
A GENERAL ALGORITHM FOR COMPUTING DISTANCETRANSFORMS IN LINEAR TIMEA. MEIJSTER,� J.B.T.M. ROERDINKy and W.H. HESSELINKyUniversity of GroningenP.O. Box 800, 9700 AV Groningen, The Netherlandsemail: a.meijster�r.rug.nl, froe,wimg�s.rug.nlAbstrat. A new general algorithm for omputing distane transforms of digital imagesis presented. The algorithm onsists of two phases. Both phases onsist of two sans, aforward and a bakward san. The �rst phase sans the image olumn-wise, while the seondphase sans the image row-wise. Sine the omputation per row (olumn) is independent ofthe omputation of other rows (olumns), the algorithm an be easily parallelized on sharedmemory omputers. The algorithm an be used for the omputation of the exat Eulidean,Manhattan (L1 norm), and hessboard distane (L1 norm) transforms.1. IntrodutionDistane transforms play an important role in many morphologial image pro-essing appliations. They have been extensively studied and used in omputa-tional geometry, image proessing, omputer graphis and pattern reognition,e.g., [1{3,7℄. The two-dimensional distane transform an be desribed as fol-lows. Let B be a set of grid points taken from a retangular grid of size m�n.The problem is to assign to every grid point (x; y) the distane to the nearestpoint in B. If we use the Eulidean metri for omputing distanes, and repre-sent B by a boolean array b[�; �℄, we thus want to ompute the two dimensionalarray dt[x; y℄ =pEDT (x; y), whereEDT(x; y) = MIN(i; j : 0 � i < m ^ 0 � j < n ^ b[i; j℄ : (x� i)2 + (y � j)2):Here we use the notation MIN(k : P (k) : f(k)) for the minimal value of f(k)when k ranges over all values that satisfy P (k).Sine the exat Eulidean distane transform is often regarded as too om-putationally intensive, several algorithms have been proposed that use somemask whih is swept over the image in two sans, to ompute approximationslike the Manhattan (ity-blok) distane, the hessboard distane, or hamferdistanes (see [1{3, 7℄). The time omplexity is linear in the number of pix-els of the image (i.e. O(m � n)), but it does not yield the exat Eulideandistane, whih is required for some appliations. Another drawbak of thesealgorithms is that they are hard to parallelize for parallel omputers sine pre-viously omputed results are propagated during the omputation, making the� A. Meijster works at the Computing Centre of the University of Groningen.y J.B.T.M. Roerdink and W.H. Hesselink work at the Institute for Mathematis and Com-puting Siene.



2 A. MEIJSTER ET AL.proess highly sequential. A reursive algorithm of order mn logm for the ex-at EDT is given in [5℄. In [6℄ a reursive algorithm of order mn for the exatEDT is given by reduing the problem to a matrix searh algorithm.In this paper, whih is based upon [4℄, we present a new algorithm thatalso omputes distane transforms in linear time, is simpler and more eÆientthan [6℄, and is easy to parallelize. It an ompute the Eulidean (EDT), theManhattan (MDT), and the hessboard distane (CDT) transform, de�ned byEDT(x; y) = MIN(i; j : 0 � i < m ^ 0 � j < n ^ b[i; j℄ : (x� i)2 + (y � j)2);MDT(x; y) = MIN(i; j : 0 � i < m ^ 0 � j < n ^ b[i; j℄ : jx� ij+ jy � jj);CDT(x; y) = MIN(i; j : 0 � i < m ^ 0 � j < n ^ b[i; j℄ : jx� ij max jy � jj):If we de�ne the minimum of the empty set to be1, and use the rule z+1 =1for all z, we �nd with some alulationEDT(x; y) = MIN(i : 0 � i < m : (x � i)2 +G(i; y)2);MDT(x; y) = MIN(i : 0 � i < m : jx� ij+G(i; y));CDT(x; y) = MIN(i : 0 � i < m : jx� ij max G(i; y));where G(i; y) = MIN(j : 0 � j < n ^ b[i; j℄ : jy � jj).The algorithm an be summarized as follows. In a �rst phase eah olumnCx (de�ned by points (x; y) with x �xed) is separately sanned. For eah point(x; y) on Cx, the distane G(x; y) of (x; y) to the nearest points of Cx \ B isdetermined. In a seond phase eah row Ry (de�ned by points (x; y) with y�xed) is separately sanned, and for eah point (x; y) onRy the minimum of (x�x0)2+G(x0; y)2 for EDT, jx�x0j+G(x0; y) for MDT, and jx�x0j max G(x0; y)for CDT is determined, where (x0; y) ranges over row Ry.2. The �rst phaseThe objet of the �rst phase is to determine the funtion G. We �rst observethat we an split G into two funtions GT (top) and GB (bottom), suh thatG(i; y) = GT(i; y) min GB(i; y), whereGT(i; y) = MIN(j : 0 � j � y ^ b[i; j℄ : y � j)GB(i; y) = MIN(j : y � j < n ^ b[i; j℄ : j � y)We start with the omputation of GT by introduing an array g to store itsvalues. It is easy to see that GT(i; y) = 0 if b[i; y℄ holds, and that, otherwise,GT(i; y) = GT(i; y � 1) + 1 (or 1 if y = 0). We an therefore omputeg[x; y℄ := GT(x; y) using only g[x; y � 1℄ in a simple olumn san from topto bottom. Similarly, we �nd GB(i; y) = GB(i; y + 1) + 1. The seond sanruns from bottom to top, and omputes G(x; y) diretly, using GT from theprevious san, and GB from the urrent one. After some simpli�ation, thisresults in the ode fragment given in Fig. 1(a). Clearly, the time omplexity islinear in the number of pixels (i.e. O(m � n)). In atual implementations itis onvenient to replae 1 by m+ n, sine all distanes in the images are lessthan m+ n if the set B is non-empty.



