
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Euclidean skeletons of digital image and volume
data in linear time by the integer medial axis

transform
Wim H. Hesselink, Affiliate Member, IEEE and Jos B.T.M. Roerdink, Senior Member, IEEE

Abstract—A general algorithm for computing Euclidean skele-
tons of 2D and 3D data sets in linear time is presented. These
skeletons are defined in terms of a new concept, called the
integer medial axis (IMA) transform. We prove a number of
fundamental properties of the IMA skeleton, and compare these
with properties of the CMD (centers of maximal disks) skeleton.
Several pruning methods for IMA skeletons are introduced
(constant, linear and square-root pruning) and their properties
studied. The algorithm for computing the IMA skeleton is based
upon the feature transform, using a modification of a linear-time
algorithm for Euclidean distance transforms. The skeletonization
algorithm has a time complexity which is linear in the number
of input points, and can be easily parallelized. We present
experimental results for several data sets, looking at skeleton
quality, memory usage and computation time, both for 2D images
and 3D volumes.

Index Terms—Feature transform, integer medial axis, Eu-
clidean skeletonization, integer perpendicular bisector.

I. INTRODUCTION

IN computer vision, skeleton generation is often one of the
first steps in image description and analysis. Intuitively, a

skeleton consists of the center lines of an object, and therefore
skeletons provide important structural information about image
objects by a relatively small number of pixels [1].

There are four main approaches to skeletonization [2]: 1)
thinning, i.e., iterative removal of points from the boundary;
2) wave propagation from the boundary; 3) detection of
crest points in the distance transformed image; 4) analytical
methods, such as based on Voronoi diagrams. A large number
of skeletonization algorithms exist, see e.g. [3], many of them
based upon mathematical morphology [4], [5], [6], [7], [8],
[9].

We note that in algorithms of type 3) one often restricts
oneself to local maxima of the distance transform [10], but in
this way one obtains too few skeleton points. The approach we
present here is a variant of the third approach, using a defini-
tion of skeletons based on Blum’s medial axis transform [11].

Often, one is satisfied with approximations to the Euclidean
metric (e.g., using chamfer metrics). In 1980, Danielsson [12]
gave two good approximating Euclidean distance transform
algorithms, and applied them to obtain the centers of maximal
(integer) disks (CMD), see below. He notes (p. 243) that
application of skeletons has been hampered by the lack of

The authors are with the Institute for Mathematics and Computing Science,
University of Groningen, P.O. Box 407, 9700 AK Groningen, The Nether-
lands. E-mail: {w.h.hesselink,j.b.t.m.roerdink}@rug.nl

true Euclidean distance maps. Especially in the 3D case where
data size can be very large, many existing algorithms for
computing 3D Euclidean skeletons are computationally too
expensive [13]. Ge and Fitzpatrick [14] clearly identified the
problem to determine the CMD : “The problems with existing
methods lie in the discrepancies between continuous and
discrete image maps”. The paper [14] also mentions the goal of
linking the centers of maximal disks into connected skeletons.

The main contribution of the present work is that we present
a simple and easily parallelizable linear time algorithm which
computes a skeleton defined in terms of a new concept,
called the integer medial axis (IMA) transform. The algorithm
works in arbitrary dimensions, and is based upon the general
linear time Euclidean distance transform (EDT) algorithm of
Hirata [15], which has been rediscovered several times, i.e.,
by ourselves, see Meijster et al. [16], and later by Maurer et
al. [17], [18]. Note that our algorithm works directly on
grid data (pixels in 2-D, voxels in 3-D). Skeletonization of
polygonal data or cellular complexes is outside the scope of
this paper.

The skeletonization algorithm has two phases. First, a
feature transform is computed, which uses essentially the same
algorithm as for the distance transform, the difference being
that not only distances are computed, but also background
points which realize the closest distance. The actual skele-
tonization is performed in a second pass through the data,
where the integer medial axis is computed by assigning points
to the skeleton depending on their feature transform.

This paper is an extended version of our preliminary work
presented at the ISMM’05 conference [19], and contains a
thorough theoretical treatment of the mathematical properties
of IMA skeletons, a more detailed discussion of skeleton
postprocessing, and several examples of volume visualizations
of 3D skeletons.

The IMA -skeleton in 3D will in general consist of surface
and line segments. To arrive at a line skeleton in 3D (i.e., a
one-dimensional centerline of a 3-D object) a further extension
of our method would be required, which we will consider in
future work.

Often, simplification or pruning of the skeleton is used
as a postprocessing step to remove unwanted points, which
arise especially in noisy data [20]. In our approach, skeleton
pruning is handled in the algorithm itself during the second
pass of the algorithm. In our initial approach [19], this was
achieved via a single adjustable parameter; in the version pre-
sented in this paper we develop so-called square-root pruning

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

which no longer involves tuning parameters and effectively
suppresses artefacts due to straight boundary discretization.
Another possibility would be to first extract the boundaries
of image objects, and then compute shortest distances along
boundary points. This leads to nicer skeletons, at the expense
of increased computation time. This method was introduced
by Strzodka and Telea [21], who also developed an efficient
implementation on graphics hardware.

Our method does not aim at a minimal skeleton useful
for image compression with exact reconstruction, but at an
efficient computation of skeletons directly from the Euclidean
feature transform, thus avoiding the costly and complicated
phase of removing centers of not-quite-maximal disks by the
techniques of [22]. We establish a number of mathematical
properties of the IMA and point out some relations to Blum’s
real medial axis (RMA) and to the CMD skeleton. The IMA -
skeleton does not necessarily preserve the topology of the
input image, nor does the CMD skeleton (see [23] for a
general discussion of digital topology). More work is needed to
establish the topological characteristics of the IMA skeleton.
Below, we will state a conjecture about the connectivity (in
a special sense) of the unpruned IMA -skeleton. In practice,
connectivity will be lost during pruning. If desired, postpro-
cessing techniques such as connected or topology-preserving
thinning can be applied to the (pruned) IMA -skeleton. The
main advantage of the IMA -skeleton is that it can be computed
in linear time (including the pruning step), which makes it
feasible for interactive skeletonization of large 3-D data sets.
It can be shown that the IMA allows perfect reconstruction
of the input image, although it is not a minimal skeleton.
Reconstruction issues will be discussed elsewhere.

The remainder of this paper is organized as follows. In
section II we briefly review our linear time feature transform
computation which forms the basis of our skeletonization
method. In section III we then introduce the IMA skeleton,
and prove a number of fundamental properties. Pruning of
IMA skeletons is considered in section IV. In section V an
efficient algorithm to compute the IMA skeleton is developed.
For all program parts, explicit and compact pseudocode is
given. Some experimental results are presented in section VI.
Section VII contains conclusions and ideas for future work.

II. FEATURE TRANSFORM COMPUTATION

We briefly describe extension of the Euclidean distance
transform algorithm to the computation of feature transforms,
closely adhering to the notation and approach given in [16].
The algorithm can deal with several types of distances (Man-
hattan, chessboard, or chamfer distances), but we will limit
ourselves to the case of the Euclidean distance here, since we
focus on Euclidean skeletons in this paper.

The length of a vector r ∈ Rd is denoted by ||r|| =
√∑

i r2
i .

We regard Zd as a grid embedded in Rd. The elements of Zd

are called grid points.
A binary image is a pair (A,F) where A is a rectangular

box of grid points and F is a subset of A, called the
foreground. The complement B = A \ F of F within A is
called the background and A is called the box. We are mainly

Algorithm 1 Program fragment for the first phase - one
dimensional feature transform in 3D.

Input : binary image b of size m× n× p
Output : feature transform ft1 along the first dimension

forall y ∈ [0..n− 1], z ∈ [0..p− 1] do
(∗ scan 1 ∗)
if b[m− 1, y, z] then g[m− 1] := 0
else g[m− 1] := ∞
endif
for x := m− 2 downto 0 do

if b[x, y, z] then g[x] := 0
else g[x] := 1 + g[x + 1]
endif

end for
(∗ scan 2 ∗)
ft1 [0, y, z].x := g[0]
for x := 1 to m− 1 do

if x− ft1 [x− 1, y, z].x ≤ g[x] then
ft1 [x, y, z].x := ft1 [x− 1, y, z].x

else
ft1 [x, y, z].x := x + g[x]

endif
end forall

Algorithm 2 Program fragment for the second phase.
Input : feature transform ft1 along the first dimension
Output : feature transform ft2 along the second dimension

forall x ∈ [0..m− 1], z ∈ [0..p− 1] do
q := 0; s[0] := 0; t[0] := 0
for u := 1 to n− 1 do (∗ scan 1 ∗)

while q ≥ 0 ∧ f(t[q], s[q]) > f(t[q], u) do
q := q − 1

if q < 0 then
q := 0; s[0] := u

else
w := 1 + Sep(s[q], u)
if w < n then

q := q + 1; s[q] := u; t[q] := w
endif

endif
end for
for u := n− 1 downto 0 do (∗ scan 2 ∗)

ft2 [x, u, z].x:= ft1 [x, s[q], z].x
ft2 [x, u, z].y:= s[q]
if u = t[q] then q := q − 1 endif

end for
end forall

interested in two-dimensional or three-dimensional images, but
the theory is most easily formulated for d–dimensional images
with d ≥ 2. The set A is thus a rectangular subset of the
grid Zd, which itself is a subset of the Euclidean vector space
Rd with the standard inner product and associated Euclidean
distance.

