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Abstract

Given a signal and its Fourier transform, we derive formulas for its polyphase decomposi-

tion in the frequency domain and for the reconstruction from the polyphase representation

back to the Fourier representation. We present two frequency-domain implementations of

the shift-invariant periodic discrete wavelet transform (SI-DWT) and its inverse: one that is

based on frequency-domain polyphase decomposition and a more efficient ‘direct’ imple-

mentation, based on a reorganisation of the à trous algorithm.

We analyse the computational complexities of both algorithms, and compare them to

existing time-domain and frequency domain implementations of the SI-DWT. We experi-

mentally demonstrate the reduction in computation time achieved by the direct frequency

domain implementation of the SI-DWT for wavelet filters with non-compact support.
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1 Introduction

The discrete wavelet transform (DWT) is extensively used in signal processing ap-

plications. Some versions of the DWT have been implemented in the frequency

domain, see e.g. [7, 9, 10, 12, 13]. Westenberg and Roerdink used this Fourier im-

plementation of the DWT for a frequency domain implementation of the wavelet

X-ray transform [14]. A problem of the original DWT is that it is not shift-invariant,

i.e., the DWT of a shifted signal cannot be found by shifting the DWT coefficients.

A shift-invariant discrete wavelet transform (SI-DWT) was introduced indepen-

dently by Holschneider and Shensa [3, 8], who called it the à trous algorithm, and

by Coifman and Donoho [2], who called it cycle spinning. This algorithm is based

on computing the wavelet coefficients for all possible circularly shifted copies of

the input signal. Extensions of the standard DWT have been proposed which are ap-

proximately shift-invariant [4]; its implementation in the Fourier domain is consid-

ered in [6]. Here we consider the frequency domain implementation of the exactly

shift-invariant DWT.

Making the wavelet transform shift-invariant requires a large amount of additional

computation. For this reason, high-speed hardware implementations have been pro-

posed [1]. The Rice Wavelet Toolbox [www.dsp.rice.edu/software/RWT]

(RWT) contains an implementation of the SI-DWT that is based on the time-domain

FWT. Another way to speed up computation of the SI-DWT similarly to the DWT,

is doing the convolutions in the Fourier domain. A frequency domain SI-DWT

is more efficient than the time-domain implementation for filters that have non-

compact support. Such implementations have been considered in the past, notably

j.b.t.m.roerdink@rug.nl (Jos B. T. M. Roerdink).
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by Rioul and Duhamel [7], based on polyphase decompositions. Their method,

henceforth referred to as the RD algorithm, performs the convolution steps of the

SI-DWT in the Fourier domain, while computing the downsampling and shift op-

erations in the time domain, for all J levels (octaves) of the wavelet decomposi-

tion. This requires a large number of forward and backward FFT steps for each

level of the wavelet decomposition, and leads to an algorithm which is somewhat

complex to implement. The RD algorithm is targeted towards handling very long

(potentially infinite) data sequences, and processes the data by dividing it in blocks

and performing the required operations (Fourier transform, complex multiplication,

downsampling) on each block at a time. Furthermore, the RD algorithm computes

the aperiodic SI-DWT. Rioul and Duhamel [7] describe an extension of the RD

algorithm, based on the Vetterli algorithm [11], which gathers a certain number J0

(where J0 < J) of consecutive octaves in one step by performing the subsampling

in the frequency domain, thus avoiding subsequent forward and backward FFTs.

The goal of this paper is to present a simple and efficient alternative to the RD fre-

quency domain implementation for the case of the periodic SI-DWT. Our algorithm

for the SI-DWT, called the ‘direct’ implementation, employs all upsampling and

downsampling of signals in the frequency domain, for arbitrary sampling factors

and signal shifts. It uses only a single initial FFT and one final IFFT; all other steps

consist of simple copying and multiplications of matrix elements. In that sense, our

approach is the equivalent to application of the Vetterli algorithm for all octaves,

i.e., J0 = J . We describe another SI-DWT implementation using explicit polyphase

decompositions (the ‘polyphase’ implementation), and show that the direct imple-

mentation has superior efficiency. Although the essential ingredients of the direct

implementation have been known for a long time, the simple algorithm presented

here has, to the best of our knowledge, not been described before. The algorithm
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can be easily extended to higher dimensions by using tensor product wavelet bases.

