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Abstract. This paper describes an extension to Fourier-wavelet volume rendering
(FWVR), which is a Fourier domain implementation of the wavelet X-ray transform.
This transform combines integration along the line of sight with a simultaneous 2-D
wavelet transform in the view plane perpendicular to this line. During user inter-
action, only low resolution images are computed based on wavelet approximation
coefficients. When user interaction ceases, the images are refined incrementally with
the wavelet detail coefficients. The extension proposed in this paper is similar to
a technique called view interpolation, which originates from the field of computer
graphics. View interpolation is used to speed up rendering of complex scenes by
precomputing images from a number of selected viewpoints. For intermediate view-
points, rendering is performed by interpolating the precomputed images. In this
paper, we show that for FWVR the speed of rendering low resolution images is
increased by interpolation of precomputed sets of wavelet approximation coefficients
in the Fourier domain. The differences with traditional view interpolation are that (i)
interpolation is performed on the wavelet approximation coefficients in the Fourier
domain and not on images, and (ii) interpolation is performed during user interaction
only. When interaction ceases, ordinary FWVR progressively renders an image at
high quality. Medical CT data are used to assess the accuracy and performance of the
method. We use regular angular sampling of spherical coordinates which determine
the viewing direction. The results show that angle increments as large as 10 degrees
result in only a small degradation of image quality.

Keywords: Fourier domain volume rendering, wavelet X-ray transform, client-
server visualization system, view interpolation

1. Introduction

Volume rendering is a technique for visualizing digital data representing
large three-dimensional (3-D) volumes, arising from physical measure-
ments (as in computerized tomography) or from computer simulations.
Volume visualization techniques have been developed for viewing these
data from different viewpoints, using advanced computer graphics tech-
niques such as illumination, shading, and colour [11]. Due to their large
size, the transmission and display of these data sets is time consuming,.
Therefore, multiresolution models are developed, which allow decom-
position of the data into versions at different levels of resolution, so that
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2 Westenberg and Roerdink

the data can be visualized incrementally as they arrive (‘progressive re-
finement’). Wavelets are a natural candidate for such a multiresolution
approach [24].

Volume visualization methods are generally divided into two classes,
i.e. surface rendering, where one reduces the volume to a number of
surfaces representing the boundary between materials [10, 13], and
direct volume rendering [4], which does not make use of intermediate
graphical primitives, but tries to map the information in the 3-D data
set directly onto the view plane. A standard method in direct volume
rendering, called X-ray volume rendering, is to integrate the volume
data along the line of sight. The method supports shading and depth-
cueing [20], but no occlusion or perspective projection. Nevertheless, it
turns out to be one of the preferred techniques for medical applications,
because physicians are well-trained in interpreting X-ray like images
for diagnosis. The corresponding mathematical concept is the X-ray
transform, well-known from computerized tomography [17]. There ex-
ists an efficient way to compute this transform, called Fourier volume
rendering (FVR), which makes use of frequency domain techniques
[15, 16, 20], and is based upon the Fourier slice theorem [17]. Note that
in contrast to computerized tomography, where one has to compute
the inverse X-ray transform, in volume rendering one has to compute
the forward X-ray transform. The function to be visualized by com-
puting X-ray projections is known, albeit only at a digital sampling
grid. Fourier volume rendering can be summarized as follows: After
an initial 3-D Fourier transform of the data, a viewing direction @ is
chosen and the values of the Fourier transform in a plane, called the
slice plane, through the origin in Fourier space and perpendicular to 6
are computed. Interpolation in frequency space is necessary to obtain
the values of the Fourier transform of the function to be visualized at a
regular grid in the slice plane. A subsequent inverse 2-D Fourier trans-
form gives the desired image in the view plane. The time complexity
of FVR is O(N?log N) for a volume data set of size N x N x N.

Recently, we developed Fourier-wavelet volume rendering (FWVR)
[19, 26] as a wavelet-based extension to Fourier volume rendering.
FWVR is a Fourier domain implementation of the wavelet X-ray trans-
form [19], which combines integration along the line of sight with a
simultaneous 2-D wavelet transform in the view plane perpendicular to
this line. We derived in [26] an efficient algorithm for computing the
wavelet X-ray transform by using a frequency domain implementation
of the wavelet transform. This is particularly efficient when the length
of the wavelet decomposition and/or reconstruction filters is large,
as is the case for some of the basic wavelets (e.g. B-spline wavelets
[3, 22]) used below. This results in an algorithm whose initial step,
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i.e. computation of Fourier coefficients in a slice plane in frequency
space, is identical to that of ordinary FVR. The additional step is
a wavelet decomposition of the slice plane data in Fourier space to
a given level of detail. Approximation images are then obtained by
a partial wavelet reconstruction in Fourier space, followed by a 2-D
inverse Fourier transform. Since wavelet detail coefficients are available
in Fourier space, progressive refinement is straightforward. Progressive
refinement is important for client-server based visualization systems,
where the volume data are stored on a central server, while (part of)
the rendering is performed on client systems. Not all of these clients
will have a high-bandwidth connection, so a mechanism which visual-
izes data incrementally as they arrive can improve the response time
of the system. FWVR enables us to implement such a client-server
visualization system.