The Euclidean distance transform dt of B is the function
that assigns to every grid point r the distance to the nearest
background point, so dt(r, B) = min{||r − y|| | y ∈ B}. The
feature transform FT is defined as the set-valued function that
assigns to r the set of closest background points. So we have
FT(r, B) = {y ∈ B | ||r − y|| = dt(r, B)}. The parameter B
is omitted from dt and FT when it is clear from the context.

It is possible to compute FT (for a linear-time algorithm,
see [24]), but it is computationally cheaper and sufficient for
our purposes to compute, for every point r, just a single feature
transform point ft(r). So, the function ft is incompletely

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Algorithm 3 Program fragment for the third phase.
Input : feature transform ft2 along the second dimension
Output : feature transform ft3 along the third dimension

forall x ∈ [0..m− 1], y ∈ [0..n− 1] do
q := 0; s[0] := 0; t[0] := 0
for u := 1 to p− 1 do (∗ scan 1 ∗)

while q ≥ 0 ∧ f(t[q], s[q]) > f(t[q], u) do
q := q − 1

if q < 0 then
q := 0; s[0] := u

else
w := 1 + Sep(s[q], u)
if w < p then

q := q + 1; s[q] := u; t[q] := w
endif

endif
end for
for u := p− 1 downto 0 do (∗ scan 2 ∗)

ft3 [x, y, u].x:= ft2 [x, y, s[q]].x
ft3 [x, y, u].y:= ft2 [x, y, s[q]].y
ft3 [x, y, u].z:= s[q]
if u = t[q] then q := q − 1 endif

end for
end forall

specified by ft(r) ∈ FT(r). In fact, we compute ft(r) as the
first element of FT(r) with respect to a lexical ordering.

The computation of ft proceeds in d phases. We specify
the results of these phases as follows. For 0 < i ≤ d,
let Li be the i-dimensional subspace spanned by the first i
standard basis vectors of Rd. The i-th phase computes the i-
dimensional feature transform fti which is characterized by
fti(r) ∈ FT(r, B ∩ (r + Li)). Here r + Li = {r + x|x ∈ Li}
denotes the subspace Li translated over the vector r. The
result of the last phase is ft = ftd. Since the components of
fti(r) orthogonal to Li are always equal to the corresponding
components of r, we only compute and use the orthogonal
projection of fti on Li.

In Algorithms 1-3, we present the computation for the case
d = 3 in a box of size (m,n, p). Since fti is a vector-valued
function, the three components of fti(r) are written fti[r].x,
fti[r].y, and fti[r].z.

The first phase is the computation of ft1 given in Alg. 1.
For every pair (y, z), it consists of two scans over the line
(0, y, z)+L1. The background B is represented here by a 3D
Boolean array b, i.e., b(x, y, z) ≡ true ⇐⇒ (x, y, z) ∈ B. In
the first scan, g[x] becomes the distance to the next background
point along the line. The second scan collects ft1.

The second and third phases are given in Algs. 2 and 3. In
the body of the outer loop, the value of fti is computed from
fti−1 for a given scan line, again by two scans. The results of
the forward scan are collected on stacks s and t, with common
stack pointer q. The backward scan reaps fti as harvest. The
auxiliary functions f and Sep are given by f(i, u) = (i −
u)2 + g(u) and Sep(i, u) = (u2− i2 + g(u)− g(i)) div(2(u−
i)), where the function g is the squared Euclidean distance
transform of the previous phase. So, g(i) = (x−ft1[x, i, z].x)2

in phase 2, and g(i) = (x−ft2[x, y, i].x)2+(y−ft2[x, y, i].y)2

in phase 3. Note that, in the body of the outer loop, we regard
x and z as constants for phase 2, and x and y as constants for
phase 3.

Since the algorithm is completely analogous to our al-
gorithm for the Euclidean distance transform, we refer to
paper [16] for further details.

III. SKELETONIZATION

The feature transform of a data set can be used to compute
its skeleton. We first examine the definition of the medial
axis [11], see also [25], [12], [14], [22]. Actually, we present
three possible formalizations: CMD (centers of maximal
discs), RMA (real medial axis), and IMA (integer medial
axis). Since RMA is not restricted to grid points, whereas
CMD and IMA are, the latter two are the main contenders.

A. The real medial axis and CMD skeleton

For the moment we assume that the background B is a
closed subset of Rd. For every point x ∈ Rd, we can form
the largest open disk D(x, r) = {y ∈ Rd | ||x − y|| < r}
that is disjoint with B. This is called the inscribed disk of x.
If an inscribed disk at point p is not contained in any other
inscribed disk of B, we call it a maximal disk with center p.
We define the real medial axis RMA to consist of the points
x ∈ Rd \B which are centers of maximal disks.

For x ∈ Zd, the inscribed integer disk M(x) is the
intersection D(x, r)∩Zd, where D(x, r) is its inscribed disk.
The set CMD (centers of maximal disks) consists of the points
x ∈ Zd for which M(x) is not contained in any M(y) with
y 6= x, see also [14], [22]. As is presumably well known, it is
not true that CMD ⊆ RMA ∩ Zd.

Example 1: Let B consist of the four points (0, 0), (3, 0),
(0, 3), and (3, 3). The intersection RMA ∩ Zd is empty, but
CMD contains the points (1, 1), (1, 2), (2, 1), and (2, 2).

Our aim is to define a skeleton that looks like the real
medial axis of a smoothing of the background and tends to
be connected when the complement of the background is
connected, while still being computable in linear time. By
contrast, CMD is better for compression of binary images,
in the sense that CMD contains fewer points while the image
still is reconstructible from CMD. We will consider image
reconstruction in another publication.

Recall that dt(x) = min{||x − y|| | y ∈ B} and FT(x) =
{y ∈ B | ||x − y|| = dt(x)}. Clearly, dt(x) is the radius of
the inscribed disk of x (for x ∈ B, we regard the empty set
as an open disk with radius 0). The function ft : Rd → B is
incompletely specified by ft(x) ∈ FT(x).

The next lemma may not be surprising, but it seems to be
new.

Lemma 2: Assume B is a discrete (i.e., locally finite) subset
of Rd. Let x ∈ Rd. Then x ∈ RMA if and only if FT(x) has
more than one element.

Proof: Suppose FT(x) contains two different elements
y and z. Put r = dt(x). We have to prove that D(x, r)
is not contained in some other inscribed disk. Assume that
D(x, r) is contained in the inscribed disk D(w, s). Then y
is a background point in the closures of both disks; therefore
both disks have the same tangential hyperplanes in y; therefore
the point x lies on the line segment from w to y. By the same

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

argument, x also lies on the line segment from w to z. It
follows that x = w and r = s.

Conversely, assume x ∈ RMA. Then x /∈ B and its
inscribed disk D(x, r) is not contained in any other inscribed
disk. We have to prove that FT(x) has more than one element.
Assume FT(x) = {y}. Since x /∈ B, we have x 6= y.
Since the background B is discrete, there is s > r such that
D(x, s)∩B = {y}. We now choose a point w such that x lies
on the line segment from w to y and that ||w−x|| < 1

2 (s−r).
Then D(w, ||w−y||) is a inscribed disk that contains D(x, r).
This is a contradiction.

The main point of this lemma is that it is not true when B
is not discrete. For example, let B be the ellipse in R2 given
by the equation x2 + a2y2 = a2 for a > 1. The real medial
axis is the segment of the long axis that consists of the points
(t, 0) with |t| ≤ a − a−1, strictly inside the ellipse. The two
extremal points x± = ±(a − a−1) belong to RMA and yet
have only one element in FT(x±).

Henceforth, we assume that the background consists of grid
points only, i.e., that B ⊆ Zd. It follows that B is discrete, so
that Lemma 2 applies. The following result is almost trivial
to verify, but it is quite useful.

Lemma 3: Let x ∈ Rd and let y, z be two different elements
of FT(x). Then ||y − z|| ≥ 1. If moreover x ∈ Zd, then
||y − z|| > 1.

B. The integer medial axis

Since we assume the background now to consist of grid
points only, RMA contains many points that would disappear
when the background is smoothed to the curved (hyper)surface
in Rd it is supposed to represent. For example, in the case of
a background that consists of the grid points of a horizontal
line in R2, the real medial axis consists of the vertical lines
with odd-half-integer x-coordinates. Therefore, we introduce
a skeleton definition which avoids these unwanted points.

