be segmented well with this technique.

(a) (b) (c)

(d) (e) (f)

Fig. 14. Six situations in which the temporal SNR threshold was determined.
Dashed line: histogram entries; solid line: log-histogram; vertical line: thresh-
old; ∗: background intensities;◦: activation intensities. BOLD images: SNR
of -10 dB (a), -5 dB (b), 0 dB (c), 5 dB (d). (e) Activation (inverted) detected
from (b), (f) activation (inverted) detected from (c).

In the experiment, we looked at two measures: the number of
false positive classifications,i.e.points outside the original active spot
labelled ‘active’, and false negative classificationsi.e. points inside
the original active spot labelled ‘non-active’.

TABLE III
NUMBER OF FALSE POSITIVE CLASSIFICATIONS FOR WHITE(LEFT) AND

1/f (RIGHT) NOISE. THE SNRMAPS WERE ASSUMED TO HAVE BIMODAL

HISTOGRAMS.

spatial SNR
method 8 11 14 17 20 23
Hybrid 767 651 356 168 74 0
InvShrink 0 1 3 0 0 0
JAMES 599 589 78 2 154 75
MultiMAD 54 123 96 9 0 0
MinMax 2 42 42 3 0 0
SURE(h) 47 0 0 0 0 0
SURE(s) 236 292 165 1 0 0
Visu(h) 52 120 95 10 0 0
Visu(s) 680 552 313 165 35 0
FWHM = 1 2 41 10 0 0 0
FWHM = 2 198 62 15 35 24 23
FWHM = 3 348 35 65 98 85 86
FWHM = 4 116 68 148 155 182 166
FWHM = 5 84 104 188 221 200 229
FWHM = 6 99 132 216 245 249 265

spatial SNR
method 8 11 14 17 20 23
Hybrid 2 114 164 150 59 0
InvShrink 17965 1 1 0 0 0
JAMES 2 107 169 21 15 85
MultiMAD 9 129 102 7 0 0
MinMax 23649 10 27 4 0 0
SURE(h) 306 0 1 0 0 0
SURE(s) 0 51 102 43 0 0
Visu(h) 0 42 76 13 0 0
Visu(s) 225 386 293 151 29 0
FWHM = 1 0 8 86 0 0 0
FWHM = 2 28 209 18 17 35 26
FWHM = 3 130 337 39 58 87 82
FWHM = 4 262 411 59 105 172 150
FWHM = 5 359 339 85 141 225 203
FWHM = 6 460 240 104 165 249 243

TABLE IV
NUMBER OF FALSE NEGATIVE CLASSIFICATIONS FOR WHITE(LEFT) AND

1/f (RIGHT) NOISE. THE SNRMAPS WERE ASSUMED TO HAVE BIMODAL

HISTOGRAMS.

spatial SNR
method 8 11 14 17 20 23
Hybrid 0 0 0 25 0 0
InvShrink 754 0 0 0 0 0
JAMES 0 0 158 202 0 0
MultiMAD 135 1 0 0 0 0
MinMax 568 1 0 0 0 0
SURE(h) 684 15 0 0 0 0
SURE(s) 2 0 0 0 0 0
Visu(h) 136 1 0 0 0 0
Visu(s) 0 0 0 0 0 0
FWHM = 1 45 0 1 374 3 158
FWHM = 2 0 37 78 18 55 54
FWHM = 3 0 144 43 15 33 27
FWHM = 4 103 124 22 28 14 22
FWHM = 5 167 116 31 21 31 22
FWHM = 6 203 123 39 30 31 28

spatial SNR
method 8 11 14 17 20 23
Hybrid 560 1 0 0 0 0
InvShrink 52 0 0 0 0 0
JAMES 313 0 0 38 3 0
MultiMAD 510 1 0 0 0 0
MinMax 63 5 0 0 0 0
SURE(h) 730 88 0 0 0 0
SURE(s) 723 1 0 0 0 0
Visu(h) 757 3 0 0 0 0
Visu(s) 10 0 0 0 0 0
FWHM = 1 759 1 0 14 101 158
FWHM = 2 80 0 78 66 18 45
FWHM = 3 14 0 125 61 34 46
FWHM = 4 6 4 160 53 25 36
FWHM = 5 4 43 162 61 19 29
FWHM = 6 3 89 185 76 27 33