Another wavelet-based volume rendering method based on the X-
ray transform is wavelet splatting [12]. This is a modification of the
standard splatting algorithm [28] through the use of wavelets as recon-
struction filters. Splatting is an object order method in which the voxels
are represented by 3-D reconstruction kernels. Integration of these ker-
nels along the line of sight results in building blocks called footprints. A
mapping to the image plane by superposition of the footprints, weighted
by the voxel values, forms the image in the view plane. Just as the
original splatting method, the time complexity of wavelet splatting is
O(N?) for a volume data set of size N x N x N. In contrast, FWVR
has the same time complexity as ordinary FVR, i.e. O(N%1og N). For
a detailed comparison of FWVR and wavelet splatting with respect
to time complexity and memory requirements, the reader is referred
to [26]. Recently, Horbelt et al. have shown that the computation
time of wavelet splatting can be reduced by adapting the resolution
of the projection grid to the size of the B-spline wavelet basis functions
[6]. The projection of the wavelet coefficients on this grid yields an
approximation in dual B-spline space. An image in the view plane is
then obtained by B-spline interpolation [21] of the projection grid to the
size of the view plane. Another method to reduce the computation time
is called two-stage splatting [27]. The method separates the splatting
process in two stages: (i) coefficient projection and accumulation in a
weight array W, and (ii) a 2-D convolution of W with the footprint of
a wavelet basis function, which yields an image in the view plane.

A disadvantage of FWVR in the form presented in [26] is that it
requires resampling of a slice in Fourier space at full resolution in order
to perform a 2-D wavelet decomposition. The purpose of this paper is to
extend FWVR with a technique similar to view interpolation. This is a
method used in the field of computer graphics to speed up rendering of
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complex scenes [1], and consists in precomputing images for a number of
viewing directions. Images for intermediate viewing directions are then
obtained by interpolating the precomputed images. A similar technique
was introduced in an image-based volume rendering method [2] that is
based upon shear-warp factorization [9]. The extension proposed in this
paper uses a set of precomputed sequences of wavelet approximation
coefficients in the Fourier domain for different viewing directions. The
approximation coefficients for intermediate viewing directions are then
computed by interpolation. This decreases the computation time to
obtain an approximation image substantially, allowing fast interaction
with the data. When interaction ceases, ordinary FWVR is applied to
refine the image incrementally to full resolution.

The organization of this paper is as follows. Section 2 summarizes
standard Fourier volume rendering including interpolation and accu-
racy issues, introduces the basic wavelet concepts and describes Fourier-
wavelet volume rendering as introduced in [26]. In Section 3, we describe
the new method which introduces view interpolation in the Fourier-
wavelet domain. Section 4 presents some experimental results, and we
conclude with a discussion in Section 5.

2. Fourier-Wavelet Volume Rendering

We start by summarizing the main ideas of standard Fourier volume
rendering, and briefly discuss interpolation and accuracy issues, show-
ing that with a judicious combination of zero-padding of the data and
good interpolation filters accurate renderings are obtained. Then we
introduce a number of basic wavelet concepts, followed by a short
description of Fourier-wavelet volume rendering.

2.1. FOURIER VOLUME RENDERING

Fourier domain volume rendering methods [15, 16] provide an im-
plementation of X-ray volume rendering, where the volume data are
integrated along the line of sight. That is, if f(x), = (z,y,2) € R3,
is integrated along a direction vector @, with v and v two mutually
orthogonal vectors perpendicular to @ (see Fig. 1), then the result, also
called the X-ray transform of f, is given by

Po f(u,v) = /Rf(uu +vv 4 t0) dt.

The Fourier projection slice theorem [7] states that the 2-D Fourier
transform of Py f equals the 3-D Fourier transform of f along a slice
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plane through the origin in Fourier space and perpendicular to €. De-
note the n-dimensional Fourier transform of a function f € L2(R") by

Fuf:
Flw) = [ e f@)dn,  we R

n

Then the Fourier projection slice theorem states that
-7:2,P0f(wmwv) = fo(wuu + wvv)- (1)

This theorem is the key to Fourier volume rendering. Given volume
data sampled on a uniform grid, the FVR algorithm consists of the
following steps:

ALGORITHM 1. FVR

— Preprocessing. Compute the 3-D discrete Fourier transform of
the volume data by FFT.

— Actual volume rendering. For each direction 6, do:

1. Interpolate the Fourier transformed data and resample on a
reqular grid of points in the slice plane orthogonal to @ (‘slice
extraction’).

2. Compute the 2-D inverse Fourier transform, again by FFT.
This yields a discrete approxrimation to Pof.

The first step is just preprocessing: the 3-D Fourier transform is com-
puted only once. The next two steps are repeated for each viewing
direction, and must therefore be implemented as efficiently as possible.
For a slice of size N by N, the complexity of the Fourier transform
is O(N?log N), and that of 3-D interpolation is O(K3N?), where K
is the linear size of the interpolation filter (K much smaller than N).
Although the Fourier transform is asymptotically dominant, in practice
most of the running time is spent on interpolation.