Let E = {e ∈ Zd | ||e|| = 1}. The elements of E are called
unit vectors.

Definition 4: The integer medial axis IMA consists of the
points p ∈ Zd such that for some e ∈ E we have ||ft(p +
e) − ft(p)|| > 1 and ||m − ft(p + e)|| ≤ ||m − ft(p)|| where
m = p + 1

2e is the midpoint of the line segment from p to
p + e.

The reason to use ft rather than FT is that ft is com-
putationally cheaper, since it involves a single closest point
instead of the set of all closest points in the case of FT. Also
the restriction of FT to Zd may well be everywhere single-
valued, so that consideration of neighbouring points is needed
in any case. For a linear-time algorithm to compute the feature
transform sets FT, see [24].

The reason for requiring the distance to be strictly greater
than 1 is to avoid skeleton points which are merely due to the
discreteness of the background. The second condition on the
pair (p, p + e) in the definition of IMA is introduced to get
one point, rather than two, and specifically the point that is
closest to the perpendicular bisector of the line segment from
ft(p) and ft(p + e). If p and p + e are equally close, both
are included. We prefer IMA over CMD since it is easier to

compute and seems to give more image information when the
background is a discretization of a continuous background.

The following lemma says that IMA is disjoint with the
background.

Lemma 5: IMA ∩B = ∅.
Proof: Assume p ∈ IMA∩B. Then ft(p) = p and there is

e ∈ E with ||ft(p+e)−p|| > 1 and ||m−p|| ≥ ||m−ft(p+e)||
where m = p + 1

2e. It follows that 1
2 ≥ ||m− ft(p + e)|| and

hence that ||p− ft(p + e)|| ≤ 1, a contradiction.
The definition of IMA is primarily motivated by the next result
that shows that IMA has “enough” elements. A Manhattan
path on Zd is a sequence of grid points such that every pair
of subsequent points has distance 1 (and is therefore along
one of the coordinate axes).

Theorem 6: Let p and q be points of the background B,
and let L be a shortest Manhattan path from p to q. If L is
not contained in B, it contains a point of IMA.

Proof: Let r(i), 0 ≤ i ≤ k be a shortest Manhattan
path from p to q that is not contained in B. Since it is a
Manhattan path from p to q, we have r(0) = p, r(k) = q,
and ||r(i + 1) − r(i)|| = 1 for all 0 ≤ i < k. Since the path
is not contained in B, there is an index j with 0 < j < k
and r(j) /∈ B. Without loss of generality, we may assume
r(1) /∈ B.

Let x(i) = ft(r(i)) for all i. Then x(0) = p and x(k) =
q and x(1) 6= r(1). We have ||p − r(1)|| = 1 and hence
dt(r(1)) = 1. By Lemma 3, this implies that x(1) = x(0) or
||x(1)− x(0)|| > 1. If x satisfies ||x(j + 1)− x(j)|| ≤ 1 for
all j, then x(1) = x(0), so x represents a shorter Manhattan
path than r, contrary to the assumption that r is a shortest
Manhattan path. It follows that there is an index j with 0 ≤
j < k and ||x(j+1)−x(j)|| > 1. Put m = 1

2 (r(j+1)+r(j)).
If ||m−x(j+1)|| ≤ ||m−x(j)|| then r(j) ∈ IMA. Otherwise
r(j + 1) ∈ IMA. In that case j + 1 < k because of Lemma 5.

Fig. 1. 2D images with their skeletons. Left: original images (foreground in
black, background in white). Right: IMA skeleton.

As an illustration of the theorem see Fig. 1. In both
cases, any interior shortest Manhattan path between discrete
background points indeed intersects IMA. Note also the effect
of the discreteness of the background on IMA in case of the
ellipse: instead of a central line segment, as in the continuous
case, there are now a large number of line segments radiating
out towards the background. The suppression (pruning) of such
undesired effects will be considered in section IV.

While the previous theorem can be interpreted as saying that
IMA has enough elements, the next result shows that IMA has

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

not too many elements, in the sense that every one of them is
close to RMA.

Theorem 7: For every p ∈ IMA, there is e ∈ E and t ∈ R
with 0 ≤ t ≤ 1

2 and p + te ∈ RMA.
Proof: Let p ∈ IMA. Then there is e ∈ E with ||ft(p)−

ft(p + e)|| > 1 and ||m − ft(p)|| ≥ ||m − ft(p + e)|| where
m = p+ 1

2e. First, assume that ft(p) ∈ FT(m). Then ft(p) is a
closest point on B to m. So ||m− ft(p)|| ≤ ||m− ft(p + e)||.
Since ||m − ft(p)|| ≥ ||m − ft(p + e)||, it follows that ||m −
ft(p)|| = ||m − ft(p + e)|| and that both ft(p) and ft(p + e)
are elements of FT(m). In view of lemma 2, this implies that
m ∈ RMA is a point as looked for. It remains to treat the
case with ft(p) /∈ FT(m). Let point z be the last point of the
line segment from p to m with ft(p) ∈ FT(z). By continuity,
this point exists. Since ft(p) /∈ FT(z′) for points z′ arbitrary
close to z, the set FT(z) consists of more than one element.
So z ∈ RMA.
The converse of this theorem is not true. The simplest coun-
terexample in R2 is the case mentioned at the beginning of
this section: if B = {(x, 0)|x ∈ Z} then IMA is empty and
RMA equals all perpendicular bisectors of neighbouring pairs.

C. Connectivity of IMA versus CMD

As illustrated by Theorem 6, IMA has some good con-
nectivity properties. In general, we conjecture that, if the
complement of B is bounded and connected, then IMA is
connected with respect to 8-connectivity in Z2, or more
generally, sq2-connectivity for Zd (see section III-D). In that
respect, it is better than CMD.

Example 8: Let B be the intersection of Z2 with the union
of the x-axis and the y-axis. Then IMA consists of the points
(x,±x) for all x ∈ Z \ {0}, and CMD is a subset of IMA
that contains (±3,±3) and (±4,±4) but misses at least the
points (±1,±1), (±2,±2), (±5,±5).

One might conjecture that for every point p ∈ CMD \ IMA
there is an e ∈ E with p+e ∈ IMA. This however is not true,
as is shown by the following example.

Example 9: Consider in Z2 the image with the back-
ground B that consists of the four points (83, 14), (−14, 83),
(−83,−14), and (14,−83) (note the rotational symmetry). It
turns out that p = (4, 1) is an element of CMD. The points
of IMA nearest to p are (2, 3) and (2,−1), both at distance
2
√

2.
Although the CMD is not always contained in the IMA,

we will describe elsewhere that the IMA allows perfect
reconstruction of the input image.

The complement of IMA ∪ B can be Manhattan-
connected in nontrivial ways. The simplest case is B =
{(2, 2), (3, 2), (2, 3)} in Z2. Here, IMA consists of the integer
solutions of x = y ≥ 3. A more complicated example in Z3

uses the background B = H ∪L where H is the halfplane of
the points (x, y, z) with z = 0 ≤ x, and L is the halfline of
the points with x = y = 0 ≤ z. In this case IMA is the union
C ∪Q± where C is an approximation of half-cone of the real
points with x2 + y2 = z2 ∧ z ≥ 1 ∧ x ≥ 0 and the two
quarterplanes Q± of the solutions of 1 ≤ z = ±y ∧ x ≤ 0;

see Fig. 2. Since the quarterplanes Q± do not touch, the
complement of IMA ∪B is Manhattan-connected.

Fig. 2. Example: when the background equals the union of a halfplane and
orthogonal halfline (black colour), the IMA is the union of a half-cone and
two quarterplanes (white / grey colour). See text for details.

D. The integer perpendicular bisector

In this subsection, we analyze IMA for the case that the
background has precisely two elements.

An easy linear algebra calculation shows that, for all p, x,
and y ∈ Rd, we have

||p− x|| ≥ ||p− y|| ≡ (y − x, 2p− x− y) ≥ 0. (1)

Here (· · · , · · ·) is used to denote the standard inner product of
Rd. The equivalence remains valid when ≥ is replaced by ≤
or =. In particular, the “real” perpendicular bisector of the line
segment from x to y consists of the vectors p with (y−x, 2p−
x − y) = 0. If we want a reasonable number of grid points
on the bisector, we have to relax the condition that the inner
product should be 0. This is done in the following definition.

Recall that the L∞ norm on Rd is given by ||x||∞ =
maxi|xi|. We define the integer perpendicular bisector of the
line segment between grid points x and y to consist of the
grid points p ∈ Zd with |(y − x, 2p− x− y)| ≤ ||y − x||∞.

Lemma 10: Let x and y be grid points with ||x− y|| > 1.
Let B = {x, y}. Then IMA equals the integer perpendicular
bisector of the line segment between x and y.

