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Abstract A general algorithm for computing Euclidean skeletons of&iba sets in lin-
ear time is presented. These skeletons are defined in term&i® concept,
called theinteger medial axigIMA) transform. The algorithm is based upon the
computation of 3D feature transforms, using a modificatibaroalgorithm for
Euclidean distance transforms. The skeletonization @lgorhas a time com-
plexity which is linear in the amount of voxels, and can belggmrallelized.
The relation of thdMA skeleton to the usual definition in terms of centers of
maximal disks is discussed.

Keywords:  Feature transform, integer medial axis, 3-D Euclideaneskaization.

1. Introduction

In computer vision, skeleton generation is often one of thet $iteps in im-
age description and analysis. Intuitively, a skeleton sia®f the center lines
of an object, and therefore skeletons provide importancsiral information
about image objects by a relatively small number of pixels.

There are four main approaches to skeletonization: 1) itmgnme. iterative
removal of points from the boundary; 2) wave propagatiomftbe boundary;
3) detection of crest points in the distance transformedyena) analytical
methods. A large number of skeletonization algorithmstesiee e.g. [15],
many of them based upon mathematical morphology [2, 10, 71419, 20].
For a parallel 3D skeletonization algorithm based on thignsee [9].

We note that in algorithms of type 3) one often restricts etig® local
maxima of the distance transform [18], but the resultindetka is far from the
Euclidean one. The approach we present here is a variarg tfitd approach,
using a definition of skeletons based on Blum’s medial agissform [3].
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Often, one is satisfied with approximations to the Euclidesetric (e.g.,
using chamfer metrics). In 1980, Danielsson [6] gave twadgaaproximating
Euclidean distance transform algorithms, and applied tteeobtain the cen-
ters of maximal (integer) disk€MD), see below. He notes (p. 243) that appli-
cation of skeletons has been hampered by the lack of truedead distance
maps. Especially in the 3D case where data size can be vggy laany exist-
ing algorithms for computing 3D Euclidean skeletons are matationally too
expensive [4]. Ge and Fitzpatrick [7] clearly identified th@blem to deter-
mine theCMD: “The problems with existing methods lie in the discrepasci
between continuous and discrete image maps”. The papelsf@naentions
the goal of linking the centers of maximal disks imtonnectedskeletons.

The main contribution of the present work is that we presesitrgple and
easily parallelizable linear time algorithm which computeskeleton defined
in terms of a new concept, called timteger medial axigIMA) transform. The
algorithm works in arbitrary dimensions, and is based up@ngeneral lin-
ear time Euclidean distance transform (EDT) algorithm ofakéi [8], which
has been rediscovered several times, i.e., by ourselves/sigsteret al. [13],
and later by Maureet al. [11, 12]. The skeletonization algorithm has two
phases. First, a feature transform is computed, which sentally the same
algorithm as for the distance transform, the differencadpéhat not only dis-
tances are computed, but also the boundary points whiclzeetle closest
distance. The actual skeletonization is performed in argkgass through
the data, where the integer medial axis is computed by dagigmints to the
skeleton depending on their feature transform.

Our method does not aim at a minimal skeleton useful for inwepres-
sion with exact reconstruction, but at a computation of eated skeletons
directly from the Euclidean feature transform, thus avwgdthe costly and
complicated phase of removing centers of not-quite-maldisés by the tech-
niques of [16]. We establish a number of mathematical pt@seof thelMA
and point out some relations to Blum’s real medial akRM@) and to theCMD
skeleton. More work is needed to establish the topologibaracteristics of
the IMA skeleton.

Often, simplification or pruning of the skeleton is used a®stprocessing
step to remove unwanted points, which arise especially isyndata [1]. In
our approach, skeleton pruning can be handled in the dhgoritself, by a
single adjustable parameter through which one can prunskiieton during
the second pass of the algorithm.

