
A GENERAL ALGORITHM FOR COMPUTING DISTANCETRANSFORMS IN LINEAR TIMEA. MEIJSTER,� J.B.T.M. ROERDINKy and W.H. HESSELINKyUniversity of GroningenP.O. Box 800, 9700 AV Groningen, The Netherlandsemail: a.meijster�r
.rug.nl, froe,wimg�
s.rug.nlAbstra
t. A new general algorithm for 
omputing distan
e transforms of digital imagesis presented. The algorithm 
onsists of two phases. Both phases 
onsist of two s
ans, aforward and a ba
kward s
an. The �rst phase s
ans the image 
olumn-wise, while the se
ondphase s
ans the image row-wise. Sin
e the 
omputation per row (
olumn) is independent ofthe 
omputation of other rows (
olumns), the algorithm 
an be easily parallelized on sharedmemory 
omputers. The algorithm 
an be used for the 
omputation of the exa
t Eu
lidean,Manhattan (L1 norm), and 
hessboard distan
e (L1 norm) transforms.1. Introdu
tionDistan
e transforms play an important role in many morphologi
al image pro-
essing appli
ations. They have been extensively studied and used in 
omputa-tional geometry, image pro
essing, 
omputer graphi
s and pattern re
ognition,e.g., [1{3,7℄. The two-dimensional distan
e transform 
an be des
ribed as fol-lows. Let B be a set of grid points taken from a re
tangular grid of size m�n.The problem is to assign to every grid point (x; y) the distan
e to the nearestpoint in B. If we use the Eu
lidean metri
 for 
omputing distan
es, and repre-sent B by a boolean array b[�; �℄, we thus want to 
ompute the two dimensionalarray dt[x; y℄ =pEDT (x; y), whereEDT(x; y) = MIN(i; j : 0 � i < m ^ 0 � j < n ^ b[i; j℄ : (x� i)2 + (y � j)2):Here we use the notation MIN(k : P (k) : f(k)) for the minimal value of f(k)when k ranges over all values that satisfy P (k).Sin
e the exa
t Eu
lidean distan
e transform is often regarded as too 
om-putationally intensive, several algorithms have been proposed that use somemask whi
h is swept over the image in two s
ans, to 
ompute approximationslike the Manhattan (
ity-blo
k) distan
e, the 
hessboard distan
e, or 
hamferdistan
es (see [1{3, 7℄). The time 
omplexity is linear in the number of pix-els of the image (i.e. O(m � n)), but it does not yield the exa
t Eu
lideandistan
e, whi
h is required for some appli
ations. Another drawba
k of thesealgorithms is that they are hard to parallelize for parallel 
omputers sin
e pre-viously 
omputed results are propagated during the 
omputation, making the� A. Meijster works at the Computing Centre of the University of Groningen.y J.B.T.M. Roerdink and W.H. Hesselink work at the Institute for Mathemati
s and Com-puting S
ien
e.