Proof: Write H for the integer perpendicular bisector of
the line segment between x and y. We first prove H ⊆ IMA.
Let p ∈ H . Without loss of generality, we may assume that
ft(p) = y. It follows that ||p − x|| ≥ ||p − y||. By formula
(1), we have (y − x, 2p− x− y) ≥ 0. Since p ∈ H , we have
0 ≤ (y−x, 2p−x−y) ≤ ||y−x||∞. There is an index i such
that |yi−xi| = ||y−x||∞ > 0. This implies that there is a unit
vector e ∈ E with (y−x, e) = −||y−x||∞ < 0. It follows that
(y−x, 2p+e−x−y) ≤ 0 and also (y−x, 2p+2e−x−y) <
0. By formula (1), this implies that m = p + 1

2e satisfies
||m − x|| ≤ ||m − y|| and that ||p + e − x|| < ||p + e − y||.
We therefore have ft(p + e) = x and p ∈ IMA.

Conversely, let p ∈ IMA. Without loss of generality, we
may assume that ft(p) = y. Since p ∈ IMA and B = {x, y},
there is e ∈ E with ft(p+e) = x and ||m−x|| ≤ ||m−y|| for
m = p + 1

2e. Since ||p − x|| ≥ ||p − y||, formula (1) implies
that (y − x, 2p − x − y) ≥ 0. The formula about m yields
(y−x, 2p+e−x−y) ≤ 0 and hence 0 ≤ (y−x, 2p−x−y) ≤
(y − x, e) ≤ ||y − x||∞. This proves p ∈ H .

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

In particular this proves that, in this special case, the set
IMA does not depend on the choice of function ft (see also
section III-E).

We define an sq2-edge in Zd to be a pair of grid points p,
q ∈ Zd with ||p− q|| ≤

√
2. Note that in 3-D this corresponds

to 18-connectedness. We define an sq2-path to be a sequence
of grid points such that subsequent pairs are sq2-edges. A
subset of Zd is called sq2-connected if and only if every pair
of elements can be connected via an sq2-path. In Z2, sq2-
connectivity is the same as 8-connectivity.

Lemma 11: The integer perpendicular bisector of a line
segment between x and y in Zd is sq2-connected.

Proof: Without loss of generality, we may assume that
x = 0 and that ||y||∞ equals the first coordinate y1 of y. Let
H be the integer perpendicular bisector of x and y. Then H
consists of the grid points p with |(y, 2p − y)| ≤ y1. Let H ′

be the subset of H that consists of the grid points p with
−y1 ≤ (y, 2p − y) < y1 (note that the left-hand relation is
≤ while the right-hand relation is <). If p ∈ H \ H ′, then
(y, 2p− y) = y1 so that p− e1 ∈ H ′ for the first basis vector
e1 of Zd. Therefore, every point p ∈ H \H ′ has an sq2-edge
to H ′. It remains to show that H ′ is sq2-connected.

Let f : Zd → Zd−1 be the projection function that removes
the first coordinates. It is easy to see that f induces a bijection
H ′ → Zd−1. Let g : Zd−1 → H ′ be the inverse bijection. If
||q−q′|| = 1 in Zd−1, then ||g(q)−g(q′)|| ≤

√
2 . Since Zd−1

is Manhattan-connected, it follows that H ′ is sq2-connected.

We now formulate the following conjecture.
Conjecture 12: If the complement of B is bounded and sq2-

connected, then IMA is sq2-connected.
Remark 13: In general, IMA has codimension 1, but holes

in the background can generate pieces of IMA of higher
codimension, as the next example shows. Consider in Z3

the background that consists of the 20 grid points x with
||x||∞ = 1 < ||x|| . Then IMA is the union of the three
coordinate axes and is of codimension 2.

E. How much does IMA depend upon the choice of ft?

A disadvantage of IMA is that it can (weakly) depend on the
choice of function ft within FT. The following is an example.

Example 14: Take d = 2. Let the background B consist of
the three points a = (−6, 7), b = (3, 9), and c = (10, 2). We
claim that in this case the question whether 0 ∈ IMA holds
depends on the choice of ft.

We have the unit vectors e = (1, 0), f = (0, 1), and −e
and −f . It is easy to verify that FT(e) = {b, c}, and that
FT(x) = {a} for each x ∈ {0,−e, f,−f}. It follows that
ft(e) = b or c, and that ft(x) = a for each x ∈ {0,−e, f,−f}.
The neighbours x 6= e of the origin cannot be used to infer
0 ∈ IMA since they have ft(x) = ft(0). Therefore, since ||b−
a|| > 1 and ||c − a|| > 1, we get that 0 ∈ IMA if and only
if ||m − ft(e)|| ≤ ||m − a|| where m = 1

2e. It turns out that
||m−a|| = 9.55, ||m− b|| = 9.34, and ||m− c|| = 9.71. This
implies 0 ∈ IMA if ft(e) = b and 0 /∈ IMA if ft(e) = c.

We now will show that, when the choice of ft within
FT is replaced by another, the set IMA does not change
very much. We first prove an auxiliary result about the
case that neighbouring grid points have neighbouring feature
transforms. For a vector e 6= 0, we write e⊥ to denote the
hyperplane {z ∈ Rd | z ⊥ e}. (Recall that “⊥” stands for
orthogonality.)

Lemma 15: Let p and q be grid points with ||p − q|| = 1.
Assume that x ∈ FT(p) and y ∈ FT(q) satisfy ||x − y|| = 1.
Write e = q − p. Then y = x + e and x− p ∈ e⊥.

Proof: We have e ∈ E. By translation, we may assume
that p = 0 and q = e. Write f = y− x. Then f ∈ E. Since x
and y = x + f are both background points, and x and f are
grid points, we have

x ∈ FT(0) ⇒ ||x|| ≤ ||x + f || ⇒ 2(x, f) + 1 ≥ 0
⇒ (x, f) ≥ 0.

A similar calculation yields

x + f ∈ FT(e) ⇒ ||x− e + f || ≤ ||x− e||
⇒ 2(x− e, f) + 1 ≤ 0 ⇒ (x, f) ≤ (e, f)− 1.

Since e and f are elements of E, we have (e, f) ≤ 1, with
equality if and only if e = f . This implies e = f and (x, e) =
0.

Lemma 16: Let p ∈ Zd and y ∈ FT(p) and e ∈ E be such
that (y−ft(p), e) > 0. Then we have p ∈ IMA or p+e ∈ IMA.

Proof: Without loss of generality we may assume that
p = 0. Write x = ft(0). Then we have ||y|| = ||x||. Since x
and y are integral, we have (y− x, e) ≥ 1. Since ||x|| = ||y||,
we then have ||x− e||2 − ||y − e||2 = 2(y − x, e) ≥ 2. Since
y is a background point, implies that x /∈ FT(e).

We write z = ft(e). Then ||x − e||2 − ||z − e||2 ≥ 2 and
hence x 6= z. If ||z − x|| = 1, then Lemma 15 implies ||x −
e||2−||z−e||2 = 1 by the Theorem of Pythagoras. This proves
||x−z|| > 1 and hence 0 ∈ IMA or e ∈ IMA by the definition
of IMA.

For every nonzero vector v, there is an element e ∈ E with
(v, e) > 0. Therefore, Lemma 16 implies

Corollary 17: Assume that p is a grid point with #FT(p) ≥
2. Then p ∈ IMA, or p + e ∈ IMA for some e ∈ E.

The next result shows that IMA does not depend strongly
on the choice of ft.

Theorem 18: Let ft1 and ft2 be two different choice func-
tions within FT. Let IMA1 and IMA2 be the corresponding
sets IMA. Assume that p ∈ IMA1. Then p ∈ IMA2 or
p + e ∈ IMA2 for some e ∈ E.

Proof: Without loss of generality, we may assume that
p = 0. If FT(0) has more than one element, Corollary
17 applied to IMA2 yields the assertion. We may therefore
assume that FT(0) is a singleton set, say FT(0) = {x}.

Then ft1(0) = ft2(0) = x. Since 0 ∈ IMA1, there is e ∈ E
such that y = ft1(e) satisfies ||x − y|| > 1 and || 12e − x|| ≥
|| 12e− y||. By formula (1), this implies (y−x, e−x− y) ≥ 0
and hence (y − x, e) ≥ ||y||2 − ||x||2. Since y /∈ FT(0), we
have ||x|| < ||y||. This proves

0 < ||y||2 − ||x||2 ≤ (y − x, e). (2)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

It follows that ||y||2−||x||2 < 2(y−x, e), or equivalently ||e−
y|| < ||e−x||. This implies that x /∈ FT(e). If ||x− ft2(e)|| >
1, then 0 or e is in IMA2 and we are done. We may therefore
assume that ||ft2(0)− ft2(e)|| ≤ 1, that is, ||x− ft2(e)|| ≤ 1.