Since interpolation is the most critical step in FVR, accurate inter-
polation filters are necessary to avoid artefacts such as aliasing (due
to insufficient sampling), and dishing, resulting in reduced intensities
away from the center of the image. To reduce aliasing, one pads the data
in the spatial domain with zeros before the initial 3-D Fourier trans-
form. The price to pay is increased memory usage. Cubic interpolation
[8] with 20% zero-padding has shown to offer a good compromise for
FVR, resulting in small aliasing error and small dishing artefact [26].
Cubic B-spline interpolation [21] has turned out to reduce aliasing even
more. Since the computational costs of cubic interpolation and cubic
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Figure 1. View plane perpendicular to the direction vector 6.

B-spline interpolation are comparable, we use the latter method for
slice resampling.

The 3-D Fourier transform requires complex arithmetic and a float-
ing point representation. Because the Fourier transform of a real signal
is hermitian, a factor of two in the number of computations during slice
extraction can be saved by dropping half of the Fourier transformed
data, e.g. using a real-to-complex/complex-to-real FFT [5]. Also, one
can reduce memory requirements by a factor of two by quantizing the
floating point values to 2-byte shorts, without seriously affecting the
accuracy [26].

2.2. WAVELET REPRESENTATION

A wavelet decomposition of a signal is obtained by convolving the signal
with an analysis filter, followed by downsampling. This results in a
number of approzximation coefficients giving the coarse features of the
signal, and a set of detail coefficients giving the finer structure. The
process can be repeated a number of times, say M ; this number is called
the depth or level of the decomposition. The signal can be reconstructed
from the approximation and detail coefficients by upsampling, followed
by convolution with a synthesis filter.

In our application, we will need two-dimensional wavelet decom-
position and reconstruction filters, which are constructed from a one-
dimensional biorthogonal wavelet basis. Such a basis derives from a
scaling function ¢ with associated basic wavelet 1), and dual scaling
function ¢ with dual basic wavelet 1. The corresponding basis functions
are {¢;;} and {¢;x}, j,k € Z, where ¢jp(z) = 2792627z — k)
and ;1 (r) = 279/2(277x — k); the dual basis functions are defined
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similarly. Here 7 and k denote scale and translation, respectively. From
the 1-D basis, a 2-D separable wavelet basis is constructed with four
basis functions, i.e. one scaling function ®?, ;(z,y) and three wavelet
basis functions \Iljka,l(x,y), reT ={123 v

00 i(,y) = dik(@)dia(y) Vgl y) = ¢ir(@)i(y)
U@ y) = @) dialy) U2, y)=bjr(@)dja(y)

A similar definition holds for the dual scaling function &)27,”(1:, y) and

wavelet basis functions ‘ff;k,l(x, y). Then the M-level wavelet represen-
tation of a 2-D function f is given by

M
chlq)Mklxy +Zzzd’7‘1’7k1$y) (3)
J=17€T k,
The approzimation coefficients are ckl = (f, M,k,l> and the detail

coefficients are dkl = (f, j,k,l>v where (-,-) denotes the inner product

in the space L2(R2) of square integrable functions on R2.

In the case of digital data, the fast wavelet transform and its inverse
compute wavelet decomposition and reconstruction very efficiently by
a subband filtering scheme called the pyramid algorithm [14]. The basis
functions are represented by discrete filters h = (hy)nez, 9 = (gn)nez
for synthesis, and dual filters & and § for analysis. The 2-D basis (2)
is represented by the four possible tensor products, hh, hg, gh and gg,
of the 1-D filters h and g. (For example (hh);; = hy h;.) Wavelet de-
composition is performed recursively starting at level 0 by convolution
followed by downsampling by a factor of two. Wavelet reconstruction
is performed recursively starting at level M by upsampling by a factor
of two followed by convolution.

2.3. FOURIER-WAVELET VOLUME RENDERING

The wavelet X-ray transform was introduced in [19], and an efficient
implementation was derived in [26] by computing the wavelet transform
in the frequency domain. The result is an algorithm that starts by
computation of the Fourier transform in a slice plane, as in ordinary
FVR, followed by a wavelet decomposition of the slice plane image in
Fourier space. Here we summarize the main steps of this method.
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2.3.1. The wavelet X-ray transform
The wavelet X-ray transform is defined by expanding the X-ray trans-
form Py f of a function f in a 2-D wavelet series (cf. (3)):

M .
Pof(u,v) = chM,z(o)‘I’(J)vI,k,z(Ua ORI Zd?c’j(o)‘l’;k,z(uav)- (4)
Kl

J=17€T k|

Note that the approximation coefficients ckMJ and detail coefficients

di,’;, 7 € T = {1,2,3}, now depend on the viewing direction @. This
transform is closely related to the wavelet X-ray transform defined in
[25, 29], which combines integration over a line with a simultaneous 1-D
wavelet transform along this line. The difference is, that we perform a
2-D wavelet transform in the plane perpendicular to the line.

Efficient computation of the wavelet coefficients in (4) depends on
the following theorem, cf. [26] for a detailed derivation.

THEOREM 1. The coefficients in the wavelet representation (4) for
the X-ray transform of f € L?(R®) are given by

— ~,0
k() = F5' (FaPof - Fod'yr) 2k, 2M1) (5)
i75(0) = F5t (FaPof - RV} (201,270), (6)
where
0 =~ ~ T

&)IM(uv 1)) = (I)(])\/[,[],O(_ua —1)), v

Jj (U, ’U) = ‘i[;,o,[](_uv _U)v

and Z denotes the complex conjugate of z.