We analyse the time complexity of the direct and polyphase methods and compare

them to the RD algorithm (slightly modified for periodic DWTs) and the time-

domain SI-DWT, using non-compact filters (i.e., with length N ). For a fixed J ,

the time-domain implementation of the SI-DWT is quadratic in N . The frequency

domain implementations are all order N log2 N , of which the RD and direct algo-

rithms are faster, and of those two the direct algorithm is most efficient.

For large N the speed gain of the direct algorithm over the RD method equals

3J/(J + 2). Although this is not an order of magnitude difference, this is a notice-

able improvement for processing large data sets. An example is wavelet analysis

of functional magnetic resonance imaging (fMRI) data, which actually prompted

our interest in efficient SI-DWT implementations. Here the SI-DWT is computed

for each time series in a sequence of image volumes. As each volume consists of

several millions of data points, this means computing millions of SI-DWTs [15].

The direct algorithm proposed in this paper significantly reduces computation time

for long wavelet filters.

The organisation of this paper is as follows. Section 2.1 summarises the polyphase

decomposition and monophase reconstruction in the frequency domain. Section 3

reviews the shift-invariant wavelet transform (SI-DWT) and section 4 presents the

three frequency domain implementations. The complexity analysis is carried out in

section 5. Conclusions are drawn in section 6.
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2 Polyphase decomposition in the frequency domain

2.1 Upsampling and downsampling

Implementations of the DWT by the fast wavelet transform (FWT) use the con-

volution operator, as well as up/downsampling by a factor of 2. Downsampling

corresponds to biphase decomposition, and discarding the second phase. These op-

erations can all be implemented in the Fourier domain [12, 14].

It has been shown [14] that given the Z-transform X[z] of a discrete signal x(n)

of length N , the even and odd samples of a signal x are given by Xeven[z] =

1
2

(
X[z

1
2 ] + X[−z

1
2 ]
)

and Xodd[z] = 1
2
z

1
2

(
X[z

1
2 ]− X[−z

1
2 ]
)
, respectively. The Z-

transform of the signal upsampled by a factor 2 is given by Xup,2[z] = X [z2]. On

the unit circle in the complex plane, the Z-transform X[e2πik/N ] coincides with the

element X(k) =
∑N−1

n=0 x(n) e
−2πik n

N of the discrete Fourier transform (DFT) of x.

2.2 Polyphase decomposition and monophase reconstruction

Here we consider a more general subsampling scheme which decomposes a signal

into Q phases, where all phases are retained. A discrete signal x(n) can be subsam-

pled by a factor Q∈N+ in Q different ways (if Q is a divisor of N ) by shifting the

signal over 0, . . . , Q−1 positions, respectively. The signal is then in its polyphase

form; we will refer to the operation above as the polyphase decomposition. The

original signal is retrieved via the monophase reconstruction, which interleaves the

Q signals after upsampling by a factor Q.

Given a signal x(n) of length N = 2m, m∈N+ and a number Q that is a divisor of
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N , the polyphase decomposition is defined as

xQ,0 = (x(0), x(Q), x(2Q), . . . , x(N −Q))

xQ,1 = (x(1), x(Q + 1), x(2Q + 1), . . . , x(N −Q + 1))

and so on, splitting x into phase components xQ,q as follows:

xQ,q(n) = x(Q n + q), q = 0, 1, . . . , Q− 1, n = 0, 1, . . . , N/Q− 1.

Conversely, the monophase reconstruction

x(n) = xQ,n mod Q(n div Q), n = 0, 1, . . . , N − 1 (1)

restores a signal x(n) from its polyphase components xQ,q. That is, to collect the

elements x(n): for n = 0 . . . Q− 1, take elements xQ,0(0) , xQ,1(0) . . . xQ,Q−1(0);

for n = Q . . . 2Q− 1 take elements xQ,0(1) , xQ,1(1) . . . xQ,Q−1(1), and so on.

2.2.1 The Z-transform

The Z-transform of each xQ,q is denoted by XQ,q[z]:

XQ,q[z] =
N/Q−1∑

n=0

x(Q n + q)z−n.