2 A. MEIJSTER ET AL.pro
ess highly sequential. A re
ursive algorithm of order mn logm for the ex-a
t EDT is given in [5℄. In [6℄ a re
ursive algorithm of order mn for the exa
tEDT is given by redu
ing the problem to a matrix sear
h algorithm.In this paper, whi
h is based upon [4℄, we present a new algorithm thatalso 
omputes distan
e transforms in linear time, is simpler and more eÆ
ientthan [6℄, and is easy to parallelize. It 
an 
ompute the Eu
lidean (EDT), theManhattan (MDT), and the 
hessboard distan
e (CDT) transform, de�ned byEDT(x; y) = MIN(i; j : 0 � i < m ^ 0 � j < n ^ b[i; j℄ : (x� i)2 + (y � j)2);MDT(x; y) = MIN(i; j : 0 � i < m ^ 0 � j < n ^ b[i; j℄ : jx� ij+ jy � jj);CDT(x; y) = MIN(i; j : 0 � i < m ^ 0 � j < n ^ b[i; j℄ : jx� ij max jy � jj):If we de�ne the minimum of the empty set to be1, and use the rule z+1 =1for all z, we �nd with some 
al
ulationEDT(x; y) = MIN(i : 0 � i < m : (x � i)2 +G(i; y)2);MDT(x; y) = MIN(i : 0 � i < m : jx� ij+G(i; y));CDT(x; y) = MIN(i : 0 � i < m : jx� ij max G(i; y));where G(i; y) = MIN(j : 0 � j < n ^ b[i; j℄ : jy � jj).The algorithm 
an be summarized as follows. In a �rst phase ea
h 
olumnCx (de�ned by points (x; y) with x �xed) is separately s
anned. For ea
h point(x; y) on Cx, the distan
e G(x; y) of (x; y) to the nearest points of Cx \ B isdetermined. In a se
ond phase ea
h row Ry (de�ned by points (x; y) with y�xed) is separately s
anned, and for ea
h point (x; y) onRy the minimum of (x�x0)2+G(x0; y)2 for EDT, jx�x0j+G(x0; y) for MDT, and jx�x0j max G(x0; y)for CDT is determined, where (x0; y) ranges over row Ry.2. The �rst phaseThe obje
t of the �rst phase is to determine the fun
tion G. We �rst observethat we 
an split G into two fun
tions GT (top) and GB (bottom), su
h thatG(i; y) = GT(i; y) min GB(i; y), whereGT(i; y) = MIN(j : 0 � j � y ^ b[i; j℄ : y � j)GB(i; y) = MIN(j : y � j < n ^ b[i; j℄ : j � y)We start with the 
omputation of GT by introdu
ing an array g to store itsvalues. It is easy to see that GT(i; y) = 0 if b[i; y℄ holds, and that, otherwise,GT(i; y) = GT(i; y � 1) + 1 (or 1 if y = 0). We 
an therefore 
omputeg[x; y℄ := GT(x; y) using only g[x; y � 1℄ in a simple 
olumn s
an from topto bottom. Similarly, we �nd GB(i; y) = GB(i; y + 1) + 1. The se
ond s
anruns from bottom to top, and 
omputes G(x; y) dire
tly, using GT from theprevious s
an, and GB from the 
urrent one. After some simpli�
ation, thisresults in the 
ode fragment given in Fig. 1(a). Clearly, the time 
omplexity islinear in the number of pixels (i.e. O(m � n)). In a
tual implementations itis 
onvenient to repla
e 1 by m+ n, sin
e all distan
es in the images are lessthan m+ n if the set B is non-empty.



A GENERAL ALGORITHM FOR COMPUTING DISTANCE TRANSFORMS 3forall x 2 [0::m� 1℄ do(� s
an 1 �)if b[x; 0℄ theng[x; 0℄ := 0elseg[x; 0℄ := 1;endiffor y := 1 to n� 1 doif b[x; y℄ theng[x; y℄ := 0elseg[x; y℄ := 1 + g[x; y � 1℄;endif(� s
an 2 �)for y := n� 2 downto 0 doif g[x; y + 1℄ < g[x; y℄ theng[x; y℄ := (1 + g[x; y + 1℄)endifend forall(a) s
ans 1 and 2

