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Abstract A general algorithm for computing Euclidean skeletons of 3Ddata sets in lin-
ear time is presented. These skeletons are defined in terms ofa new concept,
called theinteger medial axis(IMA) transform. The algorithm is based upon the
computation of 3D feature transforms, using a modification of an algorithm for
Euclidean distance transforms. The skeletonization algorithm has a time com-
plexity which is linear in the amount of voxels, and can be easily parallelized.
The relation of theIMA skeleton to the usual definition in terms of centers of
maximal disks is discussed.
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1. Introduction

In computer vision, skeleton generation is often one of the first steps in im-
age description and analysis. Intuitively, a skeleton consists of the center lines
of an object, and therefore skeletons provide important structural information
about image objects by a relatively small number of pixels.

There are four main approaches to skeletonization: 1) thinning, i.e. iterative
removal of points from the boundary; 2) wave propagation from the boundary;
3) detection of crest points in the distance transformed image; 4) analytical
methods. A large number of skeletonization algorithms exist, see e.g. [15],
many of them based upon mathematical morphology [2, 10, 14, 17, 19, 20].
For a parallel 3D skeletonization algorithm based on thinning, see [9].

We note that in algorithms of type 3) one often restricts oneself to local
maxima of the distance transform [18], but the resulting skeleton is far from the
Euclidean one. The approach we present here is a variant of the third approach,
using a definition of skeletons based on Blum’s medial axis transform [3].
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Often, one is satisfied with approximations to the Euclideanmetric (e.g.,
using chamfer metrics). In 1980, Danielsson [6] gave two good approximating
Euclidean distance transform algorithms, and applied themto obtain the cen-
ters of maximal (integer) disks (CMD), see below. He notes (p. 243) that appli-
cation of skeletons has been hampered by the lack of true Euclidean distance
maps. Especially in the 3D case where data size can be very large, many exist-
ing algorithms for computing 3D Euclidean skeletons are computationally too
expensive [4]. Ge and Fitzpatrick [7] clearly identified theproblem to deter-
mine theCMD: “The problems with existing methods lie in the discrepancies
between continuous and discrete image maps”. The paper [7] also mentions
the goal of linking the centers of maximal disks intoconnectedskeletons.

The main contribution of the present work is that we present asimple and
easily parallelizable linear time algorithm which computes a skeleton defined
in terms of a new concept, called theinteger medial axis(IMA) transform. The
algorithm works in arbitrary dimensions, and is based upon the general lin-
ear time Euclidean distance transform (EDT) algorithm of Hirata [8], which
has been rediscovered several times, i.e., by ourselves, see Meijsteret al. [13],
and later by Maureret al. [11, 12]. The skeletonization algorithm has two
phases. First, a feature transform is computed, which uses essentially the same
algorithm as for the distance transform, the difference being that not only dis-
tances are computed, but also the boundary points which realize the closest
distance. The actual skeletonization is performed in a second pass through
the data, where the integer medial axis is computed by assigning points to the
skeleton depending on their feature transform.

Our method does not aim at a minimal skeleton useful for imagecompres-
sion with exact reconstruction, but at a computation of connected skeletons
directly from the Euclidean feature transform, thus avoiding the costly and
complicated phase of removing centers of not-quite-maximal disks by the tech-
niques of [16]. We establish a number of mathematical properties of theIMA
and point out some relations to Blum’s real medial axis (RMA) and to theCMD
skeleton. More work is needed to establish the topological characteristics of
the IMA skeleton.

Often, simplification or pruning of the skeleton is used as a postprocessing
step to remove unwanted points, which arise especially in noisy data [1]. In
our approach, skeleton pruning can be handled in the algorithm itself, by a
single adjustable parameter through which one can prune theskeleton during
the second pass of the algorithm.

In order to derive our algorithm, we first modify theEDT algorithm of
Meijster et al. to calculate 3D feature transforms, from which theIMA skele-
tons are derived. For all program parts, explicit and compact pseudocode is
given.
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2. Feature transform computation

We briefly describe extension of the Euclidean distance transform algorithm
to the computation of feature transforms, closely adheringto the notation and
approach given in [13]. The algorithm can deal with several types of distances
(Manhattan, chessboard, or chamfer distances), but we willlimit ourselves to
the case of the Euclidean distance here, since we focus on Euclidean skeletons
in this paper.