Tables III and IV show the false positive and false negative
classifications, respectively. Images with spatial SNRs of8 dB do not
yield SNR maps that can be analysed in this way, because the SNRs
of the BOLD images, as well as the SNRs of the temporal SNR maps,
are too low (see the list of BOLD SNRs in section V and Fig. 14a-
b). They either yield many false positives or many false negatives.
In general, the denoising methods that introduce much smoothness
yield more false positive classifications for higher SNRs, while the
less smoothing methods yield many false negatives for the lowest
SNR. Of the wavelet-based methods, InvShrink and SUREThresh (h)
perform well for both noise types, and MultiMAD, MinMaxThresh,
and VisuThresh (h) yield good results for moderate and high SNRs.
The relatively high numbers of type II errors for Gaussian smoothing
with large FWHM relate to the blurring effect visible in Figs. 10-
13. The intensity distribution in the spot changes from uniform to
peaked, which influences detections close to the boundary ofthe spot.
InvShrink, SUREThresh (h) and Gaussian smoothing with FWHM=
1 yield good results. MultiMAD and MinMaxThresh also perform
well, the other methods yield more errors.

VII. STATISTICAL TESTS ON THE SIMULATED TIME SERIES

We also performed a standard statistical analysis on the denoised
time series with the SPM method [9]. The design matrix,X in
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(1), had two columns: a block signal like in Fig. 8 and a column
containing a constant signal to capture the time series mean. In terms
of (1), the matrixβ contained two columns, each representing an
image. The first image,β1(x), contained the covariance of the block
signal with the time signal at each locationx. Imageβ2(x) contained
the time series mean of each voxel.

Although the noise in the MR images is Rician distributed, the
noise in the BOLD image has, to very good approximation, a
Gaussian distribution, as explained in section III. If the temporal
noise is Gaussian distributed, the values inβ(x) are t-distributed.
Using the sample variances2 (see section II) we can compute a
statistical parametric map ofp-values by means of thet-test. We used
FDR correction as described in section II, with an FDR parameter
q of 0.05, to thresholdβ1. This yielded the statistically significant
activations for all denoising methods. To obtain more robust results,
this experiment was repeated 20 times and the outcomes of the
individual experiments were averaged.

Two important issues are critical to the validity of this method.
First, a t-test is only appropriate if, after denoising, the temporal
noise is still Gaussian. Second, to use theη = 1 setting described in
section II, the data is required to be PRDS. The validity of these two
assumptions is discussed in the next subsections.

A. Impact of spatial filtering on the distribution of temporal noise

The p-values resulting from a set of statistical tests are uniformly
distributed on [0,1] if the ‘omnibus’ null hypothesis is true [40]. The
sequence of orderedp-values from that set of tests should lie on
a straight line. We tested this by constructing time series similar to
those previously described, but without activation: the null hypothesis
was true for all voxels. We applied all denoising methods to these
time series and sorted thep-values acquired in the statistical analysis.
Figure 15 shows representative results of both wavelet methods
and Gaussian smoothing. Some methods produce Gaussian temporal
noise, others introduce a deviation from Gaussianity. The top row
shows that Gaussian smoothing with FWHM = 1 yields uniformly
distributedp-values under the null hypothesis, while for FWHM =
3 or higher, non-uniformly distributedp-values are obtained. The
plots in the bottom row show results for three wavelet methods. For
InvShrink and MinMaxThresh the distribution ofp-values is uniform,
but for MultiMAD it is non-uniform.

The fact that even for Gaussian smoothing the distribution of the
noise may become non-Gaussian may seem puzzling, but can be
explained by the fact that, for Rician noise, a higher intensity in the
image leads to a larger noise amplitude. This gives a kind of spatial
structure to the noise, which is observable in the (BOLD) difference
images. Denoising methods that produce smoother images change
this structure, thus introducing errors. Although the deviation from
normality varies between methods, we chose to keep all methods in
the statistical analysis, since thet-test is quite robust to deviations
from normality.

B. Positive regression dependence of thep-values

Benjamini et al. [41] show that the settingη = 1 can be used in the
FDR-controlling procedure if the data are PRDS, and that multivariate
positively correlated normally distributed data are PRDS.Genovese
et al. [11] argue that most fMRI data sets satisfy this condition.