forall y 2 [0::n � 1℄ doq := 0; s[0℄ := 0; t[0℄ := 0;for u := 1 to m� 1 do (� s
an 3 �)while q � 0 ^ f(t[q℄; s[q℄) > f(t[q℄; u) doq := q � 1;if q < 0 thenq := 0; s[0℄ := uelsew := 1 + Sep(s[q℄; u);if w < m thenq := q + 1; s[q℄ := u; t[q℄ := wend ifend ifend forfor u := m� 1 downto 0 do (� s
an 4 �)dt[u; y℄ := f(u; s[q℄);if u = t[q℄ then q := q � 1end forend forall (b) s
ans 3 and 4.Fig. 1. Program fragments for both phases.3. The se
ond phaseIn the se
ond phase we want to 
ompute EDT, MDT, or CDT row by row,i.e. for all x with �xed y. Therefore, in this se
tion we regard y as a 
onstantand omit it as a parameter in auxiliary fun
tions, and introdu
e g(i) = G(i; y).Instead of developing an algorithm for ea
h metri
 separately, we aim at a moregeneral algorithm forDT(x; y) = MIN(i : 0 � i < m : f(x; i)): (1)The 
hoi
e of the fun
tion f depends on the metri
 we wish to use, i.e.f(x; i) =8<: (x� i)2 + g(i)2 for EDT,jx� ij+ g(i) for MDT,jx� ij max g(i) for CDT.It is helpful to introdu
e a geometri
al interpretation of the minimizationproblem of Eq. (1). For any i with 0 � i < m, denote by Fi the fun
tionx 7! f(x; i) on the real interval [0;m�1℄. We 
all i the index of Fi. In the 
aseof EDT, the graph of Fi is a parabola with vertex at (i; g(i)). In the 
ase ofMDT the parabolas are repla
ed by V-shaped approximations, while in the 
aseof CDT we deal with `topped o�' V-shaped approximations (see Fig. 2). We
an interpret DT geometri
ally as the lower envelope of the 
olle
tion fFij0 �i < mg evaluated at integer 
oordinates, 
f. Fig. 2. The lower envelopes
onsist of a number of 
onse
utive 
urve segments, whose index we denote bys[0℄; s[1℄; : : : ; s[q℄ 
ounting from left to right. The proje
tions of the segments



4 A. MEIJSTER ET AL.
0 1 2 3 4 5 6 7

0

10

20

30

40

50

60

70

80

90

(a) EDT 0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

(b) MDT 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

(
) CDTFig. 2. DT as the lower envelope (solid line) of 
urves Fi, 0 � i < m (dotted lines). Thedashed verti
al lines indi
ate the transitions between regions.on the x-axis are 
alled regions, and form a partition of the interval [0;m) by
onse
utive segments. The 
omputation of DT now 
onsists of two s
ans. In aforward (left-to-right) s
an the set of regions is determined using an in
rementalalgorithm. In a ba
kward (right-to-left) s
an the values DT(x; y) are trivially
omputed for all x.We start by repla
ing the upper bound m in (1) by a variable u and de�neFL(x; u) = MIN(i : 0 � i < u : f(x; i)):The geometri
 interpretation is that we restri
t the set B to the half plane tothe left of u. Clearly, DT(x; y) = FL(x;m).For given upper bound u > 0, we de�ne an index h to be a minimizer atx if, in the expression for FL(x; u), the minimal value of f(x; i) o

urs at h.In general, x may have more than one minimizer. de�ned as the least index hwith 0 � h < u su
h that f(x; h) � f(x; i) for all i in the same range, i.e.H(x; u) = MIN(h : 0 � h < u ^ 8(i : 0 � i < u : f(x; h) � f(x; i)) : h): (2)We 
learly have FL(x; u) = f(x;H(x; u)), hen
e DT(x; y) = f(x;H(x;m)).Therefore, the problem redu
es to the 
omputation of H(x;m).We 
onsider the sets S(u) of the least minimizers that o

ur during the s
anfrom left to right, and the sets T (h; u) of points with the same least minimizerh. We thus de�neS(u) = fH(x; u) j 0 � x < mg ; (3)T (h; u) = fx j 0 � x < m ^ H(x; u) = h g if 0 � h < u:Clearly, S(u) is a nonempty subset of [0; u), and S(u) = fh jT (h; u) 6= ;g. Wede�ne the regions for u to be the sets T (h; u) that are nonempty. It is easy tosee that the regions for u form a partition of [0;m).The aim is the 
ase where u = m. Indeed, for x 2 T (h;m), we haveH(x;m) = h and hen
e DT(x; y) = f(x; h). The se
ond phase of the algorithmtherefore 
onsists of two s
ans: s
an 3 
omputes the partition of [0;m) that
onsists of the regions for m and s
an 4 uses these regions to 
ompute DT. Forgiven u, only the 
urves with indi
es from 0 to u�1 are taken into a

ount. Theminimizer of x 
orresponds to the index of the 
urve segment whose proje
tionon the horizontal axis 
ontains x. Let the 
urrent lower envelope 
onsist of