A GENERAL ALGORITHM FOR COMPUTING DISTANCE TRANSFORMS 3forall x 2 [0::m� 1℄ do(� san 1 �)if b[x; 0℄ theng[x; 0℄ := 0elseg[x; 0℄ := 1;endiffor y := 1 to n� 1 doif b[x; y℄ theng[x; y℄ := 0elseg[x; y℄ := 1 + g[x; y � 1℄;endif(� san 2 �)for y := n� 2 downto 0 doif g[x; y + 1℄ < g[x; y℄ theng[x; y℄ := (1 + g[x; y + 1℄)endifend forall(a) sans 1 and 2

forall y 2 [0::n � 1℄ doq := 0; s[0℄ := 0; t[0℄ := 0;for u := 1 to m� 1 do (� san 3 �)while q � 0 ^ f(t[q℄; s[q℄) > f(t[q℄; u) doq := q � 1;if q < 0 thenq := 0; s[0℄ := uelsew := 1 + Sep(s[q℄; u);if w < m thenq := q + 1; s[q℄ := u; t[q℄ := wend ifend ifend forfor u := m� 1 downto 0 do (� san 4 �)dt[u; y℄ := f(u; s[q℄);if u = t[q℄ then q := q � 1end forend forall (b) sans 3 and 4.Fig. 1. Program fragments for both phases.3. The seond phaseIn the seond phase we want to ompute EDT, MDT, or CDT row by row,i.e. for all x with �xed y. Therefore, in this setion we regard y as a onstantand omit it as a parameter in auxiliary funtions, and introdue g(i) = G(i; y).Instead of developing an algorithm for eah metri separately, we aim at a moregeneral algorithm forDT(x; y) = MIN(i : 0 � i < m : f(x; i)): (1)The hoie of the funtion f depends on the metri we wish to use, i.e.f(x; i) =8<: (x� i)2 + g(i)2 for EDT,jx� ij+ g(i) for MDT,jx� ij max g(i) for CDT.It is helpful to introdue a geometrial interpretation of the minimizationproblem of Eq. (1). For any i with 0 � i < m, denote by Fi the funtionx 7! f(x; i) on the real interval [0;m�1℄. We all i the index of Fi. In the aseof EDT, the graph of Fi is a parabola with vertex at (i; g(i)). In the ase ofMDT the parabolas are replaed by V-shaped approximations, while in the aseof CDT we deal with `topped o�' V-shaped approximations (see Fig. 2). Wean interpret DT geometrially as the lower envelope of the olletion fFij0 �i < mg evaluated at integer oordinates, f. Fig. 2. The lower envelopesonsist of a number of onseutive urve segments, whose index we denote bys[0℄; s[1℄; : : : ; s[q℄ ounting from left to right. The projetions of the segments
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() CDTFig. 2. DT as the lower envelope (solid line) of urves Fi, 0 � i < m (dotted lines). Thedashed vertial lines indiate the transitions between regions.on the x-axis are alled regions, and form a partition of the interval [0;m) byonseutive segments. The omputation of DT now onsists of two sans. In aforward (left-to-right) san the set of regions is determined using an inrementalalgorithm. In a bakward (right-to-left) san the values DT(x; y) are triviallyomputed for all x.We start by replaing the upper bound m in (1) by a variable u and de�neFL(x; u) = MIN(i : 0 � i < u : f(x; i)):The geometri interpretation is that we restrit the set B to the half plane tothe left of u. Clearly, DT(x; y) = FL(x;m).For given upper bound u > 0, we de�ne an index h to be a minimizer atx if, in the expression for FL(x; u), the minimal value of f(x; i) ours at h.In general, x may have more than one minimizer. de�ned as the least index hwith 0 � h < u suh that f(x; h) � f(x; i) for all i in the same range, i.e.H(x; u) = MIN(h : 0 � h < u ^ 8(i : 0 � i < u : f(x; h) � f(x; i)) : h): (2)We learly have FL(x; u) = f(x;H(x; u)), hene