Since x /∈ FT(e), it follows that ||x−ft2(e)|| = 1. Therefore,
Lemma 15 implies that ft2(e) = x+e and x ∈ e⊥. Since y and
x+e are both in FT(e), we have ||x|| = ||y−e||. Substitution
in (2) yields 0 < ||y||2 − ||y − e||2 ≤ (y, e), or equivalently
0 < 2(y, e)− 1 ≤ (y, e). Since (y, e) is an integer, it follows
that (y, e) = 1.

We now define z = y − e, so that ||z|| = ||x|| and z ∈ e⊥.
Since ||x − y|| > 1, we have z 6= x. Since ||z|| = ||x||, it
follows that (x, z − x) 6= 0. Consider the set of unit vectors
E′ = {f ∈ E | (z − x, f) ≥ 1}. Since e, −e /∈ E′, the set E′

is an orthonormal set in e⊥ and z−x =
∑

(z−x, f)f where
f ranges over E′. Since (x, z − x) 6= 0, there is a unit vector
f ∈ E′ with (x, f) 6= 0.

We shall prove that ||ft2(0) − ft2(f)|| > 1. We first verify
that

||f − x|| > ||f − y||
≡ { formula (1)} (y − x, 2f − x− y) > 0
≡ { z = y + e } (z + e− x, 2f − x− z − e) > 0

≡ { x, z, f ∈ e⊥ } (z − x, 2f − z − x)− (e, e) > 0
≡ { ||z|| = ||x|| , ||e|| = 1 } 2(z − x, f)− 1 > 0
≡ { f ∈ E′ } true.

Since y ∈ B, this implies x /∈ FT(f) and hence x 6= ft2(f).
Recall that x = ft2(0). If ||x−ft2(f)|| = 1, Lemma 15 implies
x ⊥ f , contradicting (x, f) 6= 0. This proves that ||ft2(0) −
ft2(f)|| > 1. Therefore, 0 or f is an element of IMA2.

IV. PRUNING OF IMA
For many images, both natural and artificial, IMA contains

many “unwanted” points: points that a human observer would
not regard as belonging to a natural skeleton. Therefore,
when the medial axis is used for image analysis, it is often
useful to prune it of disturbing details in some postprocessing
phase. Our construction of the integer medial axis yields some
information that is very useful for this purpose.

A. Constant pruning

The easiest pruning, as proposed by us in [19], is to
strengthen the condition ||ft(p)−ft(p+e)|| > 1 in the definition
of IMA by replacing ‘> 1’ by ‘> γ’ for some pruning
parameter γ ≥ 1. This removes some points of IMA that
are due to staircasing of the discrete background.

Example 19: Let d = 2. Let n ∈ N be given. Consider
B consisting of the grid points (x, y) with |x| + |y| > n.
The complement of B in Z2 is bounded and connected.
IMA consists of the two coordinate axes together with the
checkerboard points (x, y) with n− |x| − |y| even. The latter
points are on the perpendicular bisectors of neighbouring
points on the background. These points disappear if one uses
a pruning parameter γ ≥

√
2.

When the background is given by |x| + 2 · |y| > n, one
needs γ ≥

√
5 to remove the artifacts of the skew lines.

In this way, IMA points are pruned for which the closest
background points are too close together. Let us call this
method constant pruning. For many practical images, one can
find a value for γ such that IMA(γ) is an acceptable skeleton.
The best value for γ depends on the coarseness of the image.
On the one hand, a small value of γ leads to “unwanted”
skeleton points due to discretization of the background B. On
the other hand, if one wants a skeleton that traverses a channel
with a width of k pixels, one needs to take γ < k.

B. Linear pruning

For many images, one would want to apply a pruning
constant γ that varies over the different regions of the image,
namely small where dt is small and large where dt is large.

This suggests to take γ proportional to dt. More precisely,
for any γ ∈ N, let IMA[γ] consist of the points p ∈ A such
that for some e ∈ E we have ||ft(p)−ft(p+e)|| > 1

2γ ||ft(p)−
p + ft(p + e)− (p + e)|| and ||m− ft(p)|| ≥ ||m− ft(p + e)||
where m = p + 1

2e. Let us call this method linear pruning.

p

p+e

h

d

ft(p)−p

ft(p+e)

ft(p)

ft(p+e)−(p+e)

Fig. 3. Linear pruning is equivalent to setting a minimum on the bisector
angle φ.

Referring to Fig. 3, we observe that, roughly speaking, ft(p)
and ft(p+ e) form the equal legs of an isosceles triangle with
top angle φ where

tan(
1
2
φ) = d/h =

||ft(p)− ft(p + e)||/||ft(p)− p + ft(p + e)− (p + e)|| > 1
2
γ.

For small φ, this reduces to the condition φ > γ. So γ is
a measure for the critical angle at which linear pruning gets
effective. Since we always have the additional condition that
dif := ||ft(p)− ft(p+e)||2 > 1, and dif is integer, we see that
linear pruning is only effective when 1

4γ2||ft(p)−p+ft(p+e)−
(p+e)|| is at least equal to 2, that is, at a certain distance from
the background. For example, if γ = 1

3 , linear pruning only
becomes effective when ||ft(p)−p+ft(p+e)−(p+e)||2 ≥ 72,
i.e., at a distance of at least 1

2

√
72 = 4.5 pixels from the

background.
Linear pruning is more or less equivalent to removing all

points from the medial axis that have a bisector angle smaller
than some constant, as is used in Couprie and Zrour [26].
It is not precisely the same, since, for reasons of efficiency,
we consider all unordered pairs of neighbouring pixels while
Couprie and Zrour consider all pixels with all their neighbours
(this gives a factor of 2), and we consider specific feature
points whereas they use all elements of the feature set (called
“downstream”).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

C. Square-root pruning

Pruning the skeleton of points with a bisector angle less than
a fixed angle, say φ0 (or equivalently, taking γ proportional to
dt), has the following disadvantage. Assume (in 2D) that the
background is the union of two halfplanes with an angle π−φ
where φ < φ0. Then every point of the bisectrix of the angle
has two feature transform points on the boundary lines of the
halfplanes with a bisector angle φ. Since φ < φ0, the whole
bisectrix is eliminated from the skeleton. This is unsatisfactory,
since this bisectrix is the real medial axis RMA as defined in
section III-A.

The remedy we propose is to let γ grow slower than dt,
roughly speaking proportional to the square root of dt. In the
case of an obtuse angle between two halfplanes, this would
have the effect that only the IMA points close to the top are
pruned from the bisectrix. The choice to take a factor like the
square root of dt is justified as follows.

A halfspace of Rd is a subset of the form H = {x ∈ Rd |
(u, x) ≥ c} for some u ∈ Rd and some c ∈ R. An integral
halfspace is an intersection H ∩ Zd where H is a halfspace.
We now want to prune our definition of IMA in such a way
that the IMA is empty whenever the background is an integral
halfspace, and not more than necessary for this purpose.

In order to get a good pruning value, we need to know, for
any pair of neighbouring grid points, the maximal distance
between feature transform points in any halfspace, expressed
in something like their distance transforms. We do not com-
pletely know the answer, but we have a reasonably supported
guess and a fully supported partial answer. We first present
the guess.

Conjecture 20: There is a constant Cd, depending only on
the dimension d, such that for every integral halfspace B ∈ Rd,
every p, q ∈ Zd, x ∈ FT(p) and y ∈ FT(q) with ‖p− q‖ = 1,
we have

||x− y||2 ≤ 2 · (p− q, x− y) + ||x− p + y − q||+ Cd. (3)

The critical issue is the occurrence of a square to the left of
the inequality sign and the absence of squares to the right.

The conjecture was proved for d = 2 with minimal value
C2 = 2−

√
2 by Van der Kallen [27], who also has indications

that the inequality holds for d = 3 with C3 = 1.5.
In view of Conjecture 20, we define IMA-SRP to consist of

the points p ∈ A such that for some q ∈ A we have ||p−q|| =
1 and ||ft(p)− ft(q)|| > 1 and

||ft(p)− ft(q)||2 > 2 · (p− q, ft(p)− ft(q))
+ ||ft(p) + ft(q)− p− q||+ Cd (4)

and ||m − ft(p)|| ≥ ||m − ft(q)|| where m = 1
2 (p + q). The

definition immediately implies that IMA-SRP ⊆ IMA. The
resulting skeleton is fairly insensitive to the choice of Cd. For
d = 2 we take C2 = 1, being the integer closest to the minimal
value C2 = 2−

√
2.

The application of formula (4) in the definition of IMA-
SRP is called square-root pruning. The pruning precludes
IMA-SRP to traverse a very narrow channel, like a single
Manhattan path. IMA-SRP does traverse a channel, however,

if it is wide enough for two pawns to walk abreast. IMA-
SRP is not necessarily connected. For example, in 2D, if the
image consists of the points (0, 0), (4, 0), (0, 20), and (4, 20),
IMA-SRP consists of three segments: the short segments of
the points (2, t) with |t| ≤ 4 and |t − 20| ≤ 4, and the long
segment of the points (t, 10) with |t− 2| ≤ 181 .