A GENERAL ALGORITHM FOR COMPUTING DISTANCE TRANSFORMS 5
0 1 2 3 4 5 6 7

0

10

20

30

40

50

60

70

80

90

(a) above 0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

(b) below 0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

(
) interse
tionFig. 3. Lo
ation of Fu (dashed 
urve) w.r.t. the lower envelope (solid line).q + 1 segments, i.e. S(u) = fs[0℄; s[1℄; : : : ; s[q℄g, with s[`℄ the index of the `-thsegment. Consider what happens when Fu is added. Three situations mayo

ur:(a) Fu is above the 
urrent lower envelope on [0;m � 1℄, 
f. Fig. 3(a). ThenS(u+ 1) = S(u), sin
e the set T (u; u+ 1) is empty.(b) Fu is below the 
urrent lower envelope on [0;m � 1℄, 
f. Fig. 3(b). ThenS(u+1) = fug, i.e., all old regions have disappeared, and there is one newregion T (u; u+ 1) = [0;m).(
) Fu interse
ts the 
urrent lower envelope on [0;m � 1℄, 
f. Fig. 3(
). The
urrent regions will either shrink or disappear, and there is one new regionT (u; u+ 1).We start sear
hing from right to left for the 
urrent region whi
h is inter-se
ted by Fu. This 
an be determined by 
omparing the values of Fu and F` atthe begin point t[`℄ of ea
h 
urrent region ` = q; q�1; : : :, until we �nd the �rst` = `� su
h that Fu(t[`�℄) � Fs[`�℄(t[`�℄). Then Fu is not the least minimizerat t[`�℄, and there must be an interse
tion of Fu with F`� in region `�. Let x�be the horizontal 
oordinate of the interse
tion. If `� = q and x� � m we have
ase (a); if `� < 0 we have 
ase (b); otherwise 
ase (
) pertains.To �nd x�, we introdu
e a fun
tion Sep, where Sep(i; u) is the �rst integerlarger or equal than the horizontal 
oordinate of the interse
tion point of Fuand Fi with i < u, i.e.Fi(x) � Fu(x) , x � Sep(i; u): (4)We thus have x� = Sep(s[l�℄; u). Clearly, the fun
tion Sep is dependent onwhi
h distan
e transform we want to 
ompute. In the next se
tion we willderive the expressions for the fun
tion Sep, but in the remainder of this se
tionwe simply assume that Sep is available.We introdu
e an integer program variable u. It is 
onvenient to representS(u) by an in
reasing sequen
e of elements. Sin
e the regions form a partitionof [0;m) by 
onse
utive segments, we 
an represent them by the sequen
e oftheir least elements. A

ording to the 
ase analysis above, the regions are tobe adapted at their end. We 
an therefore implement these sequen
es in twointeger arrays, s and t, with an integer variable q as index of the end point.



6 A. MEIJSTER ET AL.
F(x)i

F(x)u

i

g(i)

g(u)

u(a) g(u) � g(i)+u�i F(x)u

F(x)i

g(u)

g(i)

i u(b) g(i) > g(u)+u�i
F(x)u

i

g(i)

u

g(u)