The length of a vectorr ∈ R
d is denoted by||r|| =

√

∑

i r2
i . We regardZd

as a grid embeddded inRd. The elements ofZd are called grid points.
Let B be the background, which is a given nonempty set of grid points. The

Euclidean distance transformdt of B is the function that assigns to every grid
point r the distance to the nearest background point, sodt(r, B) = min{||r −
y|| | y ∈ B}. The feature transform FTis defined as the set-valued function
that assigns tor the set of closest boundary points. So we haveFT(r, B) =
{y ∈ B | ||r − y|| = dt(r, B)}. The parameterB is omitted fromdt andFT
when it is clear from the context.

It is possible to computeFT, but it is computationally cheaper and sufficient
for our purposes to compute, for every pointr, just a single feature transform
point ft(r). So, the functionft is incompletely specified byft(r) ∈ FT(r). In
fact, we computeft(r) as the first element ofFT(r) with respect to a lexical
ordering.

The computation offt proceeds ind phases. We specify the results of these
phases as follows. For0 < i ≤ d, letLi be thei-dimensional subspace spanned
by the firsti standard basis vectors ofR

d. The i-th phase computes thei-
dimensional feature transformfti which is characterized byfti(r) ∈ FT(r, B ∩
(r + Li)). The result of the last phase isft = ftd. Since the components of
fti(r) orthogonal toLi are always equal to the corresponding components ofr,
we only compute and use the orthogonal projection offti onLi.

In Figures 1 and 2, we present the computation for the cased = 3 in a box
of size(m,n, p). Sincefti is a vector-valued function, the three components of
fti(r) are writtenfti[r].x, fti[r].y, andfti[r].z.

The first phase is the computation offt1 given in Fig. 1. For every pair
(y, z), it consists of two scans over the line(0, y, z) + L1. The boundaryB is
represented here by a 3D boolean arrayb. In the first scan,g[x] becomes the
distance to the next boundary point along the line. The second scan collects
ft1.

The second and third phases are given in Fig. 2. In the body of the outer
loop, the value offti is computed fromfti−1 for a given scan line, again by
two scans. The results of the forward scan are collected on stackss and t,
with common stack pointerq. The backward scan reapsfti as harvest. The
auxiliary functionsf and Separe given byf(i, u) = (i − u)2 + g(u) and
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Sep(i, u) = (u2 − i2 + g(u)− g(i)) div (2(u− i)), where the functiong is the
squared Euclidean distance transform of the previous phase. So,g(i) = (x −
ft1[x, i, z].x)2 in phase 2, andg(i) = (x− ft2[x, y, i].x)2 + (y− ft2[x, y, i].y)2

in phase 3. Note that, in the body of the outer loop, we regardx and z as
constants for phase 2, andx andy as constants for phase 3.

Since the algorithm is completely analogous to our algorithm for the Eu-
clidean distance transform, we refer to paper [13] for further details.

forall y ∈ [0..n − 1], z ∈ [0..p − 1] do
(∗ scan 1∗)
if b[m − 1, y, z] then g[m − 1] := 0
else g[m − 1] := ∞
endif
for x := m − 2 downto 0 do

if b[x, y, z] then g[x] := 0
else g[x] := 1 + g[x + 1]
endif

end for
(∗ scan 2∗)
ft1[0, y, z].x := g[0]
for x := 1 to m − 1 do

if x − ft1[x − 1, y, z].x ≤ g[x] then
ft1[x, y, z].x := ft1[x − 1, y, z].x

else
ft1[x, y, z].x := x + g[x]

endif
end forall

Figure 1. Program fragment for the first phase - one dimensional feature transform in 3D.

3. Skeletonization

The feature transform of a data set can be used to compute its skeleton. We
first examine the definition of the medial axis [3], see also [5–7, 16]. Actually,
we present three possible formalizations:CMD, RMA, andIMA. SinceRMAis
not restricted to grid points, whereasCMD andIMA are, the latter two are the
main contenders.