Algorithm 4 Program fragment for computing the IMA skele-
ton from the feature transform. The pruning condition in the
compare procedure is given in Eqs. (5)-(7).
procedure IMA skeleton
Input : feature transform ft3 [i, j, k] of input data input [i, j, k]
of size m× n× p
Output : skeleton skel [i, j, k] of size m× n× p

define WHITE 1 (* foreground value *)
define BLACK 0 (* background value *)
define SKEL -1 (* skeleton value *)
for i := 0 to m− 1 do

for j := 0 to n− 1 do
for k := 0 to p− 1 do

if
`
i > 0 and (input [i, j, k]=WHITE or input [i− 1, j, k]=WHITE)

´
then compare(i,j,k,i-1,j,k) endif

if
`
j > 0 and (input [i, j, k]=WHITE or input [i, j − 1, k]=WHITE)

´
then compare(i,j,k,i,j-1,k) endif

if
`
k > 0 and (input [i, j, k]=WHITE or input [i, j, k − 1]=WHITE)

´
then compare(i,j,k,i,j,k-1) endif

end for
end for

end for

procedure compare(i,j,k,p,q,r)
x := [i, j, k]; y := [p, q, r]
xf := ft3 [x]; yf := ft3 [y]
if ||xf − yf ||2 > 1 and pruning condition then

crit := inprod(xf − yf , xf + yf − x− y)
if crit ≥ 0 then skel [x]:= SKEL
endif
if crit ≤ 0 then skel [y]:= SKEL
endif

endif

V. IMPLEMENTATION

A. Computation of IMA

The program code for the skeletonization step for d = 3 is
shown in Alg. 4. We work with squared distances instead of
distances, which avoids the computation of square roots and
thus saves time.

The constant SKEL in the procedure IMA skeleton of
Alg. 4 can be chosen arbitrarily, as long as it is distinct
from WHITE and BLACK. Also, we have added a test in this
procedure which checks whether at least one of the points
(i, j, k) and (p, q, r) that are tested in the procedure compare
is a foreground point in the input. We will refer to this as
‘optimized skeletonization’. The rationale for this is that a
point which belongs to the background can never be a skeleton
point. If one omits this test (“non-optimized skeletonization”)
the skeleton one obtains is the same, but the computation time
for the skeletonization step will be (much) larger if the input
contains many background points.

Another optimization which saves memory is to use in-place
calculation of the skeleton points, that is, to modify the value

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

original IMA: γ = 1 IMA-CP: γ = 10 IMA-LP: γ = 0.5 IMA-SRP CMD

original IMA: γ = 1 IMA-CP: γ = 10 IMA-LP: γ = 1 IMA-SRP CMD

original IMA: γ = 1 IMA-CP: γ = 3 IMA-LP: γ = 1 IMA-SRP CMD

Fig. 4. 2D images with their skeletons. From left to right: original image (foreground in white, background in grey); IMA skeleton; IMA skeleton, constant
pruning; IMA skeleton, linear pruning; IMA skeleton, square-root pruning; CMD skeleton.

of a point (i, j, k) in the input array from WHITE to SKEL
when the algorithm has determined that (i, j, k) is a skeleton
point. If desired, one may always in a post-processing step
put all remaining (i.e., non-skeleton) foreground points in the
input image to background.

The pruning condition in the compare procedure is given
by the following equations, depending on the type of pruning
chosen:
• Constant pruning:

‖xf − yf‖2 > γ2 (5)

• Linear pruning:

‖xf − yf‖2 >
1
4
γ2 ‖xf + yf − x− y‖2 . (6)

• Square-root pruning:

‖xf − yf‖2 ≥ 2 · inprod(x− y, xf − yf)
+ ‖xf + yf − x− y‖+ Cd (7)

We will refer to the IMA -skeleton with constant, linear and
square-root pruning as IMA-CP, IMA-LP and IMA-SRP,
respectively.

For 2D images the code has to be trivially adapted by
omitting the loop over the third spatial index in the skeleton
code fragment, and using x := [i, j]; y := [p, q] in the
compare code fragment. In the case of square-root pruning
for d = 2 we take C2 = 1, for d = 3 we take C3 = 1.5 (see
section IV-C).

VI. EXPERIMENTAL RESULTS

We have run the skeletonization algorithm on several data
sets, looking at skeleton quality, memory usage and computa-
tion time, both for 2D images and 3D volumes.

All performance measurements were carried out on a PC
with a 2.8 GHz Pentium processor with a level-2 cache size
of 1024 Kb and 1024 Mb of internal memory.

A. Skeletonization quality

1) 2D skeletons: To get an idea of the quality of our
skeletonization algorithm, we first give a number of examples
of 2D skeletons, see Fig. 4. For comparison, we also show the
CMD skeletons.

As can be seen from the results, the non-pruned IMA
output is very sensitive to discretization, leading to extended
barbs starting at the background. Constant pruning of IMA
with γ sufficiently high effectively suppresses these barbs.
The value of γ to be used will in general depend on the
input image. In the examples, we have chosen γ such that
the major skeleton branches (branches which approximate the
real medial axis after smoothing of the boundary) remain
intact and connected. This means that for images with small
canals, such as the angiographic image in Fig. 4 (lowest
row), the value of γ will be smaller than for an image with
many straight boundaries, like in the first row of Fig. 4.
For linear pruning, we observe the effect already discussed
in section IV: close to the background no pruning takes
place. This can be improved somewhat by increasing γ, but
again at the cost of disturbing the main skeleton branches.
Square-root pruning has the advantage over the other two
pruning methods that no parameter has to be set, without
any substantial additional computational costs. It generally
has much less background artefacts than linear pruning. For
data with straight boundaries it is as good as constant pruning
with a suitably chosen parameter value. For images with more
curved details constant pruning with a suitably chosen value

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Fig. 5. Volume renderings of binary horse data (128×280×232 voxels) and
its skeletons (side, front and top views). First column: input data. Second
column: IMA-CP skeleton with γ = 7. Third column: IMA-SRP skeleton.
In the skeleton renderings, the input volume is rendered partially transparent.

of γ can give a result which is visually more pleasing than
that of square-root pruning, in the sense that the skeleton
has less small branches. The CMD skeletons also have some
background artefacts, as well as a small amount of noise along
the main skeleton branches. With some pruning this could be
removed. Pruned IMA skeletons as well as CMD skeletons
may be disconnected. If desired, connected skeletons can
be obtained by postprocessing techniques such as connected
thinning. If additional topological characteristics are required,
then topology-preserving thinning should be employed.

2) 3D skeletons: For the 3D case, the IMA skeleton will
consist of surface patches. To get insight into the structure
of these skeleton surfaces we will use volume rendering
techniques with transparency and colour [28].

The experiments were performed for several 3D data sets:
(1) CT scan of a tooth (source: The Volume Library1); (2) an
angiographic data set and a scan of an engine2; (3) a “horse”
data set (a polygonal surface model which was scan converted
to a voxel representation at several resolutions; source: Large
Geometric Model Archive, Georgia Institute of Technology3).

The volume data sets were first converted to binary format
by thresholding them with a small threshold value. This
operation also removed some background noise. The sizes of
the data sets are given in Table I.

As we have seen for the 2D case, linear pruning leads
to skeletons which have many small barbs at the object
boundaries. While this may still be acceptable in 2D, this no
longer holds for 3D skeletons. In this case linear pruning will
give rise to many small extrusions at the skeleton surface of
the input volume. These “surface barbs” form a dense surface

1http://www9.informatik.uni-erlangen.de/External/vollib
2http://www.volvis.org
3http://www-static.cc.gatech.edu/projects/large models

Fig. 6. Volume renderings of binary tooth data (256×256×161 voxels) and
its skeletons (side, front and top views). First column: input data. Second
column: IMA-CP skeleton with γ = 7. Third column: IMA-SRP skeleton.
In the skeleton renderings, the input volume is rendered partially transparent.

Fig. 7. Slices through skeletons of binary tooth data. First column: input
slice. Second column: IMA-CP skeleton with γ = 7. Third column: IMA-
SRP skeleton. In the skeleton renderings, the input slice is also rendered.

which obstructs the view of the major skeleton surface inside
the object volume. Therefore, in the next examples we only
consider constant pruning and square-root pruning.

For the “horse” and “tooth” data sets, the skeletons are visu-
alized in Fig. 5 and Fig. 6, respectively. We show three views
from different viewing angles. For reference, the input surface
is rendered partially transparent in the skeleton renderings.
Constant pruning with γ = 7 gives quite good results, with less
small surface barbs than in the case of square-root pruning. For
larger values of γ the skeleton becomes heavily disconnected.

For the tooth data set, we also show some slices through
the 3D skeletons in Fig. 7 at several locations in the volume.
Note that these images represent slices through a 3D skeleton,
therefore they only give an indication of skeleton quality.