In order to derive our algorithm, we first modify tHeDT algorithm of
Meijster et al. to calculate 3D feature transforms, from which tiA skele-
tons are derived. For all program parts, explicit and compaeudocode is
given.
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2. Feature transform computation

We briefly describe extension of the Euclidean distancestomm algorithm
to the computation of feature transforms, closely adhetntpe notation and
approach given in [13]. The algorithm can deal with sevefaés of distances
(Manhattan, chessboard, or chamfer distances), but wdimvitlourselves to
the case of the Euclidean distance here, since we focus did&ar skeletons
in this paper.

The length of a vector € R is denoted by|r|| = 1/, r?. We regardZ?

as a grid embeddded . The elements df? are called grid points.

Let B be the background, which is a given nonempty set of grid poifihe
Euclidean distance transfordt of B is the function that assigns to every grid
pointr the distance to the nearest background poingtéa B) = min{||r —
y|| | y € B}. Thefeature transform FTis defined as the set-valued function
that assigns to the set of closest boundary points. So we havér, B) =
{y € B | ||[r —y|| = dt(r,B)}. The parameteB is omitted fromdt andFT
when it is clear from the context.

It is possible to computET, but it is computationally cheaper and sufficient
for our purposes to compute, for every painfust a single feature transform
pointft(r). So, the functiorft is incompletely specified bft(r) € FT(r). In
fact, we computdt(r) as the first element d¥T(r) with respect to a lexical
ordering.

The computation oft proceeds inl phases. We specify the results of these
phases as follows. For< i < d, let L; be thei-dimensional subspace spanned
by the first: standard basis vectors &?. Thei-th phase computes the
dimensional feature transforft) which is characterized biy;(r) € FT(r, BN
(r + L;)). The result of the last phasefis= ft;. Since the components of
ft,(r) orthogonal tal; are always equal to the corresponding components of
we only compute and use the orthogonal projectioft,ain L;.

In Figures 1 and 2, we present the computation for the ¢ase3 in a box
of size(m, n, p). Sinceft; is a vector-valued function, the three components of
ft,(r) are writtenft,[r].z, ft;[r].y, andft,[r].z.

The first phase is the computation ff given in Fig. 1. For every pair
(y, z), it consists of two scans over the li(@, v, z) + L;. The boundans is
represented here by a 3D boolean arrayn the first scang[z] becomes the
distance to the next boundary point along the line. The sisoan collects
ft,.

The second and third phases are given in Fig. 2. In the bodigeobtiter
loop, the value oft; is computed fronit,_; for a given scan line, again by
two scans. The results of the forward scan are collected awkst and ¢,
with common stack pointey. The backward scan reafts as harvest. The
auxiliary functionsf and Separe given byf(i,u) = (i — u)? + g(u) and
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Sefi,u) = (u? — %+ g(u) — g(i)) div (2(u — 1)), where the functiom is the
squared Euclidean distance transform of the previous pl&sg (i) = (v —
ft,[x,4, 2].7)% in phase 2, ang(i) = (x — fty[x,y,4].2)% + (y — fty [z, y, ].y)?
in phase 3. Note that, in the body of the outer loop, we regaeshd z as
constants for phase 2, andandy as constants for phase 3.

Since the algorithm is completely analogous to our algorifior the Eu-
clidean distance transform, we refer to paper [13] for fartthetails.

forall y € [0.n — 1],z € [0..p — 1] do
(* scan 1x)
if bjm — 1,y,z] then glm —1]:=0
dse glm—1]:=00
endif
for x :=m — 2 downto 0 do
if blx,y, z] then g[z]:=0
dse glz]:=1+g[z+1]
endif
end for
( scan 2«)
fti [07 Y, Z].!L‘ = g[O}
for x :=1tom — 1do
ifx — ftilz — 1,9, z].z < g[z] then
ftl[ﬂ?,y,Z}-ﬂ? = ft1[$ - 17y,Z}.2?
else
ftile,y, 2.0 = o + gla]
endif
end forall

Figure 1. Program fragment for the first phase - one dimensional featansform in 3D.