DT(x; y) = f(x;H(x;m)).Therefore, the problem redues to the omputation of H(x;m).We onsider the sets S(u) of the least minimizers that our during the sanfrom left to right, and the sets T (h; u) of points with the same least minimizerh. We thus de�neS(u) = fH(x; u) j 0 � x < mg ; (3)T (h; u) = fx j 0 � x < m ^ H(x; u) = h g if 0 � h < u:Clearly, S(u) is a nonempty subset of [0; u), and S(u) = fh jT (h; u) 6= ;g. Wede�ne the regions for u to be the sets T (h; u) that are nonempty. It is easy tosee that the regions for u form a partition of [0;m).The aim is the ase where u = m. Indeed, for x 2 T (h;m), we haveH(x;m) = h and hene DT(x; y) = f(x; h). The seond phase of the algorithmtherefore onsists of two sans: san 3 omputes the partition of [0;m) thatonsists of the regions for m and san 4 uses these regions to ompute DT. Forgiven u, only the urves with indies from 0 to u�1 are taken into aount. Theminimizer of x orresponds to the index of the urve segment whose projetionon the horizontal axis ontains x. Let the urrent lower envelope onsist of
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() intersetionFig. 3. Loation of Fu (dashed urve) w.r.t. the lower envelope (solid line).q + 1 segments, i.e. S(u) = fs[0℄; s[1℄; : : : ; s[q℄g, with s[`℄ the index of the `-thsegment. Consider what happens when Fu is added. Three situations mayour:(a) Fu is above the urrent lower envelope on [0;m � 1℄, f. Fig. 3(a). ThenS(u+ 1) = S(u), sine the set T (u; u+ 1) is empty.(b) Fu is below the urrent lower envelope on [0;m � 1℄, f. Fig. 3(b). ThenS(u+1) = fug, i.e., all old regions have disappeared, and there is one newregion T (u; u+ 1) = [0;m).() Fu intersets the urrent lower envelope on [0;m � 1℄, f. Fig. 3(). Theurrent regions will either shrink or disappear, and there is one new regionT (u; u+ 1).We start searhing from right to left for the urrent region whih is inter-seted by Fu. This an be determined by omparing the values of Fu and F` atthe begin point t[`℄ of eah urrent region ` = q; q�1; : : :, until we �nd the �rst` = `� suh that Fu(t[`�℄) � Fs[`�℄(t[`�℄). Then Fu is not the least minimizerat t[`�℄, and there must be an intersetion of Fu with F`� in region `�. Let x�be the horizontal oordinate of the intersetion. If `� = q and x� � m we havease (a); if `� < 0 we have ase (b); otherwise ase () pertains.To �nd x�, we introdue a funtion Sep, where Sep(i; u) is the �rst integerlarger or equal than the horizontal oordinate of the intersetion point of Fuand Fi with i < u, i.e.Fi(x) � Fu(x) , x � Sep(i; u): (4)We thus have x� = Sep(s[l�℄; u). Clearly, the funtion Sep is dependent onwhih distane transform we want to ompute. In the next setion we willderive the expressions for the funtion Sep, but in the remainder of this setionwe simply assume that Sep is available.We introdue an integer program variable u. It is onvenient to representS(u) by an inreasing sequene of elements. Sine the regions form a partitionof [0;m) by onseutive segments, we an represent them by the sequene oftheir least elements. Aording to the ase analysis above, the regions are tobe adapted at their end. We an therefore implement these sequenes in twointeger arrays, s and t, with an integer variable q as index of the end point.