To test the spatial correlation of the noise after applying adenoising
method, we observed the time series (without activation) ofthe
residual noise in the GLM,i.e. the e images in (1). We used the
SPMd toolbox [42] to compute a normalised residual time seriesE .
The noise in this time series wasN(0, 1)-distributed. We tested for
a positive correlation as follows. LetEx

2 (t) denote the normalised
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Fig. 15. Sortedp-values in the statistical map of denoised time series with
white noise, without activation. (a) No denoising, (b) FWHM= 1, (c) FWHM
= 3, (d) InvShrink, (e) MultiMAD, (f) MinMaxThresh. The symbols {o, x, +,
*, �} represent the time series of images with an input SNR of{5, 10, 15,
20, 25} dB.

residual time signal (the matrixe in (1)) at locationx as a function
of t. We assumed the autocorrelation function to be localised, and
for each locationx in the image, the amount of spatial correlation
a(x) was estimated by averaging the covariances of the voxel’s time
signal with those of a number of neighbouring voxels:

a(x) =
1

Nv

X

xi

cov(Ex

2 , Exi

2 ) , (10)

with xi from a small neighbourhood ofx of sizeNv (in our case,
Nv was11×11 voxels). Figure 16 shows this function for a number
of settings. The top rows show the amount of correlation found
without applying denoising. Wavelet methods introduce positive
spatial correlations for lower input SNRs, and hardly any negative
correlations for higher input SNRs. Gaussian smoothing introduces
strong positive correlations for all SNRs.

Another way to characterise the autocorrelation function is to
look at statistics of the distribution of a(x). Figure 16 and Table V
show that every denoising method changes the spatial correlations in
the residual time series. All methods, except MultiMAD, introduce
significantly more positive correlations than negative ones. Wavelet
methods change the spatial correlation much less than Gaussian
smoothing. We assume that without denoising, the residualsdo not
have significant negative correlations. In our test data (spatially white
or 1/f Gaussian noise) we know that this is the case. Because the
only significant correlations introduced by denoising are positive, the
residuals are either uncorrelated, or positively correlated in space.
These results indicate that theη = 1 setting is allowed in the
statistical tests.

C. Results

In this experiment, we investigate the effect of denoising on the
outcomes of the usual statistical analysis. In particular,we looked at
two measures: the number of false positives and the number offalse
negatives. It is important to realize that denoising has twoeffects:
first, the desired effect of noise reduction, and second, an unwanted
but unavoidable change of the shape of the active spot. In order to take
the latter effect into account, false positives/negativeswere defined
as points outside/inside theoriginal active spot (see Fig. 5d) after
denoising, which are marked ‘active’/‘inactive’ in thet-test with FDR
control (q = 0.05). These numbers are shown in Tables VI and VII.
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Fig. 16. Surface plots of the spatial autocorrelation function (top) and
histograms (bottom) of individual correlations computed in (10) of residual
time series. The original time series contained white noise. (a-e) SNR input
images ={5, 10, 15, 20, 25} dB, without denoising. (f-j) Idem, denoised
with MinMaxThresh. (k-o) Idem, after Gaussian smoothing with FWHM = 3
voxels.

False discovery rates can be obtained from this table by computing
the number of false positives, divided by the number of detections;
the latter number equals the size of active spot(=762 pixels), plus the
number of false positives, minus the number of false negatives. A
consequence of taking theoriginal active spot as a reference is that
the observed false discovery rates after denoising may exceed the5%
threshold imposed by the FDR controlling procedure.

These tables show that the smoothing methods produce more
false positives, whereas InvShrink, MinMaxThresh, SUREThresh(h),
VisuThresh(h) and Gaussian smoothing with FWHM = 1 produce
very few false positives. The other wavelet methods and Gaussian
smoothing with an FWHM of two voxels also perform well. For larger
Gaussian filters, the number of type I errors increases with the filter
width. The number of type I errors is larger for1/f noise than for
white noise. The less smoothing wavelet-based methods and Gaussian
smoothing with an FWHM of one voxel produce more type II errors
than the other methods. With1/f noise, this effect is worse than
with white noise. In general, the wavelet-based methods andGaussian
smoothing with an FWHM of one voxel introduce more type II errors,
the other Gaussian filters introduces more type I errors. Figures 17
- 20 show statistical parametric maps built from the denoised time
series with white noise and1/f noise of 11dB and 14dB, respectively.
Generally, the less smoothing methods produce spots that are closest
to the original. The spots detected after InvShrink, MinMaxThresh,
and SUREThresh (h) denoising and Gaussian smoothing with an
FWHM of one voxel are closest to the original spot (see Figs. 17-
20). Because the boundary voxels are not detected, the resulting