3. Skeletonization

The feature transform of a data set can be used to computeltten. We
first examine the definition of the medial axis [3], see alse/[5L6]. Actually,
we present three possible formalizatio@viD, RMA andIMA. SinceRMAis
not restricted to grid points, where@D andIMA are, the latter two are the
main contenders.

Thereal medial axisand CMD skeleton.  For the moment we assume that
the boundany3 is a closed subset &@. For every point: € R?, we can form
the largest open disP(z,7) = {y € R? | ||z — y|| < r} that is disjoint
with B. This is called thanscribed diskof x. If an inscribed disk at point
p is not contained in any other inscribed disk®f we call it amaximal disk
with centerp. We define theeal medial axis RMAo consist of the points
x € R%\ B which are centers of maximal disks.
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forall z € [0..m — 1],z € [0..p — 1] do forall z € [0..m — 1],y € [0..n — 1] do
q:=0; s[0] :=0;¢[0] :=0 q:=0; s[0] := 0;¢[0] :=0
for u := 1ton — 1 do (* scan 1x) for u:=1top — 1 do (x scan 1x)
whilegq > 0 A f(t[q], s[g]) > f(t[q],u) do whilegq > 0 A f(t[q], s[g]) > f(t[q],u) do
qg:=q—1 qg:=q—1
if ¢ < 0then if ¢ < Othen
q:=0;s[0]:=u q:=0;s[0]:=u
else else
w := 14 Sep(s[q],u) w =1+ Sep(s[q],u)
if w < nthen if w < pthen
q:=q+1;slql :=u;tlg] i=w q:=q+1;slql :=u;tlg] i=w
endif endif
endif endif
end for end for
for u :=mn — 1downtoOdo (xscan 2x) for u:=p— 1downtoOdo (*scan 2«)
ftg[l‘,u,z}.ib:: fta [CE,S[(]},Z}.JE ft3[$7y7U]~x5: ft2[937y7$[qﬂ-93
fta [m,u,z}.y:s[q] ftg[m,y,u].y: ftg[m,y,S[qﬂ-y
if u = t[q] then q := ¢ — 1 endif fta[z,y, u].z:= s[q]
end for if u = t[q] then ¢ := ¢ — 1 endif
end forall end for
end forall
(a) Second phase (b) Third phase

Figure 2. Program fragments for the second and third phase.

Forz € Z%, theinscribed integer disk/ () is the intersectioD (z, r)NZ¢,
whereD(z, ) is its inscribed disk. The s&@MD (centers of maximal disks)
consists of the points € Z< for which M (x) is not contained in any/ (y)
with y # x, see also [7, 16]. As is presumably well known, it is not triet t
CMD C RMAN 7.

ExaMPLE 1 Let B consist of the four point8), 0), (3,0), (0,3), and(3, 3).
The intersection RMAZ is empty, but CMD contains the poirits 1), (1, 2),
(2,1), and(2,2).

Our aim is to define a skeleton that looks like the real medkid af a
smoothing of the boundary and tends to be connected whemthglement of
the boundary is connected, while still being computabléniedr time.

Recall thatdt(z) = min{||lx — y|| | y € B} andFT(z) = {y € B |
||z — y|| = dt(z)}. Clearly,dt(x) is the radius of the inscribed disk of(for
x € B, we regard the empty set as an open disk with radius 0). Thatifum
ft : R? — B is incompletely specified bft(z) € FT(z).

The next lemma may not be surprising, but it seems to be new.

LEMMA 2 AssumeB is a discrete (i.e., locally finite) subset Bf’. Letz e
R?. Thenz € RMA if and only if FTz) has more than one element.
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This lemma is not true wheB is not discrete. For example, in the case of
an ellipse, the real medial axis is a segment of the long aslg inside of
the ellipse; the two extremal points of the segment belorRM&Aand yet have
only one element in the feature transform set.