The real medial axis and CMD skeleton. For the moment we assume that
the boundaryB is a closed subset ofRd. For every pointx ∈ R

d, we can form
the largest open diskD(x, r) = {y ∈ R

d | ||x − y|| < r} that is disjoint
with B. This is called theinscribed diskof x. If an inscribed disk at point
p is not contained in any other inscribed disk ofB, we call it amaximal disk
with centerp. We define thereal medial axis RMAto consist of the points
x ∈ R

d \ B which are centers of maximal disks.
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forall x ∈ [0..m − 1], z ∈ [0..p − 1] do
q := 0; s[0] := 0; t[0] := 0
for u := 1 to n − 1 do (∗ scan 1∗)

while q ≥ 0 ∧ f(t[q], s[q]) > f(t[q], u) do
q := q − 1

if q < 0 then
q := 0; s[0] := u

else
w := 1 + Sep(s[q], u)
if w < n then
q := q + 1; s[q] := u; t[q] := w

endif
endif

end for
for u := n − 1 downto 0 do (∗ scan 2∗)

ft2[x,u, z].x:= ft1[x, s[q], z].x
ft2[x,u, z].y:= s[q]
if u = t[q] then q := q − 1 endif

end for
end forall

(a) Second phase

forall x ∈ [0..m − 1], y ∈ [0..n − 1] do
q := 0; s[0] := 0; t[0] := 0
for u := 1 to p − 1 do (∗ scan 1∗)

while q ≥ 0 ∧ f(t[q], s[q]) > f(t[q], u) do
q := q − 1

if q < 0 then
q := 0; s[0] := u

else
w := 1 + Sep(s[q], u)
if w < p then
q := q + 1; s[q] := u; t[q] := w

endif
endif

end for
for u := p − 1 downto 0 do (∗ scan 2∗)

ft3[x, y, u].x:= ft2[x, y, s[q]].x
ft3[x, y, u].y:= ft2[x, y, s[q]].y
ft3[x, y, u].z:= s[q]
if u = t[q] then q := q − 1 endif

end for
end forall

(b) Third phase

Figure 2. Program fragments for the second and third phase.

Forx ∈ Z
d, theinscribed integer diskM(x) is the intersectionD(x, r)∩Z

d,
whereD(x, r) is its inscribed disk. The setCMD (centers of maximal disks)
consists of the pointsx ∈ Z

d for which M(x) is not contained in anyM(y)
with y 6= x, see also [7, 16]. As is presumably well known, it is not true that
CMD ⊆ RMA∩ Z

d.

Example 1 Let B consist of the four points(0, 0), (3, 0), (0, 3), and(3, 3).
The intersection RMA∩Z

d is empty, but CMD contains the points(1, 1), (1, 2),
(2, 1), and(2, 2).

Our aim is to define a skeleton that looks like the real medial axis of a
smoothing of the boundary and tends to be connected when the complement of
the boundary is connected, while still being computable in linear time.

Recall thatdt(x) = min{||x − y|| | y ∈ B} and FT(x) = {y ∈ B |
||x − y|| = dt(x)}. Clearly,dt(x) is the radius of the inscribed disk ofx (for
x ∈ B, we regard the empty set as an open disk with radius 0). The function
ft : R

d → B is incompletely specified byft(x) ∈ FT(x).
The next lemma may not be surprising, but it seems to be new.

Lemma 2 AssumeB is a discrete (i.e., locally finite) subset ofR
d. Let x ∈

R
d. Thenx ∈ RMA if and only if FT(x) has more than one element.
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This lemma is not true whenB is not discrete. For example, in the case of
an ellipse, the real medial axis is a segment of the long axis strictly inside of
the ellipse; the two extremal points of the segment belong toRMAand yet have
only one element in the feature transform set.

Henceforth, we assume that the boundary consists of grid points only, i.e.
that B ⊆ Z

d. It follows that B is discrete, so that Lemma 2 applies. The
following result is almost trivial to verify, but it is quiteuseful.