By the Fourier slice theorem (1), FoPp f (wy, wy) = Fsf(wytt + wyv).
Therefore, the wavelet coefficients at scale j in (4) can be computed
by multiplying a slice of the 3-D Fourier transform of f by the 2-D
Fourier transform of the scaling or wavelet function at scale 7, followed
by an inverse 2-D Fourier transform evaluated at the points of the form
(27K, 271) in the view plane. We now turn to a description of the actual
implementation.

2.3.2. The wavelet transform in the Fourier domain
The wavelet transform and its inverse consist of up- or downsampling
and convolution.

2.3.2.1. Up- and downsampling Let Xj;, k = 0,...,Ny — 1,1 =

0,...,N2—1, denote the elements of the 2-D discrete Fourier transform
(DFT) of a 2-D signal x of length N1 by N», with N1 and N3 both even.
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Downsampling corresponds to taking the samples with even index in
both dimensions. By applying a biphase decomposition [18, 23], one
obtains that the values X 19" k =0,...,N;/2—1,1=0,...,Ny/2—1
of the 2-D DFT of the dov;/nsampled signal are given by

1

d

X = 7 (X + Xy T X et ka%,zf%)' (7)
Let X be the matrix whose elements are the Fourier coefficients Xj, ;
of z, and X4°"™ the corresponding matrix for the downsampled signal.

Then (7) can be written in matrix notation as

xdown _ i(xa + Xp+ X+ Xg) when X = <>)§Z ;(<Z> , (8)
where X, Xp, X¢, Xg are the four submatrices obtained by equally di-
viding X into two along the row and column direction.

Conversely, upsampling by a factor of two in the spatial domain
means inserting zeros between the samples in both dimensions. One
easily derives the following relation between the matrix X of Fourier
coefficients of the original signal, and the corresponding matrix X"P of

the upsampled signal [26]:
W (XX
x = (% %) (9)

So, the DFT matrix X"P of the upsampled signal is obtained by repli-
cating the matrix X in both dimensions.

2.3.2.2. Wawvelet decomposition and reconstruction Let the input of
the wavelet transform be a finite 2-D input sequence, represented by
an array c? of size Ny x Na2. Let ¢/ and &’" denote 2-D sequences

of approximation coefficients c,’c ; and detail coefficients dk’;, respec-

tively, cf. (2). Denote by C/ and DJ7 the corresponding matrices of
Fourier coefficients, obtained by applying a 2-D DFT to ¢/ and d/7,
respectively.

Define 2-D filter matrices H/ and G/, 7 = 1,2,3, by

(H])k,l = H/]C Hl]7 (G]71)k7l: H]]c G{,
(G7%) = GLH],  (G7)1= G}, Gy,
Here H ,Jc and Gf; are the DFT values of the 1-D synthesis filters h and

g. For example, if the signal length in a given spatial direction is 277N
(assumed to be larger than the length L of the filter i), then

L—1 i ; .
Hi = e ™FF =B, k=0,1,...,27N -1 (10)
n=0
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Dual filter matrices H/ and G/ are defined in a similar way in terms of
the dual filters h and g. Note from (10) that it is sufficient to compute
the filters H? and G°. The filters for the other scales are obtained by
downsampling the filters for the finest scale j = 0. A similar remark
holds for the analysis filters.

In the frequency domain, the wavelet decomposition has the matrix
representation [26]

O+t — [ﬁj . Cj]down7 DitLT — [ajﬂ' ° Cj]down, (11)

where A e B denotes elementwise multiplication of matrices A and B,
and [...]99"" is defined as in (8).

Wavelet reconstruction has the following matrix representation in
the frequency domain [26]:

3
C/=H e [Cj+1]up + Z G o [Dj+1,T]up’ (12)
=1
where [...]"P is defined as in (9).

We will refer to (11) and (12) as Fourier-wavelet decomposition
(FWD) and Fourier-wavelet reconstruction (FWR), respectively. The
result of an M-level decomposition yields an approximation array C™
of size 27M N} x 2™ N, and detail arrays D?7, j = M, M —1,...,1,
7 =1,2,3, of size 277 N; x 277 N,. A reconstruction at a desired level
K is first computed in the Fourier domain by (12) and the resulting
approximation C¥ is then inversely Fourier transformed to give the
desired approximation ¢ in the spatial domain.

As shown in [26], the complexity of the Fourier domain implemen-
tation of the 2-D wavelet transform (or its inverse) is O(N?logy N),
when N1 = N2 =N.

2.3.3. The Fourier-wavelet volume rendering algorithm

The wavelet extension of FVR requires only a small modification of
the standard algorithm. The resulting algorithm, referred to as Fourier-
wavelet volume rendering (FWVR), is summarized as follows.

ALGORITHM 2. FWVR

— Preprocessing. Compute the 3-D FFT of the volume data (size
N3).

— Actual volume rendering. For each direction 0, do:

1. Interpolate the Fourier transform on a reqular grid of size
(2N)?2 in the slice plane orthogonal to . This yields the array
CO to be used for initializing the wavelet transform.
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2. Perform a 2-D Fourier-wavelet decomposition (FWD) of depth
M, yielding approximation coefficients C’,% and detail coeffi-

cients Di’;, where j = M, M —1,...,1, respectively.