Henceforth, we assume that the boundary consists of grittgponly, i.e.
that B C Z?. It follows that B is discrete, so that Lemma 2 applies. The
following result is almost trivial to verify, but it is quiteseful.

LEMMA 3 Letz € R% and lety, =z be two different elements of El). Then
lly — z|| > 1. If moreoverz € Z4, then||y — z|| > 1.

The integer medial axis.  Since we assume the boundary now to consist
of grid points onlyRMA contains many points that would disappear when the
boundary is smoothed to the curved (hyper)surfadg‘iit is supposed to rep-
resent. For example, in the case of a boundary that congigte grid points

of a horizontal line inR?2, the real medial axis consists of the vertical lines
with odd-half-integer: coordinates. The following definition avoids these un-
wanted points.

DEFINITION 4 LetE = {e € Z? | ||e|| = 1}. Theinteger medial axi$MA
consists of the points € Z? such that for some € E we havel[ft(p + ¢) —
ft(p)|| > 1 and||m — ft(p + €)|| < ||m — ft(p)|| wherem = p + Le is the
midpoint of the line segment fropto p + e.

The second condition on the pé&ir, p+¢) in the definition oiMA is introduced
to get one point, rather than two, and specifically the pdiat is closest to the
perpendicular bisector of the line segment fria(p) toft(p+e). If pandp+e
have equal claims, both are included. The reason tdtusgher thanFT is
thatft is computationally cheaper, but also that the restrictioRoto Z¢ may
well be everywhere single-valued, so that consideratiaregghbouring points
is needed in any case.

We preferIMA over CMD since it is easier to compute and seems to give
more image information when the boundary is a discretinatioa continuous
boundary.

The following lemma is easy to prove.

LEMMA 5 IMAN B = (.

The definition ofiIMA is primarily motivated by the next result that shows that
IMA has “enough” elements.

THEOREM 6 Let p and ¢ be points of the boundary B. Every Manhattan-
shortest path fromp to ¢ that is not contained irB, contains a point of IMA.

Proof: Letr(i), 0 < i < k be a Manhattan-shortest path frgnto ¢ that is
not contained inB. Since it is a Manhattan-shortest path frpro ¢, we have
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r(0) = p, r(k) = ¢, and||r(: + 1) — r(¢)|| = 1 forall 0 < i < k. Since the
path is not contained i3, there is an indey with 0 < j < k andr(j) ¢ B.
Without loss of generality, we may assum(g) ¢ B.

Letz(i) = ft(r(4)) for all i. Thenz(0) = p andz(k) = g andz(1) # r(1).
We have||p — 7(1)|| = 1 and hencait(r(1)) = 1. By Lemma 3, this implies
thatz(1) = z(0) or ||z(1) — z(0)|| > 1. It follows that functionz represents a
path fromp to ¢ in k steps that is not a Manhattan-shortest path. This implies
that there is an index with 0 < j < k and||z(j + 1) — z(j)|| > 1. Put
m = L(r(i+ 1)+ (7). f [lm—2(j + )| < [lm —«(j)|| thenr(j) € IMA.
Otherwiser(j + 1) € IMA. In that casg + 1 < k because of Lemma 5]

While the previous result can be interpreted as sayingllathas enough
elements, the next result shows thistA has not too many elements, in the
sense that every one of them is clos&idA

THEOREM 7 For everyp € IMA, there ise € E andt € Rwith0 < ¢ < 1
andp + te € RMA.

Proof: Letp € IMA. Then there iz € E with ||ft(p) — ft(p + ¢)|| > 1
and||m — ft(p)|| > ||m — ft(p + €)|| wherem = p + Ze. First, assume that
ft(p) € FT(m). Thenft(p) is a closest point o to m. So||m — ft(p)|| <
||lm — ft(p + e)||. Since|lm — ft(p)|| > ||m — ft(p + €)||, it follows that
[|m —ft(p)|| = ||m — ft(p + e)|| and that bottit(p) andft(p + ) are elements
of FT(m). In view of lemma 2, this implies that. € RMAIis a point as looked
for. It remains to treat the case witt(p) ¢ FT(m). Let pointz be the last
point of the line segment from to m with ft(p) € FT(z). By continuity, this
point exists. Sincdt(p) ¢ FT(z') for points 2’ arbitrary close toz, the set
FT(z) consists of more than one element..Se RMA O

As illustrated by Theorem GMA has some good connectivity properties.
In that respect, it is better tha@MD.