F(x)i

*x(
) otherwiseFig. 4. Cases for �nding Sep for MDT.We start with the forward s
an. We have S(1) = f0g, and T (0; 1) = [0;m),and thus start with q = 0, s[0℄ = 0, and t[0℄ = 0. In a loop, variable u isin
remented, and thus the representations of S and T must be updated bymeans of the 
ase analysis above. For details, we refer to our report [4℄.To investigate the 
omplexity of the forward s
an, we 
onsider the expressionq+2(m�u), whi
h is initially 2m. In every exe
ution of the body of the outerloop (see s
an 3 in Fig. 1(b)), and also in every exe
ution of the body ofits inner loop, the value of the expression de
reases. This implies that thetime 
omplexity of the s
an is linear in m. Note that, the average number ofiterations of the inner loop is at most two. The algorithm uses less than 2m
omparisons of f values, and fun
tion Sep is evaluated less than m times.When the forward s
an is �nished, we have 
ompletely determined the parti-tion of [0;m) in regions. Given these regions, we 
an trivially 
ompute dt-valuesin a simple ba
kward s
an (see s
an 4 in Fig. 1(b)).4. Derivation of the fun
tion SepThe derivation in the previous se
tion was independent of the a
tual metri
used. The fun
tions dependent on the metri
 are f and Sep. In this se
tion we
ompute expressions for Sep for EDT, MDT, and CDT. The easiest is EDT.We �nd for i < u Fi(x) � Fu(x),fde�nition of Fi, Fug(x � i)2 + g(i)2 � (x� u)2 + g(h)2, f
al
ulus; i < u; x is an integergx � (u2 � i2 + g(u)2 � g(i)2) div (2(u� i)):Here, we denote integer division with rounding o� towards zero by div. Thus,we �nd for EDT thatSep(i; u) = (u2 � i2 + g(u)2 � g(i)2) div (2(u� i)):If we use the Manhattan metri
, the analysis is slightly more 
ompli
ated.Sin
e we have to deal with absolute values in the expressions, awkward 
aseanalysis is ne
essary if we want to 
ompute Sep analyti
ally. Therefore weprefer a geometri
 argument. We have to 
onsider three 
ases (see Fig. 4).



A GENERAL ALGORITHM FOR COMPUTING DISTANCE TRANSFORMS 7
F(x)u

u

F(x)i

i

g(u)
g(i)

(u-i)/2

(i+u)/2(a) g(i) � 
 ^ g(u) � 
 F(x)u

F(x)i

i

g(i)

(u-i)/2

(i+u)/2 u

g(u)(b) g(i) � 
 ^ g(u) > 
 F(x)i

F(x)u

i (i+u)/2 u

(u-i)/2
g(i)

g(u) (
) g(i) > 

F(x)i

F(x)u

g(u)
g(i)

i

(u-i)/2

(i+u)/2 u(d) g(i) � 
 F(x)u
F(x)i

g(u)

g(i)

i

(u-i)/2

(i+u)/2 u(e) g(i) > 
 ^ g(u) � 
 F(x)u

F(x)i

g(u)

i (i+u)/2 u

g(i)

(u-i)/2(f) g(i) > 
 ^ g(u) > 
Fig. 5. Cases for �nding Sep for CDT, where 
 = u�i2 . Cases (a)-(
): g(i) � g(u). Cases(d)-(f): g(i) > g(u).If g(u) � g(i) + u � i, the graph of Fu lies entirely above the graph of Fifor all x, thus we 
hoose Sep(i; u) =1. If g(i) > g(u) + u� i, the graph of Filies entirely above the graph of Fu, so Fi(x) � Fu(x) for no x at all. Thus, wemust 
hoose Sep(i; u) = �1 to satisfy (4). In all other 
ases, Fu interse
ts Fiat x� = (g(u)� g(i) + h+ i)=2. So, if we want to 
ompute MDT we useSep(i; u) = 8<:1 if g(u) � g(i) + u� i;�1 if g(i) > g(u) + u� i;(g(u)� g(i) + h+ i) div 2 otherwise:For the 
ase of CDT we have jx � ij max g(i) � jx � uj max g(u). We
onsider two main 
ases, whi
h ea
h 
an be split up in three sub-
ases. Firstwe 
onsider the 
ase g(i) � g(u). From Fig. 5(a)-(
), we see that the in
reasingsegment of Fi (y = x � i) interse
ts the de
reasing part of Fu (y = u� x), orthe 
onstant part (y = g(u)). Let 
 be the verti
al 
oordinate 
orrespondingwith the middle of i and u (x = (i+ u)=2), i.e. 
 = (u� i)=2. From Fig. 5(a),we see that if g(i) � 
 ^ g(u) � 
, we have Fi(x) � Fu(x) if x � (i + u)=2.>From Fig. 5(b)-(
), we see that the in
reasing part of Fi interse
ts the 
onstantsegment of Fu at i + g(u), and thus we have Fi(x) � Fu(x) if x � i + g(u).Putting the three 
ases together, we 
an 
on
ludeg(i) � g(u)) �Fi(x) � Fu(x), x � i+ u2 max (i+ g(u))�:The other main 
ase is g(i) > g(u). Again, in Fig. 5(d), we see that if g(i) � 
,the interse
tion at (i+u)=2 is the separator. If g(i) > 
 (see Fig. 5(e)-(f)), thehorizontal segment of Fi interse
ts the de
reasing part of Fu at x = u � g(i).Just like in the previous 
ase, we 
an put these 
ases together. This results inthe following expression for SepSep(i; u) = � (i+ g(u)) max ((i+ u) div 2) if g(i) � g(u);(u� g(i)) min ((i+ u) div 2) otherwise.