3. Perform a partial Fourier-wavelet reconstruction (FWR) from
C’,%, by putting all detail signals Di’j equal to zero, followed
by a 2-D inverse Fourier transform, yielding an initial approx-
imation (size (2N)?) in the spatial domain.

4. Refine the approzimation by partial FWR using the detail sig-
nals ch’; with K < j < M, followed by a 2-D inverse Fourier

transform to obtain an approzimation (size (2N)?) at a finer
scale K in the spatial domain.

In order to prevent aliasing, the sampling step size of the slice plane
should be sufficiently small. If the original step size of the 3-D Fourier
transform of the volume data is Fp, resampling should be done with a
step size of at most Fy/v/3 [15]. The scale factor v/3 originates from
the length of the diagonal of a unit cube. In practice, one usually takes
Fy/2, giving rise to a resampling grid of size (2N)2.

The choice of the decomposition depth M depends on the desired
level of detail for the low resolution images, the size of the data, and
the length of the wavelet filters. Typically, we take M = 2 or M = 3
for datasets of size 128 x 128 x 128 or 256 x 256 x 256. Larger M blurs
the low resolution images too much, making interpretation difficult.

The approach taken in Algorithm 2 is well-suited to implement a
client-server visualization system. The server performs the initial 3-D
Fourier transform, slicing, and FWD at each view angle (steps 1 and 2),
and sends the required approximation/detail coefficients to the client.
The client performs the FWR and inverse Fourier transform to obtain
an approximation image (steps 3 and 4). During user interaction, only
the Fourier domain approximation coefficients C,% are used. When user

interaction ceases, the Fourier domain detail coefficients ch? are taken
into account, so that the client can obtain reconstructions at higher
levels of detail. This progressive refinement can be implemented most
efficiently by a so-called non-pyramidal reconstruction scheme, which
involves upsampling of the wavelet coefficients to full resolution, fol-
lowed by application of a precomputed filter which combines the effect
of all intermediate resolution filters into a single one [26]. The coeffi-
cients can be quantized to shorts (2 bytes), with a quantization error in
the order of 1078, without introducing visible artefacts. The progressive
refinement inherent in the algorithm can improve interaction with the
data, since the response time of the system drops significantly.
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3. View Interpolation in the Fourier-Wavelet Domain

In this section, we introduce a technique similar to view interpola-
tion [1] for Fourier-wavelet volume rendering. The differences are that
(i) interpolation is performed on the wavelet approximation coefficients
in the frequency domain and not in the image domain, and (ii) inter-
polation is performed during user interaction only. By user interaction,
we mean rotation of the view vector 8. When user interaction ceases,
ordinary FWVR is applied to render an accurate image. This relaxes
the accuracy requirements imposed on the interpolation method used
during interaction.

A view vector @ is determined by spherical coordinates (6, ¢), where
0 <6< mand 0 < ¢ < 27. For the X-ray transform, we can restrict
0 to 0 < 6 < 3, since we can obtain images for § < 0 < m by mirror-
ing the respective images. View interpolation requires an appropriate
sampling of the parameters # and ¢. Here, a compromise has to be
found between memory requirements and image quality. A large num-
ber of precomputed viewing directions produces high quality images for
intermediate viewing directions, but suffers from high memory costs.
On the other hand, too few precomputed views result in low quality
images which suffer from extreme blurring. Regular angular sampling
of 0 and ¢ is sub-optimal for traditional view interpolation, since the
sampling densities are not uniformly spread. For instance, with 6 close
to zero, the sampling density is very high, i.e. the neighbouring views
are close to each other, whereas the density is much lower for ¢ = 3. For
FWVR, the situation is different. A view corresponds to a slice passing
through the origin in Fourier space, which means that the sampling
density decreases away from the origin. Since interpolation is performed
in the Fourier domain, this means that low frequencies are sampled
at a higher rate than high frequencies. Therefore, the only effect of
regular angular sampling is loss of detail if the sampling rate is too
low. This is not really a problem, because interpolation is performed
on the wavelet approximation coefficients, which contain mainly low
frequencies. Moreover, view interpolation will be performed only during
user interaction, when low resolution views are taken from the data by
rotating @, and the human eye is not very sensitive for loss of detail
when motion is involved.

In the following, we take a number of Ny values for 6 and Ny values
for ¢, respectively, resulting in a total of Ny x Ny precomputed slices.
The view vector @ is denoted by (6;, ¢;), where

6= —T d g =22 0<i<N,0<j<N
i—m an %—ma S <N, U= < Ng.
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Recall that w and v defining the view plane are two mutually orthogonal
vectors perpendicular to 8. We require u to be in the z-y plane, so that
it depends on ¢ only. The vector v is then fixed by taking v = u x 0,
resulting in a right-handed coordinate system. For our application, view
interpolation is performed on the wavelet approximation coefficients
only. These precomputed coefficients are denoted by C%(Qi, b;)-

0.

e 0 |
-
g NN

(a) (b)

Figure 2. (a) Precomputed slices in Fourier space for fixed § = % and Ny = 8.
(b) Interpolation of the precomputed slices Cp; (8, ¢1) and C}/; (8, ¢2). The resulting
approximation coefficients are C}\';(6, ).