ExaMPLE 8 Let B be the intersection df? with the union of thes-axis and

the y-axis. Then IMA consists of the poirits, £x) for all z € Z \ {0}, and

CMD is a subset of IMA that containst3, £3) and (+4, £4) but misses at
least the point§+1, +1), (£2, £2), (£5, £5).

In general, it seems that, if the complement/is bounded and connected,
thenIMA is connected (with respect to 8-connectivityZif, or more generally,
Loo-connectivity forz9).

A disadvantage dMA is that it can (weakly) depend on the choice of func-
tion ft within FT.
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Implementation.  The code for the skeletonization step is shown in Fig. 3.
One may work with squared distances instead of distanceshvalvoids the
computation of square roots and thus saves time.
When the medial axis is used for image analysis, it is ofteriulgo prune
it of disturbing details in some postprocessing phase. @ustcuction of the
integer medial axis yields some information that is venyfuider this purpose.
The easiest pruning is to strengthen the condififitp) — ft(p+e¢)|| > 1 in the
definition of IMA by replacing > 1’ by ‘> +’ for some pruning parameter.
This removes some points BIA that are due to irregularities of the boundary.
With the tunable parameteyr, skeletons may be computed according to a
user’s need. Unwanted skeleton points which still remambmremoved in a
postprocessing step, if desired.

procedure IMA skeleton procedure compar€(i,j ,k,p,q,r)
for i :=0tom — 1do x:=[i,54,k];y:=[p,q,r7]
for j:=0ton — 1do xy = ft3[z], ys == ft3y]
for k:=0top —1do if [|[zf —yr|| >~ then
if « > 0 then compare(i,j,k,i-1,j,Kendif crit:=inprod(zy —ys, x5 +yr —x —y)
if 5 > 0 then compare(i,jk,i,j-1,k)endif if crit > O then skel [z]:=1
if & > 0then compare(i,j,k,i,j,k-1)endif endif
end for if crit < Othen skel[y]:=1
end for endif
end for endif

Figure 3. Program fragment for computing the IMA skeleton from thetdiea transform.

Table 1. Timing results (in seconds) for several data sets.

Data Size Feature transform  Skeleton  Total

angio 256x256x128 3 4 7

engine  256x256x128 4 4 8

tooth 256x256x256 7 7 14

vessels 256x256x256 10 6 16

head 256x256x256 9 7 16
4, Results

We have run the skeletonization algorithm on several 3D skt Timing
results are given for three 3D data sets, i.e. CT scans of & laeeoth and
a number of blood vessels. The size of these sets and thengtimsults
are given in Table 1. These results were obtained on an 1.7R&dtium M
processor with 1024 Mb internal memory.
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Since the 3D skeletons form surfaces, they are somewhattaisualize.
Therefore, to get an idea of the quality of our skeletoniratlgorithm, we
first give a number of examples of 2D skeletons, see Fig. 4tHe8D case,
some insight into the structure of the skeleton surfaceseagained by using
volume rendering techniques. An example for the tooth detassgiven in
Fig. 5. For a better impression a sequence of views fromrdifiteviewpoints
is desired, which can be played as a movie.

y=1 v=12

Figure 4. 2D images with their skeletons. Left: original images. Ma&dIMA skeleton.
Right: pruned IMA skeleton.

(a) top (b) side (c) front (d) slice

Figure 5.  (a)-(c): Volume renderings of skeletons (white) inside diniginal data volumes.
(d): Slice of the original tooth data combined with the skate
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