We conclude that our IMA algorithm with appropriately
chosen pruning strategies can give surface skeletons which
display major shape characteristics of binary volume data.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

TABLE I
TIMING RESULTS FOR FEATURE TRANSFORM, NON-OPTIMIZED IMA SKELETONIZATION (SKELETON) AND OPTIMIZED IMA SKELETONIZATION

(SKELETON-OPT) STEPS FOR SEVERAL 3D DATA SETS. CPU TIMES (SECONDS) ARE AVERAGES OVER 10 RUNS. DATA DIMENSIONS, TOTAL INPUT SIZE
(BYTES) AND PERCENTAGE OF FOREGROUND POINTS (PFP) ARE INDICATED.

Data Dimensions Size PFP Feature transform Skeleton Skeleton-Opt

engine 256×256×128 8.388.608 16.1 1.99 2.50 0.51
vessels 256×256×256 16.777.216 0.67 4.56 4.86 0.24
tooth 256×256×161 10.551.296 45.6 2.17 3.22 0.13
horse-1 128×128×128 2.097.152 10.9 0.37 0.62 0.09
horse-2 128×128×256 4.194.304 11.0 0.95 1.24 0.19
horse-3 256×256×256 16.777.216 11.0 4.62 4.98 0.75
horse-4 256×256×512 33.554.432 11.1 10.14 9.95 1.49
horse-5 512×512×256 67.108.864 11.1 24.66 19.81 3.02

Fig. 8. Linear fit of timing results of IMA skeletonization for 2D images
of size N ×N , where N = 64, 80, 100, 128, 150, 180, 200.

B. Memory usage

The algorithm consists of two steps, i.e., the feature trans-
form and the skeletonization step. As is apparent from the code
fragments in Algorithms 1-3, the feature transform algorithm
is not very cache-friendly. This means that the algorithm will
slow down as soon as the required data do not fit in the cache.
Another transition occurs when the data do no longer fit in
internal memory. Therefore, in our timings experiments we
first consider the case of 2D images of various sizes which all
fit in cache memory. Thereafter, we look at a number of large
3D data sets, for which this is not the case.

The required memory for the complete algorithm can be
determined as follows, cf. Alg. 4. Recall that m, n and p
are the dimensions of the input volume. First, we need to
load the data. Since the input is a binary volume, we can
use one byte for each volume element, requiring m · n · p
bytes of storage. In the feature transform routine, three arrays
ft1 [x, y, z], ft2 [x, y, z] and ft3 [x, y, z] of type integer are used
(we need integers to encode the spatial position of the feature
transform points). One can check that we need at most two
of these at any given time during execution (the array ft3
can be used to hold the final result). We also need room for
three one-dimensional arrays g[], s[] and t[] of type integer,
with dimension N = max(m,n, p). The values in the feature
transform can be stored as integers. So we need storage for
2 m ·n ·p + 3 N integers. For the output array skel [x, y, z] one
needs in principle another m · n · p bytes, but we always use
in-place calculation (see section V-A), where the input array

is used for holding the skeletons points. Adding this up we
find that we need storage for a total of m · n · p bytes and
2 m · n · p + 3 N integers.

When the input is two-dimensional (m = n = N , p = 1),
we found that the required storage does not exceed cache size
on our system as long as N is not much larger than 200. For
the 3D case, the size of the data we used always exceeded the
cache size. But as long as the product m · n · p is not larger
than around 50 million points, the total storage requirement
does not exceed the internal memory of 1024 Mb.

C. Computation time

1) 2D skeletons: To verify the linear time character of our
algorithm, we first computed the timings for a number of 2D
images of size N × N , where N did not exceed 200, so
that cache size is large enough to hold all (temporary) data.
The result is plotted in Fig. 8. Displayed is the cumulative
CPU time (sum of system and user time, excluding data I/O)
for 100 runs, both for the feature transform and optimized
skeletonization (unpruned). The images were rescaled versions
of a single input image, so the fraction of foreground points
was constant. We found that the timings for the feature
transform step and non-optimized skeletonization step (not
shown) only very weakly depend on image content. For the
optimized skeletonization step this is evidently not the case:
since only foreground points have to be checked, this step will
be dependent on the number of foreground points in the input.
As can be observed from Fig. 8, both the feature transform
and the skeletonization scale linearly with input size. That
the optimized skeletonization scales linearly in this case can
be explained by the fact that all input images were rescaled
versions of the same initial image.

2) 3D skeletons: Next, we report on timing experiments for
the 3D data sets listed in section VI. The results are given in
Table I for the feature transform, the non-optimized and the
optimized skeletonization steps. Times are averages over 10
repetitions. The input data comprised between 2 and 66 Mb
of memory. From the table one may infer that the behaviour of
the feature transform and the non-optimized skeletonization is
still approximately linear, until data sets become so large (e.g.,
“house-5”) that the storage requirements exceed the size of
the internal memory and the system starts swapping. Timings
for data sets of similar size do not differ much (compare the
“vessels” and “horse-3” data sets). By contrast, the optimized

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

skeletonization time is strongly dependent on the number of
foreground pixels, and also on the structure of the input.
Notice for example that the optimized skeletonization time
for the “tooth” data set is much smaller than that of the
“engine” data set, although the latter has much less foreground
points. Compared to the non-optimized version, optimized
skeletonization yields a speed gain factor varying from 5 to
25, depending on the input.

To study the dependence of skeletonization time on the
type of pruning we show in Table II timing results for the
optimized skeletonization step for several types of pruning
and pruning parameters. As can be seen from the table, the
skeletonization time depends very weakly on pruning type. In
the case of non-optimized skeletonization, skeletonization time
is virtually independent of pruning type (not shown). So we
can conclude that it is computationally equally cheap to carry
out skeletonization with or without pruning.

Our skeletonization algorithm is well suited for paralleliza-
tion on a shared memory machine, since the computation
in orthogonal planes (rows, columns) is independent of the
computation of other planes (rows, columns). In the different
phases, the independent planes (rows, columns) are distributed
over the processors. The phases must be separated by a
barrier, which assures that all processors have completed a
certain phase before any of them starts with the next one.

TABLE II
TIMING RESULTS FOR THE OPTIMIZED SKELETONIZATION STEP. CPU

TIMES (SECONDS) ARE AVERAGES OVER 10 RUNS. PRUNING: CONSTANT
(CP-1 : γ = 1, CP-10 : γ = 10); LINEAR (LP-1 : γ = 1) AND SQUARE-ROOT

(SRP).

Data CP-1 CP-10 LP-1 SRP

engine 0.51 0.55 0.56 0.58
vessels 0.24 0.27 0.25 0.28
tooth 0.13 0.13 0.13 0.13
horse-1 0.09 0.10 0.11 0.12
horse-2 0.19 0.21 0.21 0.22
horse-3 0.75 0.83 0.84 0.88
horse-4 1.49 1.63 1.66 1.71
horse-5 3.02 3.24 3.29 3.40

VII. SUMMARY AND CONCLUSIONS

We have introduced a new skeleton definition, the integer
medial axis (IMA), that is intended to look like the real
medial axis of a smoothing of the background of the input
data and tends to be connected when the complement of the
background is connected, while still being computable in linear
time. We proved a number of fundamental properties of the
IMA skeleton, and compared these with properties of the
CMD (centers of maximal disks) skeleton. Several pruning
methods for IMA skeletons were introduced (constant, linear
and square-root pruning) and their properties were studied.
Constant and linear pruning require the adjustment of a single
parameter, while square-root pruning is parameter-free. The
latter method was designed to suppress artefacts due to straight
background discretization.

We presented an efficient algorithm to compute the IMA
skeleton, based upon a linear time feature transform algorithm

which is an extension of our previous Euclidean distance
transform algorithm [16]. Experimental results for 2D and 3D
input data were presented. For all program parts, explicit and
compact pseudocode was given, which makes our algorithm
straightforward to implement. If desired, our source code is
available upon request.

Regarding skeletonization quality, we found that either
constant pruning or square-root pruning gives quite acceptable
results. Since there is no such thing as the “best” skeleton, the
question which skeleton one prefers depends on the criteria
one imposes upon the constructed skeleton. The main point
we want to make here is that no matter what type of pruning
one chooses with whatever value of γ, our algorithm is able to
compute the corresponding skeleton very fast in a time which
is linear in the image size and is almost independent of pruning
method.

The computation time of the feature transform and skele-
tonization steps was experimentally shown to follow the pre-
dicted linear-time behaviour to a very good approximation.
For large data sets, caching effects cause deviations from
the expected linear behaviour. For data of up to, say, 20
million input points, the computation time is in the order of
seconds on state of the art PCs. This allows our skeletonization
method to be used in interactive settings, where the user can
simultaneously skeletonize and visualize 3D data. For even
larger data one can use parallel versions of our algorithm
(which is very easy to parallelize) or use special graphics
hardware computation to keep computation time within the
interactive range [21].