For a chosen viewing direction (0,¢), 0 <6 < §, and 0 < ¢ < 2m,
slice interpolation is performed as follows. Find i and j, such that
0; < 0 < 041 and ¢; < ¢ < ¢j41. Then, compute the interpolated
approximation coefficients C’%(O, ¢) by bilinear interpolation:

Cri0,0) = (1—a) (1 —B)Ch(0i,¢5) + (1—a) BCH(0;, djr1)
+ a(l—B)Ch0ir1. ;) + aBCL(Bis1, djt1),

where
0 — 6 ¢ —9;

Oir1—0; Gj+1 — @5
Viewing directions for which § < < 7 require mirroring of the final
images. Figure 2 illustrates the meaning of the parameters for the spe-
cial case that 0 lies in the z-y plane and is rotating around the z-axis.
In this case, § = § = Oy, 1 and, therefore, @ = 0. Figure 2(a) shows
the situation in 3-D. The vertical planes represent the precomputed
slices for Ny = 8. Figure 2(b) shows the scene projected on the w,-w,
plane. Two precomputed slices are shown in black, and the interpolated
slice is shown in grey.

The extension of Fourier-wavelet volume rendering (Algorithm 2)
with view interpolation is now as follows.

and g =

o =

wxfr.tex; 12/01/2001; 11:28; p.13



14 Westenberg and Roerdink

ALGORITHM 3. FWVR. with view interpolation

— Preprocessing. Compute the 3-D Fourier transform of the vol-
ume data, and compute a set C%(Qi, ¢;) of wavelet approzimation
coefficients in frequency space for a number of different viewing
directions (0;,¢;), 0 <i < Ng, 0 < j < Ny.

— Actual volume rendering. For each direction 0 do:

1. Interpolate the precomputed coefficients C%(Qi, ¢;) in the slice
plane orthogonal to 8. This yields the array C%(O).

2. Perform a partial Fourier-wavelet reconstruction from C%(G),
followed by a 2-D inverse Fourier transform to obtain an ap-
proximation n the spatial domain.

4. Experimental Results

Experiments with two CT data sets were carried out to assess quality
and performance of the proposed algorithm. We used a small CT data
set of size 1283 and a large CT data set of size 256%. A fourth-order
B-spline wavelet was used as the basic wavelet. An important property
of FWVR is that other wavelets give only marginally different timing
results [26]. For the small data set, we used two decomposition levels
and for the large data set three decomposition levels, so that the size of
the precomputed sequence of approximation coefficients is the same for
both data sets. The decomposition depth M cannot be set larger for
the fourth-order B-spline wavelets, because the size of the downsampled
data should always be larger than the length of the filters used for the
wavelet decomposition (41 coefficients). Cubic B-spline interpolation
[21] with 20% zero-padding was applied for resampling slices in Fourier
space.

Figure 3 shows plots of relative error norms of the difference between
an approximation image obtained by view interpolation (Algorithm 3)
and by direct computation by FWVR, (Algorithm 2) for the small CT
data set. Angle increments of 5 degrees and 10 degrees were used for
the view vector @ rotating around the z-axis, i.e. # = 7. Figure 3(a)
shows a plot of the Lo, norm (absolute difference), and Fig. 3(b) shows
a plot of the Ly norm (mean squared difference). The plots show that
the relative Ly norm is very small for both 5 degree and 10 degree angle
increments. On the whole, it is less than one grey value. On average,
the relative Lo norm for 5 degree angle increments is a factor of 9.5
smaller than for 10 degree angle increments. The L., norm may be
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An Extension of Fourier-Wavelet Volume Rendering by View Interpolation 15

large at certain view angles when using 10 degree angle increments.
For example, expressed in grey values, it can be as large as 32. On
average, the L., norm for 5 degree angle increments is a factor of 2.9
smaller than for 10 degree angle increments.

0.18 0.001
5 degrees 5 degrees
0.16 0 degrees - ] 10 degrees -

0.0008

0.0006

0.0004

Relative L,, norm
Relative L, norm

0.0002

;(\ 1 R
LAV .

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Angle ¢ Angle ¢

(a) (b)

Figure 3. Plots of relative Lo, (a) and Ly (b) norms of the difference between an
approximation image obtained by view interpolation and by direct computation.
Angle increments of 5 degrees and 10 degrees were used.

Although the L, norm may be large for 10 degree angle increments,
the approximation images still look acceptable. The problem with the
Ly norm is that it takes the maximum absolute difference over the
whole image. To obtain a better impression of the amount of pixels that
deviate from the exact value, we can look at the histograms of the abso-
lute differences between images obtained by view interpolation and by
direct computation. This is done for the viewing direction 8 = (7, %),
for which the L., error is maximal. The cumulative histograms are
shown in Fig. 4(a) and Fig. 4(b) for 5 degree angle increments and
10 degree angle increments, respectively. The histograms show that, in
spite of a large L., error at 10 degree angle increments, 93% of the
pixels are within an error margin of 5 grey values. For 5 degree angle
increments this number is 98%. A difference within a range of 5 grey
values is so small that the human eye cannot distinguish it, especially
not in bright areas.