8 A. MEIJSTER ET AL.TABLE ITiming results in ms. From left to right: EDT, MDT, and CDT.size p=1 p=2 p=3 p=4 p=1 p=2 p=3 p=4 p=1 p=2 p=3 p=4256 12 7 5 4 11 6 4 3 12 6 4 3512 69 35 25 19 63 34 24 17 67 35 25 181024 307 156 104 79 281 147 97 74 298 152 101 772048 1542 780 517 389 1407 709 476 357 1501 753 506 3814096 6251 3137 2098 1577 5753 2886 1929 1451 6073 3053 2041 15305. Parallelization, timing results and 
on
lusionsSin
e the 
omputation per row (
olumn) is independent of the 
omputationof other rows (
olumns), the algorithm is well suited for parallelization on ashared memory ma
hine. In the �rst (se
ond) phase, the 
olumns (rows) aredistributed over the pro
essors. The two phases must be separated by a barrier,whi
h assures that all pro
essors have 
ompleted the �rst phase before any ofthem starts with the se
ond phase. The theoreti
al time 
omplexity of theparallel algorithm for p pro
essors (where p � m min n) is O(mn=p).We ran experiments on an Intel Pentium III based shared memory parallel
omputer with 4 
pu's, running at a 550MHz 
lo
k frequen
y. We performedtime measurements using several binary images, and found that the exe
utiontime is almost independent of image 
ontent, and s
ales well w.r.t. the numberof pro
essors. This is as expe
ted, sin
e the amount of work per row and
olumn is almost the same. In table I the timings for square images are givenfor p = 1 to p = 4 pro
essors. Note that the 
omputation of MDT and CDT isonly slightly faster than the exa
t EDT. We also implemented the sequentialalgorithm of [7℄ for CDT, and found that our algorithm is less than a fa
tor of2 slower, whi
h 
an easily be over
ome by parallel pro
essing.The algorithm 
an be easily extended to d-dimensional distan
e transformsby separating the problem into d phases, ea
h solving a one-dimensional prob-lem, as 
arried out above for the 
ase d = 2.Referen
es1. G. Borgefors. Distan
e transformations in arbitrary dimensions. Computer Vision,Graphi
s, and Image Pro
essing, 27:321{345, 1984.2. G. Borgefors. Distan
e transformations in digital images. Computer Vision, Graphi
s,and Image Pro
essing, 34:344{371, 1986.3. P. Danielsson. Eu
lidean distan
e mapping. Comput. Graphi
s Image Pro
ess., 14:227{248, 1980.4. W. H. Hesselink, A. Meijster, and J. B. T. M. Roerdink. An exa
t Eu
lidean distan
etransform in linear time. Te
hni
al Report IWI 99-9-04, Institute for Mathemati
s andComputing S
ien
e, University of Groningen, the Netherlands, Apr. 1999.5. M. Kolountzakis and K. Kutulakos. Fast 
omputation of the Eu
lidean distan
e mapsfor binary images. Information Pro
essing Letters, 43:181{184, 1992.6. S. Pavel and A. Akl. EÆ
ient algorithms for the Eu
lidean distan
e transform. ParallelPro
essing Letters, 5:205{212, 1995.7. A. Rosenfeld and J. Pfaltz. Distan
e fun
tions on digital pi
tures. Pattern Re
ognition,1:33{61, 1968.