The CMD skeleton, which served as our prime motivation
for the present work, has comparable quality to our IMA
skeleton. However, it is much more expensive to compute,
since CMD computation is quadratic in the number of input
points [14], and hence becomes prohibitively slow for large 3D
data sets. A more efficient algorithm (probably no more than
O(n1.5)) is given in [22], but still its complexity is far from
linear. The unpruned IMA skeleton has much more points
than CMD, but our pruned IMA-SRP skeleton has slightly less
points than CMD, and, depending on the input, less artefacts.
By contrast, CMD is better for compression of binary image or
volume data, in the sense that the data are still reconstructible
from CMD. Another difference with CMD is that the unpruned
IMA may be connected, although we have no proof of this
conjecture at the moment.

We mention several ideas for future work. First, there is the
question of the topological characteristics of the (unpruned)
IMA skeleton. Although we conjectured that it is connected,
we so far have no proof. Second, the issue of reconstruction
from IMA -like skeletons will be considered. Finally, instead
of surface skeletons it is also interesting to look at the line
skeleton (or centerline) in 3D. An algorithm based on the fast
marching method was presented in [29], having complexity
O(N log N), with N the number of input points. An interest-
ing question is whether the definition of IMA can be adapted
to compute such a line skeleton in linear time.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

REFERENCES

[1] J. L. Pfaltz and A. Rosenfeld, “Computer representation of planar
regions by their skeletons,” Communications of the ACM, vol. 10, pp.
119–125, 1972.

[2] A. Webb, Statistical Pattern Recognition. London: Arnold, 1999.
[3] J. R. Parker, Algorithms for Image Processing and Computer Vision.

John Willey & Sons, 1996.
[4] S. Beucher, “Digital skeletons in Euclidean and geodesic spaces,” Signal

Processing, vol. 38, pp. 127–141, 1994.
[5] P. Maragos and R. W. Schafer, “Morphological skeleton representation

and coding of binary images,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. ASSP-34, pp. 1228–1244, 1986.

[6] F. Meyer, “The binary skeleton in three steps,” in Proc. IEEE Workshop
on Computer Architecture and Image Database Management, IEEE
Computer Society Press, 1985, pp. 477–483.

[7] J. Serra, Image Analysis and Mathematical Morphology. Academic
Press, New York, 1982.

[8] H. Talbot and L. Vincent, “Euclidean skeletons and conditional bisec-
tors,” in Proc. SPIE Visual Communications and Image Processing’92,
Boston (MA), vol. 1818, Nov. 1992, pp. 862–876.

[9] L. Vincent, “Efficient computation of various types of skeletons,” in
Proc. SPIE Symposium Medical Imaging V, San Jose, CA, vol. 1445,
Feb. 1991, pp. 297–311.

[10] F. Y. Shih and C. C. Pu, “A skeletonization algorithm by maxima
tracking on Euclidean distance transform,” Pattern Recognition, vol. 28,
no. 3, pp. 331–341, 1995.

[11] H. Blum, “A transformation for extracting new descriptors of shape,” in
Proc. Symposium Models for the perception of speech and visual form,
Boston, November 1964, W. Wathen-Dunn, Ed. MIT Press, Cambridge,
MA, 1967, pp. 362–380.

[12] P. E. Danielsson, “Euclidean distance mapping,” Comp. Graph. Im.
Proc., vol. 14, pp. 227–248, 1980.

[13] G. Borgefors, I. Nystrom, and G. S. D. Baja, “Computing skeletons in
three dimensions,” Pattern Recognition, vol. 32, no. 7, pp. 1225–1236,
1999.

[14] Y. Ge and J. Fitzpatrick, “On the generation of skeletons from discrete
Euclidean distance maps,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 18, pp. 1055–1066, 1996.

[15] T. Hirata, “A unified linear-time algorithm for computing distance maps,”
Information Processing Letters, vol. 58, pp. 129–133, 1996.

[16] A. Meijster, J. B. T. M. Roerdink, and W. H. Hesselink, “A gen-
eral algorithm for computing distance transforms in linear time,” in
Mathematical Morphology and its Applications to Image and Signal
Processing, J. Goutsias, L. Vincent, and D. S. Bloomberg, Eds. Kluwer
Acad. Publ., Dordrecht, 2000, pp. 331–340.

[17] C. R. Maurer Jr., R. Qi, and V. Raghavan, “A linear time algorithm for
computing the euclidean distance transform in arbitrary dimensions,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 25, no. 2, pp. 265–270,
2003.

[18] C. R. Maurer Jr., V. Raghavan, and R. Qi, “A linear time algorithm for
computing the euclidean distance transform in arbitrary dimensions,” in
Information Processing in Medical Imaging, 2001, pp. 358–364.

[19] W. H. Hesselink, M. Visser, and J. B. T. M. Roerdink, “Euclidean
skeletons of 3D data sets in linear time by the integer medial axis
transform,” in Mathematical Morphology: 40 Years On (Proc. 7th Intern.
Symp. on Mathematical Morphology, April 18-20), C. Ronse, L. Najman,
and E. Decencière, Eds. Springer, Wien, New York, 2005, pp. 259–268.

[20] D. Attali and A. Montanvert, “Computing and simplifying 2D and
3D continuous skeletons,” Computer Vision and Image Understanding,
vol. 67, no. 3, pp. 161–273, 1997.

[21] R. Strzodka and A. Telea, “Generalized distance transforms and skele-
tons in graphics hardware,” in Data Visualization 2004. Proc. Euro-
graphics – IEEE TCVG Symposium. IEEE CS Press, 2004.

[22] E. Remy and E. Thiel, “Look-up tables for medial axis on squared
Euclidean distance transform,” in DGCI 2003, N. et al., Ed. New
York: Springer, 2003, pp. 224–235, (LNCS 2886).

[23] T. Y. Kong and A. Rosenfeld, “Digital topology: introduction and
survey,” Computer Vision, Graphics and Image Processing, vol. 48,
no. 3, pp. 357–393, 1989.

[24] W. H. Hesselink, “A linear-time algorithm for euclidean feature trans-
form sets,” Information Processing Letters, vol. 102, pp. 181–186, 2007.

[25] D. Coeurjolly, “d-Dimensional reverse Euclidean distance transforma-
tion and Euclidean medial axis extraction in optimal time,” in DGCI
2003, N. et al., Ed. New York: Springer, 2003, pp. 327–337, (LNCS
2886).

[26] M. Couprie and R. Zrour, “Discrete bisector function and Euclidean
skeleton,” in Discrete Geometry for Computer Imagery, ser. LNCS,
E. Andres, G. Damiand, and P. Lienhardt, Eds. Springer, 2005, vol.
3429, pp. 216–227.

[27] W. van der Kallen, “Integral medial axis and the distance between closest
points,” June 2006, preprint University of Utrecht: http://www.math.ruu.
nl/people/vdkallen/.

[28] R. A. Drebin, L. Carpenter, and P. Hanrahan, “Volume rendering,”
Computer Graphics (SIGGRAPH ’88 proceedings), vol. 22, no. 4, pp.
65–74, 1988.

[29] A. Telea and J. J. van Wijk, “An augmented fast marching method for
computing skeletons and centerlines,” in Data Visualization 2002. Proc.
Eurographics – IEEE TCVG Symposium, May 27-29, 2002, Barcelona,
Spain, D. Ebert, P. Brunet, and I. Navazo, Eds. ACM, New York, 2002.

Wim H. Hesselink received his M.Sc. (1970) in
mathematics from the University of Utrecht in the
Netherlands. After his Ph.D. (1975), also from
Utrecht, he moved to the University of Groningen
to work in the field of algebraic groups and Lie
algebras. Around 1984 he left pure mathematics
and found a new challenge in computer science. In
1986/1987 he was on sabbatical leave with E.W.
Dijkstra at the University of Texas at Austin. He
wrote a book (1992) on the weakest preconditions
of recursive procedures, possibly with unbounded

nondeterminacy. Since 1994, he holds a chair for Program Correctness at the
Department of Computing Science at the University of Groningen. His current
research concentrates on the design of concurrent algorithms, if necessary with
verification by means of a mechanical theorem prover.

Jos B. T. M. Roerdink received his M.Sc. (1979) in
theoretical physics from the University of Nijmegen,
the Netherlands. Following his Ph.D. (1983) from
the University of Utrecht and a two-year position
(1983-1985) as a Postdoctoral Fellow at the Univer-
sity of California, San Diego, both in the area of
stochastic processes, he joined the Centre for Math-
ematics and Computer Science in Amsterdam. There
he worked from 1986-1992 on image processing
and tomographic reconstruction. He was appointed
associate professor (1992) and full professor (2003),

respectively, at the Institute for Mathematics and Computing Science of
the University of Groningen, where he currently holds a chair in Scientific
visualization and Computer Graphics. His current research interests include
biomedical visualization, neuroimaging and bioinformatics.