Figure 5(a) shows an exact image obtained by direct computation,
and Fig. 5(b)-(c) show difference images obtained by subtracting the
exact image from images obtained by view interpolation using 5 degree
angle increments and 10 degree angle increments, respectively. The grey
values of the difference images were scaled to show better contrast,
where white corresponds to a positive difference and black to a negative
difference. The view vector is (7, 178—”0). This viewing direction was cho-
sen because the Lo, norms are large for both 5 degree angle increments
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5 degree angle increment 10 degree angle increment
100% [ — T T T T T 1000 T pp———

95 % 95 %

90 % H 90 %

85% H 85%

80% il 80%

5% - H 75%

709 L . . . . . . 709 LL . . . . . .

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Absolute grey value difference Absolute grey value difference

(a) (b)

Figure 4. Cumulative histograms of the absolute difference between images obtained
by direction computation and view interpolation. (a) 5 degree angle increments. (b)
10 degree angle increments.

and 10 degree angle increments. The images in Fig. 5(b)-(c) show that
differences are small and distributed uniformly over the image, resulting
in a slight blurring. This effect is only visible in still images, and we
want to emphasize that these approximation images are shown only
during user interaction, when a user chooses new viewing directions
several times per second. Since the human eye is less sensitive for loss
of detail in images involving motion, the blurring is not a problem.

(b) (c)

Figure 5. (a) Exact approximation image for the view vector (%, %) obtained by
direct computation. (b)-(c) Difference images obtained by subtracting the exact
image from images obtained by view interpolation with 5 degree angle increments
(b) and 10 degree angle increments (c).

When user interaction ceases, we apply Algorithm 2 to refine the
images incrementally to full resolution as shown in Fig. 6 for the large
CT data set. The level 1 approximation (Fig. 6(c)) uses only 25%
of the wavelet coefficients, yet differences with the full reconstruction
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An Extension of Fourier-Wavelet Volume Rendering by View Interpolation 17

(Fig. 6(d)) are hardly distinguishable, providing an extra motivation
for the use of wavelets.

(a) level 3 (b) level 2

(c) level 1 (d) level 0

Figure 6. FWVR (Algorithm 2) rendering by a three-level fourth-order B-spline
wavelet decomposition of the large CT data set.

Table I shows rendering times of FWVR with view interpolation (Al-
gorithm 3) and cumulative rendering times of ordinary FWVR (Algo-
rithm 2). Timings were performed on a Pentium III 500 MHz processor.
All results include the time used by the inverse 2-D FFT. While a user
is interacting with the data, FWVR with view interpolation (Algorithm
3) is performed. The results show that this allows for fast interaction;
for a volume of size 256> the method renders at 5.6 frames per second,
whereas ordinary FWVR manages only 0.7 frames per second (com-
puted from the table entry corresponding to the time to obtain a level
3 approximation). When interaction ceases, a slice is extracted from the
3-D Fourier transform of the data, in order to render an exact image
for that viewing direction, which is obtained after slightly more than 2
seconds by ordinary FWVR (Algorithm 2).
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18 Westenberg and Roerdink

Table I. Rendering times (in seconds) of FWVR extended by view inter-
polation (Alg. 3) and ordinary FWVR (Alg. 2). During user interaction,
low resolution images are computed by FWVR with view interpola-
tion. When interaction ceases, an exact image is computed by ordinary
FWVR. The table entries for Alg. 2 are cumulative.

CT head (128%)  CT head (2563)

User interaction — (Alg. 3)
FWVR with view interpolation 0.04 0.18

User interaction ceased — (Alg. 2)

Slice extraction 0.25 1.05
Fourier-wavelet decomposition 0.32 1.35
Level 3 approximation 1.45
Level 2 approximation 0.34 1.63
Level 1 approximation 0.37 1.44
Full reconstruction 0.42 2.14

5. Discussion

Fourier-wavelet volume rendering is a computationally efficient method
to visualize data at progressively higher levels of detail, which is useful
in client-server systems. In this paper, we have overcome one of the
disadvantages of FWVR, i.e. the need to interpolate a slice in Fourier
space at full resolution in order to perform a 2-D wavelet decomposition.
This was accomplished by precomputing sets of wavelet approximation
coefficients in the Fourier domain for a set of selected fixed viewing
directions. The new algorithm computes images for intermediate view-
ing directions by interpolation of the precomputed coefficients. The
main differences between ordinary view interpolation (as used in com-
puter graphics) and view interpolation in Fourier-wavelet space are
that (i) interpolation is performed on the wavelet approximation coef-
ficients in the frequency domain and not in the image domain, and (ii)
interpolation is performed during user interaction only.

We have used simple bilinear interpolation for view interpolation.
This was done for two reasons: (i) it is computationally more effi-
cient than higher order interpolation methods, and (ii) higher order
interpolation methods give only marginally different results. Since view
interpolation is applied only during user interaction, we consider speed
to be more important than accuracy. Furthermore, the results show that
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An Extension of Fourier-Wavelet Volume Rendering by View Interpolation 19

bilinear interpolation gives acceptable errors, and angle increments as
large as 10 degrees result in only a small degradation of image quality.

The computational cost of view interpolation is independent of the

angle increments, and changing these only affects the precomputation
stage. If the angle increments are made smaller, it takes more time to
precompute the approximation coefficients, and also storage space re-
quirements increase. However, rendering always takes the same amount
of time, but image quality increases when smaller angle increments are
used.

10.

11.

12.

13.

14.

15.

16.

References

Chen, S. E. and L. Williams: 1992, ‘View Interpolation for Image Synthesis’.
In: Computer Graphics (Proceedings of SIGGRAPH 92). pp. 279-288.