Lemma 3 Let x ∈ R
d and lety, z be two different elements of FT(x). Then

||y − z|| ≥ 1. If moreoverx ∈ Z
d, then||y − z|| > 1.

The integer medial axis. Since we assume the boundary now to consist
of grid points only,RMAcontains many points that would disappear when the
boundary is smoothed to the curved (hyper)surface inR

d it is supposed to rep-
resent. For example, in the case of a boundary that consists of the grid points
of a horizontal line inR

2, the real medial axis consists of the vertical lines
with odd-half-integerx coordinates. The following definition avoids these un-
wanted points.

Definition 4 Let E = {e ∈ Z
d | ||e|| = 1}. Theinteger medial axisIMA

consists of the pointsp ∈ Z
d such that for somee ∈ E we have||ft(p + e) −

ft(p)|| > 1 and ||m − ft(p + e)|| ≤ ||m − ft(p)|| wherem = p + 1
2e is the

midpoint of the line segment fromp to p + e.

The second condition on the pair(p, p+e) in the definition ofIMA is introduced
to get one point, rather than two, and specifically the point that is closest to the
perpendicular bisector of the line segment fromft(p) to ft(p+e). If p andp+e
have equal claims, both are included. The reason to useft rather thanFT is
thatft is computationally cheaper, but also that the restriction of FT to Z

d may
well be everywhere single-valued, so that consideration ofneighbouring points
is needed in any case.

We preferIMA over CMD since it is easier to compute and seems to give
more image information when the boundary is a discretization of a continuous
boundary.

The following lemma is easy to prove.

Lemma 5 IMA ∩ B = ∅.

The definition ofIMA is primarily motivated by the next result that shows that
IMA has “enough” elements.

Theorem 6 Let p and q be points of the boundary B. Every Manhattan-
shortest path fromp to q that is not contained inB, contains a point of IMA.

Proof: Let r(i), 0 ≤ i ≤ k be a Manhattan-shortest path fromp to q that is
not contained inB. Since it is a Manhattan-shortest path fromp to q, we have
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r(0) = p, r(k) = q, and||r(i + 1) − r(i)|| = 1 for all 0 ≤ i < k. Since the
path is not contained inB, there is an indexj with 0 < j < k andr(j) /∈ B.
Without loss of generality, we may assumer(1) /∈ B.

Let x(i) = ft(r(i)) for all i. Thenx(0) = p andx(k) = q andx(1) 6= r(1).
We have||p − r(1)|| = 1 and hencedt(r(1)) = 1. By Lemma 3, this implies
thatx(1) = x(0) or ||x(1)−x(0)|| > 1. It follows that functionx represents a
path fromp to q in k steps that is not a Manhattan-shortest path. This implies
that there is an indexj with 0 ≤ j < k and ||x(j + 1) − x(j)|| > 1. Put
m = 1

2(r(j + 1) + r(j)). If ||m− x(j + 1)|| ≤ ||m−x(j)|| thenr(j) ∈ IMA.
Otherwiser(j + 1) ∈ IMA. In that casej + 1 < k because of Lemma 5.�

While the previous result can be interpreted as saying thatIMA has enough
elements, the next result shows thatIMA has not too many elements, in the
sense that every one of them is close toRMA.

Theorem 7 For everyp ∈ IMA, there ise ∈ E and t ∈ R with 0 ≤ t ≤ 1
2

andp + te ∈ RMA.

Proof: Let p ∈ IMA. Then there ise ∈ E with ||ft(p) − ft(p + e)|| > 1
and||m − ft(p)|| ≥ ||m − ft(p + e)|| wherem = p + 1

2e. First, assume that
ft(p) ∈ FT(m). Thenft(p) is a closest point onB to m. So ||m − ft(p)|| ≤
||m − ft(p + e)||. Since||m − ft(p)|| ≥ ||m − ft(p + e)||, it follows that
||m− ft(p)|| = ||m− ft(p + e)|| and that bothft(p) andft(p + e) are elements
of FT(m). In view of lemma 2, this implies thatm ∈ RMAis a point as looked
for. It remains to treat the case withft(p) /∈ FT(m). Let point z be the last
point of the line segment fromp to m with ft(p) ∈ FT(z). By continuity, this
point exists. Sinceft(p) /∈ FT(z′) for points z′ arbitrary close toz, the set
FT(z) consists of more than one element. Soz ∈ RMA. �

As illustrated by Theorem 6,IMA has some good connectivity properties.
In that respect, it is better thanCMD.