TABLE V
M INIMAL , MAXIMAL , MEAN , AND MEDIAN VALUES AND THE STANDARD

DEVIATIONS OF THE TEMPORAL STATISTICAL CORRELATION OF VOXELS

WITH THEIR NEIGHBOURS. THE INPUT TIME SERIES CONTAINED NO

ACTIVATION , AND THE SNRWAS 15 DB. LEFT: WHITE NOISE, RIGHT: 1/f

NOISE.

statistic
method min mean max σ med
No Denoising -0.03 0.00 0.04 0.01 -0.00
Hybrid -0.05 0.00 0.07 0.02 0.00
InvShrink -0.07 0.06 0.28 0.06 0.04
WaveJS -0.04 -0.00 0.04 0.01 -0.00
MultiMAD -0.18 0.08 0.83 0.14 0.03
MinMax -0.06 -0.00 0.06 0.02 -0.00
SURE(h) -0.04 -0.00 0.04 0.01 -0.00
SURE(s) -0.05 0.00 0.07 0.02 0.00
Visu(h) -0.08 -0.00 0.10 0.02 0.00
Visu(s) -0.08 0.03 0.14 0.04 0.02
FWHM = 1 -0.03 0.03 0.12 0.03 0.03
FWHM = 2 0.01 0.20 0.35 0.06 0.20
FWHM = 3 0.15 0.39 0.57 0.09 0.40
FWHM = 4 0.25 0.55 0.74 0.12 0.58
FWHM = 5 0.32 0.66 0.85 0.13 0.70
FWHM = 6 0.34 0.74 0.91 0.13 0.80

statistic
method min mean max σ med
No Denoising -0.04 0.04 0.12 0.03 0.04
Hybrid -0.02 0.07 0.19 0.04 0.06
InvShrink -0.01 0.18 0.51 0.10 0.16
WaveJS -0.04 0.05 0.13 0.03 0.04
MultiMAD -0.16 0.13 0.88 0.16 0.09
MinMax -0.03 0.05 0.16 0.04 0.04
SURE(h) -0.04 0.04 0.13 0.03 0.04
SURE(s) -0.02 0.07 0.19 0.04 0.06
Visu(h) -0.03 0.05 0.19 0.04 0.05
Visu(s) -0.03 0.12 0.34 0.07 0.11
FWHM = 1 0.02 0.16 0.32 0.05 0.15
FWHM = 2 0.13 0.37 0.57 0.09 0.37
FWHM = 3 0.26 0.53 0.73 0.12 0.55
FWHM = 4 0.29 0.65 0.84 0.14 0.67
FWHM = 5 0.35 0.73 0.93 0.15 0.78
FWHM = 6 0.36 0.79 0.96 0.14 0.86

TABLE VI
NUMBER OF TYPEI ERRORS IN THESPMANALYSIS WITH FDR CONTROL

(q = 0.05) FOR WHITE (LEFT) AND 1/f (RIGHT) NOISE.

spatial SNR
method 8 11 14 17 20 23
Hybrid 105 161 12 14 10 7
InvShrink 35 37 3 1 4 24
JAMES 114 199 13 14 14 10
MultiMAD 206 234 27 19 20 15
MinMax 53 71 2 1 1 0
SURE(h) 28 29 3 0 0 0
SURE(s) 77 119 6 5 5 9
Visu(h) 80 109 4 4 5 3
Visu(s) 477 519 55 68 62 46
FWHM = 1 49 99 10 7 7 8
FWHM = 2 162 250 13 13 14 16
FWHM = 3 299 400 18 23 29 36
FWHM = 4 431 536 30 47 63 74
FWHM = 5 563 671 60 100 127 145
FWHM = 6 689 798 122 178 210 230

spatial SNR
method 8 11 14 17 20 23
Hybrid 1400 1047 164 100 52 25
InvShrink 35 47 3 1 6 28
JAMES 1037 853 69 29 21 13
MultiMAD 278 238 27 23 19 15
MinMax 102 116 5 5 8 3
SURE(h) 30 17 2 0 0 0
SURE(s) 553 494 48 41 28 25
Visu(h) 268 226 22 20 17 12
Visu(s) 1178 900 177 175 135 79
FWHM = 1 75 138 8 7 8 8
FWHM = 2 277 327 13 14 16 19
FWHM = 3 476 510 24 30 38 41
FWHM = 4 668 673 53 68 77 85
FWHM = 5 864 828 116 139 152 165
FWHM = 6 1060 975 202 225 239 248

active spot is smaller than the original (type II errors). HybridThresh,
WaveJS, and VisuThresh(s) and all the Gaussian smoothing methods
produce larger spots (type I errors).