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*x() otherwiseFig. 4. Cases for �nding Sep for MDT.We start with the forward san. We have S(1) = f0g, and T (0; 1) = [0;m),and thus start with q = 0, s[0℄ = 0, and t[0℄ = 0. In a loop, variable u isinremented, and thus the representations of S and T must be updated bymeans of the ase analysis above. For details, we refer to our report [4℄.To investigate the omplexity of the forward san, we onsider the expressionq+2(m�u), whih is initially 2m. In every exeution of the body of the outerloop (see san 3 in Fig. 1(b)), and also in every exeution of the body ofits inner loop, the value of the expression dereases. This implies that thetime omplexity of the san is linear in m. Note that, the average number ofiterations of the inner loop is at most two. The algorithm uses less than 2momparisons of f values, and funtion Sep is evaluated less than m times.When the forward san is �nished, we have ompletely determined the parti-tion of [0;m) in regions. Given these regions, we an trivially ompute dt-valuesin a simple bakward san (see san 4 in Fig. 1(b)).4. Derivation of the funtion SepThe derivation in the previous setion was independent of the atual metriused. The funtions dependent on the metri are f and Sep. In this setion weompute expressions for Sep for EDT, MDT, and CDT. The easiest is EDT.We �nd for i < u Fi(x) � Fu(x),fde�nition of Fi, Fug(x � i)2 + g(i)2 � (x� u)2 + g(h)2, falulus; i < u; x is an integergx � (u2 � i2 + g(u)2 � g(i)2) div (2(u� i)):Here, we denote integer division with rounding o� towards zero by div. Thus,we �nd for EDT thatSep(i; u) = (u2 � i2 + g(u)2 � g(i)2) div (2(u� i)):If we use the Manhattan metri, the analysis is slightly more ompliated.Sine we have to deal with absolute values in the expressions, awkward aseanalysis is neessary if we want to ompute Sep analytially. Therefore weprefer a geometri argument. We have to onsider three ases (see Fig. 4).
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8 A. MEIJSTER ET AL.TABLE ITiming results in ms. From left to right: EDT, MDT, and CDT.size p=1 p=2 p=3 p=4 p=1 p=2 p=3 p=4 p=1 p=2 p=3 p=4256 12 7 5 4 11 6 4 3 12 6 4 3512 69 35 25 19 63 34 24 17 67 35 25 181024 307 156 104 79 281 147 97 74 298 152 101 772048 1542 780 517 389 1407 709 476 357 1501 753 506 3814096 6251 3137 2098 1577 5753 2886 1929 1451 6073 3053 2041 15305. Parallelization, timing results and onlusionsSine the omputation per row (olumn) is independent of the omputationof other rows (olumns), the algorithm is well suited for parallelization on ashared memory mahine. In the �rst (seond) phase, the olumns (rows) aredistributed over the proessors. The two phases must be separated by a barrier,whih assures that all proessors have ompleted the �rst phase before any ofthem starts with the seond phase. The theoretial time omplexity of theparallel algorithm for p proessors (where p � m min n) is O(mn=p).We ran experiments on an Intel Pentium III based shared memory parallelomputer with 4 pu's, running at a 550MHz lok frequeny. We performedtime measurements using several binary images, and found that the exeutiontime is almost independent of image ontent, and sales well w.r.t. the numberof proessors. This is as expeted, sine the amount of work per row andolumn is almost the same. In table I the timings for square images are givenfor p = 1 to p = 4 proessors. Note that the omputation of MDT and CDT isonly slightly faster than the exat EDT. We also implemented the sequentialalgorithm of [7℄ for CDT, and found that our algorithm is less than a fator of2 slower, whih an easily be overome by parallel proessing.The algorithm an be easily extended to d-dimensional distane transformsby separating the problem into d phases, eah solving a one-dimensional prob-lem, as arried out above for the ase d = 2.Referenes1. G. Borgefors. Distane transformations in arbitrary dimensions. Computer Vision,Graphis, and Image Proessing, 27:321{345, 1984.2. G. Borgefors. Distane transformations in digital images. Computer Vision, Graphis,and Image Proessing, 34:344{371, 1986.3. P. Danielsson. Eulidean distane mapping. Comput. Graphis Image Proess., 14:227{248, 1980.4. W. H. Hesselink, A. Meijster, and J. B. T. M. Roerdink. An exat Eulidean distanetransform in linear time. Tehnial Report IWI 99-9-04, Institute for Mathematis andComputing Siene, University of Groningen, the Netherlands, Apr. 1999.5. M. Kolountzakis and K. Kutulakos. Fast omputation of the Eulidean distane mapsfor binary images. Information Proessing Letters, 43:181{184, 1992.6. S. Pavel and A. Akl. EÆient algorithms for the Eulidean distane transform. ParallelProessing Letters, 5:205{212, 1995.7. A. Rosenfeld and J. Pfaltz. Distane funtions on digital pitures. Pattern Reognition,1:33{61, 1968.