Choi, J. and Y. G. Shin: 1999, ‘Efficient Image-Based Rendering of Volume
Data’. Journal of KISS 26(3), 261-270.

Chui, C. K.: 1992, An Introduction to Wavelets. Academic Press.

Drebin, R. A., L. Carpenter, and P. Hanrahan: 1988, ‘Volume Rendering’.
Computer Graphics (SIGGRAPH ’88 proceedings) 22(4), 65-74.

Frigo, M. and S. G. Johnson: 1998, ‘FFTW: An Adaptive Software Architecture
for the FFT'. In: Proc. ICASSP, Vol. 3. p. 1381.

Horbelt, S., M. Unser, and M. Vetterli: 1999, ‘Wavelet Projections for Volume
Rendering’. In: M. A. Alberti, G. Gallo, and I. Jelinek (eds.): Eurographics
’99. pp. 56-59.

Kak, A. C. and M. Slaney: 1988, Principles of Computerized Tomographic
Imaging. New York: IEEE Press.

Keys, R. G.: 1981, ‘Cubic Convolution Interpolation for Digital Image Pro-
cessing’. IEEE Transactions on Acoustics, Speech, and Signal Processing
ASSP-29(6), 1153-1160.

Lacroute, P. and M. Levoy: 1994, ‘Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transformation’. In: A. Glassner (ed.):
Proceedings of SIGGRAPH ’94. pp. 451-458.

Levoy, M.: 1988, ‘Volume Rendering: Display of surfaces from volume data’.
IEEE Computer Graphics and Applications 8(3), 29-37.

Lichtenbelt, B., R. Crane, and S. Naqvi: 1998, Introduction to Volume
Rendering. Hewlett-Packard Professional Books, Prentice-Hall.

Lippert, L., M. H. Gross, and C. Kurmann: 1997, ‘Compression Domain Volume
Rendering for Distributed Environments’. Computer Graphics Forum 16(3),
95-107.

Lorensen, W. E. and H. Cline: 1987, ‘Marching Cubes: A High Resolution 3D
Surface Construction Algorithm’. Computer Graphics 21(4), 163-169.

Mallat, S. G.: 1989, ‘A theory for multiresolution signal decomposition: the
wavelet representation’. IEEE Transactions on Pattern Analysis and Machine
Intelligence 11, 674-693.

Malzbender, T.: 1993, ‘Fourier Volume Rendering’. ACM Transactions on
Graphics 12(3), 233-250.

Napel, S., S. Dunne, and B. K. Rutt: 1991, ‘Fast Fourier Projection for MR
Angiography’. Magnetic Resonance in Medicine 19, 393—405.

wxfr.tex; 12/01/2001; 11:28; p.19



20

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Westenberg and Roerdink

Natterer, F.: 1986, The Mathematics of Computerized Tomography. B. G.
Teubner & J. Wiley.

Rioul, O. and P. Duhamel: 1992, ‘Fast Algorithms for Discrete and Continuous
Wavelet Transforms’. IEEE Transactions on Information Theory 38(2), 569
586.

Roerdink, J. B. T. M. and M. A. Westenberg: 1999, ‘Wavelet-Based Volume
Visualization’. Nieuw Archief voor Wiskunde 17(2), 149-158.

Totsuka, T. and M. Levoy: 1993, ‘Frequency Domain Volume Rendering’. In: J.
Kajiya (ed.): Computer Graphics (SIGGRAPH 93 Proceedings), Vol. 27. pp.
271-278.

Unser, M.: 1999, ‘Splines: a Perfect Fit for Signal and Image Processing’. IEEE
Signal Processing Magazine 16(6), 22—-28.

Unser, M., A. Aldroubi, and M. Eden: 1993, ‘A Family of Polynomial Spline
Wavelet Transforms’. Signal Processing 30, 141-162.

Vetterli, M. and C. Herley: 1992, ‘Wavelets and Filter Banks: Theory and
Design’. IEEFE Transactions on Signal Processing 40(9), 2207-2232.

Vetterli, M. and J. Kovacevié: 1995, Wavelets and Subband Coding. Prentice-
Hall.

Warrick, A. L. and P. A. Delaney: 1995, ‘A wavelet localized Radon transform’.
In: Proc. SPIE Vol. 2569, Wavelet Applications in Signal and Image Processing
III, Andrew F. Laine; Michael A. Unser; Mladen V. Wickerhauser; Eds. pp.
632—643.

Westenberg, M. A. and J. B. T. M. Roerdink: 2000a, ‘Frequency Domain
Volume Rendering by the Wavelet X-Ray Transform’. IEEE Transactions on
Image Processing 9(7), 1249-1261.

Westenberg, M. A. and J. B. T. M. Roerdink: 2000b, ‘X-Ray Volume Rendering
Through Two-Stage Splatting’. Machine Graphics & Vision 9(1/2), 307-314.
Westover, L. A.: 1990, ‘Footprint Evaluation for Volume Rendering’. Computer
Graphics 24(4), 367-376.

Zuidwijk, R. A.: 1997, ‘The Wavelet X-ray Transform’. Technical Report PNA-
R9703, Centre for Mathematics and Computer Science, Amsterdam.

wxfr.tex; 12/01/2001; 11:28; p.20