VIII. S TATISTICAL TESTS ON A REAL FMRI DATA SET

To test the denoising methods on real data, we used an example
fMRI data set provided by the Dartmouth Brain Imaging Center[43].
This is a recording of an experiment in which a subject was scanned
for 4 minutes with a TR of 2000 ms. The subject’s condition
switched every 30 s (15 scans) between ‘rest’ and ‘task’, starting
with ‘rest’. During the ‘task’ periods, the subject had to perform
an object manipulation task. The data set consists of 120 volumes
with a resolution of 64×64×27 voxels. Each voxel has a volume of
3.75×3.75×5.50 mm3.

The 3D volumes, each consisting of 27 axial planes of 64×64
voxels, were transformed plane-by-plane to the wavelet domain. The
decomposition level was set to 4. Denoising was done by both the
wavelet-based methods and Gaussian smoothing. For the latter we
used smoothing kernels of 5×5×5.5 mm3, 10×10×5.5, and mm3,
15×15×5.5 mm3. We compared the activation images, using the
activation map of the original data without preprocessing (see Fig. 21)
as a reference: the shape of the active region detected afterdenoising
should not differ too much from that detected from the original
time series. The data underwent the same statistical analysis as the
simulated time series. Figure 22 shows the voxels in a selected plane
whose t-statistic was above the FDR threshold, for all denoising
methods, overlayed on the first image of the original time series.
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TABLE VII
NUMBER OF TYPE II ERRORS IN THESPMANALYSIS WITH FDR

CONTROL (q = 0.05) FOR WHITE (LEFT) AND 1/f (RIGHT) NOISE.

spatial SNR
method 8 11 14 17 20 23
Hybrid 0 0 67 70 85 112
InvShrink 3 0 168 139 122 113
JAMES 0 0 72 71 77 84
MultiMAD 5 0 163 151 136 123
MinMax 9 0 179 157 137 123
SURE(h) 72 0 198 164 140 125
SURE(s) 0 0 121 114 113 112
Visu(h) 5 0 163 151 136 123
Visu(s) 0 0 78 82 92 97
FWHM = 1 0 0 123 93 79 77
FWHM = 2 0 0 73 64 56 53
FWHM = 3 0 0 62 55 50 45
FWHM = 4 0 0 57 51 47 44
FWHM = 5 0 0 52 47 44 43
FWHM = 6 0 0 47 43 40 40

spatial SNR
method 8 11 14 17 20 23
Hybrid 9 0 131 101 107 109
InvShrink 17 0 175 144 124 114
JAMES 2 0 119 91 83 91
MultiMAD 15 1 169 153 137 123
MinMax 33 0 191 161 139 123
SURE(h) 76 0 191 166 140 124
SURE(s) 8 0 155 129 119 115
Visu(h) 24 1 183 157 138 122
Visu(s) 1 0 102 95 97 101
FWHM = 1 10 0 147 104 84 78
FWHM = 2 2 0 96 74 63 56
FWHM = 3 1 0 80 66 57 51
FWHM = 4 1 0 72 61 54 48
FWHM = 5 1 0 66 57 51 45
FWHM = 6 0 0 62 53 46 42

Hybrid InvShrink WaveJS MultiMAD MinMax

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThresh(s) FWHM = 1

FWHM = 2 FWHM = 3 FWHM = 4 FWHM = 5 FWHM = 6

Fig. 17. Statistical parametric maps of the area surrounding the active spot.
The original images contained white noise with a spatial SNRof 11dB.

Hybrid InvShrink WaveJS MultiMAD MinMax

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThresh(s) FWHM = 1

FWHM = 2 FWHM = 3 FWHM = 4 FWHM = 5 FWHM = 6

Fig. 18. Statistical parametric maps of the area surrounding the active spot.
The original images contained1/f noise with a spatial SNR of 11dB.

Hybrid InvShrink WaveJS MultiMAD MinMax

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThresh(s) FWHM = 1

FWHM = 2 FWHM = 3 FWHM = 4 FWHM = 5 FWHM = 6

Fig. 19. Statistical parametric maps of the area surrounding the active spot.
The original images contained white noise with a spatial SNRof 14dB.

Hybrid InvShrink WaveJS MultiMAD MinMax

SUREThresh(h) SUREThresh(s) VisuThresh(h) VisuThresh(s) FWHM = 1

FWHM = 2 FWHM = 3 FWHM = 4 FWHM = 5 FWHM = 6

Fig. 20. Statistical parametric maps of the area surrounding the active spot.
The original images contained1/f noise with a spatial SNR of 14dB.