Example 8 LetB be the intersection ofZ2 with the union of thex-axis and
they-axis. Then IMA consists of the points(x,±x) for all x ∈ Z \ {0}, and
CMD is a subset of IMA that contains(±3,±3) and (±4,±4) but misses at
least the points(±1,±1), (±2,±2), (±5,±5).

In general, it seems that, if the complement ofB is bounded and connected,
thenIMA is connected (with respect to 8-connectivity inZ

2, or more generally,
L∞-connectivity forZd).

A disadvantage ofIMA is that it can (weakly) depend on the choice of func-
tion ft within FT.
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Implementation. The code for the skeletonization step is shown in Fig. 3.
One may work with squared distances instead of distances, which avoids the
computation of square roots and thus saves time.

When the medial axis is used for image analysis, it is often useful to prune
it of disturbing details in some postprocessing phase. Our construction of the
integer medial axis yields some information that is very useful for this purpose.
The easiest pruning is to strengthen the condition||ft(p)− ft(p+e)|| > 1 in the
definition of IMA by replacing ‘> 1’ by ‘ > γ’ for some pruning parameterγ.
This removes some points ofIMA that are due to irregularities of the boundary.

With the tunable parameterγ, skeletons may be computed according to a
user’s need. Unwanted skeleton points which still remain can be removed in a
postprocessing step, if desired.

procedure IMA skeleton
for i := 0 to m − 1 do

for j := 0 to n − 1 do
for k := 0 to p − 1 do

if i > 0 then compare(i,j,k,i-1,j,k)endif
if j > 0 then compare(i,j,k,i,j-1,k)endif
if k > 0 then compare(i,j,k,i,j,k-1)endif

end for
end for

end for

procedure compare(i,j,k,p,q,r)
x := [i, j, k]; y := [p, q, r]
xf := ft3[x]; yf := ft3[y]
if ||xf − yf || > γ then

crit := inprod(xf − yf , xf + yf − x − y)
if crit ≥ 0 then skel [x]:= 1
endif
if crit ≤ 0 then skel [y]:= 1
endif

endif

Figure 3. Program fragment for computing the IMA skeleton from the feature transform.

Table 1. Timing results (in seconds) for several data sets.

Data Size Feature transform Skeleton Total

angio 256x256x128 3 4 7
engine 256x256x128 4 4 8
tooth 256x256x256 7 7 14
vessels 256x256x256 10 6 16
head 256x256x256 9 7 16

4. Results

We have run the skeletonization algorithm on several 3D datasets. Timing
results are given for three 3D data sets, i.e. CT scans of a head, a tooth and
a number of blood vessels. The size of these sets and their timing results
are given in Table 1. These results were obtained on an 1.7 GHzPentium M
processor with 1024 Mb internal memory.
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Since the 3D skeletons form surfaces, they are somewhat hardto visualize.
Therefore, to get an idea of the quality of our skeletonization algorithm, we
first give a number of examples of 2D skeletons, see Fig. 4. Forthe 3D case,
some insight into the structure of the skeleton surfaces canbe gained by using
volume rendering techniques. An example for the tooth data set is given in
Fig. 5. For a better impression a sequence of views from different viewpoints
is desired, which can be played as a movie.

γ = 1 γ = 5

γ = 1 γ = 12

Figure 4. 2D images with their skeletons. Left: original images. Middle: IMA skeleton.
Right: pruned IMA skeleton.

(a) top (b) side (c) front (d) slice

Figure 5. (a)-(c): Volume renderings of skeletons (white) inside theoriginal data volumes.
(d): Slice of the original tooth data combined with the skeleton.
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