As in the case of the simulated time series, the active spot takes
an elliptic shape for Gaussian smoothing with large FWHMs. The
spots detected from the data sets denoised with MinMaxThresh
and SUREThresh look very similar, and those found with WaveJS,
InvShrink, and VisuThresh(h) are also similar. HybridThresh, Multi-
MAD and VisuThresh(s) yield rather different maps. After smoothing
with a Gaussian kernel with an FWHM of 5×5×5.5 mm3, the de-
tected spot resembles the ones found after InvShrink and VisuThresh
with hard thresholding. The other smoothing kernels yield heavily
deformed maps and show active spots very different from the one in
the reference image.

IX. CONCLUSIONS

We have compared wavelet denoising and Gaussian smoothing in
the context of functional MRI in three settings: (i) 2D images and (ii )
time series of 2D images, both contaminated by white or1/f noise
with a known SNR, and (iii ) a real fMRI data set with an unknown
noise type and SNR. The noise in BOLD images was described as
the difference of two MR images containing Rician noise, andshown
to have a Gaussian-like distribution. The denoising methods were
compared with respect to SNR improvement, effect on the shape of
activated regions, and the effect on the quality of statistical parametric
maps. In contrast to most previous wavelet-based denoisingschemes,
we have chosen to do the subsequent statistical analysis in the spatial
domain. This allowed us to directly compare the results of Gaussian
and wavelet-based methods.
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Fig. 21. Activation detected by the SPM method in the original fMRI time
series, after FDR thresholding with the FDR parameter set toq = 0.05.

HybridThresh WaveJS InvShrink MultiMAD

MinMax SUREThresh(h) SUREThresh(s) VisuThresh(h)

VisuThresh(s) FWHM = 5×5 FWHM = 10×10 FWHM = 15×15

Fig. 22. Activation detected with the SPM method in the denoised fMRI
time series, after FDR thresholding with the FDR parameter set to q = 0.05.

A discriminating characteristic of all tested denoising methods is
the amount of smoothing they introduce. This characteristic plays
a significant role in the applicability of the methods. When the
input SNR is very low, denoising schemes that produce smoother
images are preferred, and the gain in SNR is highest. However, when
the images have moderate to high SNRs, these denoising schemes
change the shapes of objects in the images. The more smoothing
is introduced, the heavier the deformation, and in this caseless
smoothing wavelet-based denoising methods are preferred.Gaussian
smoothing may be the best choice for SNRs which are too low even
for smoothing wavelet-based methods, but the resulting SNRmay
still not be high enough for a reliable analysis.

The experiment with artificial time series showed that all denoising
schemes have an effect on the shape of the activation spot. Gaussian
smoothing and the more smoothing wavelet-based methods introduce
severe deformations and blur the edges of the active spot. Weused
spatial maps of the temporal SNR as a diagnostic to compare the
denoising methods. Segmentations based on the temporal SNRmaps
showed that heavy smoothing obscures the border regions of the
active spot, introducing false negatives, while for low SNRs the less
smoothing methods lead to false positives. In the intermediate SNR
range, wavelet methods generally show smaller numbers of errors
than Gaussian smoothing. The same was observed in the statistical
analysis. Via plots of the distribution ofp-values under the null
hypothesis, we have shown that after the less smoothing wavelet-

based denoising methods and after modest Gaussian smoothing, fMRI
data do not violate the assumption of normally distributed temporal
noise. All tested denoising method preserved the PRDS property of
fMRI data, which allowed us to use the favourableη = 1 setting for
the FDR controlling procedure.

For the real fMRI data set, only the smallest Gaussian smoothing
kernel yielded reliable results. The wide smoothing kernels yield
much larger detected areas (meaning more type I errors), in contrast
to those obtained via less smoothing wavelet denoising methods.

Summarising all of these results, wavelet denoising methods that
introduce relatively little smoothness are generally preferable over
Gaussian smoothing for denoising fMRI time series. In particular,
InvShrink, MinMaxThresh or SUREThresh (h) are safe choices. For
low SNRs, the methods MultiMAD and SUREThresh (s) are best
applied.

We expect to find similar results for PET data, although thereare
differences with fMRI regarding noise models and the SNR. Wedid
not usetemporaldenoising of the time series in this study, but wavelet
denoising may prove a good alternative to smoothing in time as well.
This will be the subject of future work.
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