The decomposition of x in Q phases has the the Z-transform

X[z] =
N−1∑
n=0

x(n)z−n

=
Q−1∑
q=0

N/Q−1∑
n′=0

x(Q n′ + q)z−(Qn′+q)

=
Q−1∑
q=0

z−q XQ,q[zQ] (2)

which is a generalisation of the equations in [14], and can be used to represent the

relation between the Z-transform and the DFT of a phase component.
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Theorem 1 Let x(n) be a signal of length N with Z-transform X[z]. Let xQ,q de-

note the signal downsampled by a factor Q and shifted over index q. Then:

XQ,q[z] =
1

Q
z

q
Q

Q−1∑
`=0

e
2πi`q

Q X

[
e

2πi`
Q z

1
Q

]
. (3)

Proof: Insert (2) into the sum (denoted SUM) in the right-hand side of (3):

SUM =
Q−1∑
`=0

e
2πi`q

Q X

[
e

2πi`
Q z

1
Q

]

=
Q−1∑
`=0

e
2πi`q

Q

Q−1∑
m=0

e−
2πi`m

Q z−
m
Q XQ,m[z]

=
Q−1∑
m=0

z−
m
Q XQ,m[z]

Q−1∑
`=0

e
2πi`(q−m)

Q

︸ ︷︷ ︸
Q δq,m

= z−
q
Q XQ,q[z] Q,

where δq,m are Kronecker deltas. This completes the proof.

2.2.2 The DFT: polyphase decomposition

Let X(k) be the N -point DFT of x(n), let and XQ,q(k) the N/Q-point DFT of

phase component xQ,q, i.e., :

XQ,q(k) = XQ,q
[
e

2πik
N/Q

]
=

N/Q−1∑
n=0

x(Qn + q) e−
2πik n
N/Q , k = 0, . . . , N/Q− 1. (4)

Application of formula (3) to (4) yields

XQ,q(k) =
1

Q
e

2πikq
N

Q−1∑
`=0

e
2πi`q

Q X

[
e

2πi(k+`N/Q)
N

]
.

Using the fact that X[e2πik/N ] = X(k), we therefore find that the equation which

expresses the frequency domain polyphase decomposition (FPD) is given by:

XQ,q(k) =
1

Q
e

2πikq
N

Q−1∑
`=0

e
2πi`q

Q X

(
k +

`N

Q

)
. (5)
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This formula expresses the DFT coefficients of the phase components XQ,q in terms

of the DFT X(k) of signal x(n).

2.2.3 Monophase reconstruction

The frequency domain monophase reconstruction (FMR) transforms the DFT co-

efficients of the polyphase components of a signal back into the DFT coefficients

of the signal itself. It is given by the following equation:

X(K) =
Q−1∑
q=0

e
−2πiqK

N XQ,q(k), K = k +
`N

Q
, (6)

for k = 0, . . . , N/Q− 1, ` = 0, . . . , Q− 1. Its proof is similar to theorem 1.

3 The shift-invariant discrete wavelet transform

In the wavelet representation, a signal is a superposition of transient waveforms,

which are basis functions of a sequence of nested function spaces [12]. A multires-

olution representation of a discrete signal c0 := (c0(0), c0(1), . . . , c0(N − 1)) is

made by repeatedly splitting signals cj (j≥0) into approximation cj+1 and detail

dj+1 parts, by filtering with lowpass and bandpass filters h and g, respectively.

The fast wavelet transform (FWT) with filters of length L changes a discrete signal

of N points to its wavelet representation in O(L N) time, by recursively down-

sampling cj and dj after filtering. Its inverse upsamples cj+1 and dj+1 and filters

the upsampled signals with dual filters h̃ and g̃, before adding them together (see

Fig. 1a-b). If h and g define an orthogonal wavelet basis, the dual filters are defined

as h̃(n) = h(−n) and g̃(n) = g(−n), x denoting the complex conjugate of x.

8



G 2

2H

G 2

2H

G 2

2H...c0 c1

d1

c2

d2

cJ

Jd

2 H  
~

2 G
~

+ 2 H  
~

2 G
~

+ 2 H  
~

2 G
~

+...cJ

Jd

cJ−1

dJ−1

c1

d1

c0

(a) (b)

2
j

2
j

2
j

2
j

2
j

2
j

2
j

j
2−1

j
2−1

z

z

z

z

z

z

H

H

H

G

G

G +

+

z −1

z −1

+

+

+

z −1

z −1

+

z −1

z −1

2
j

2
j/

2
j/

...

G

H
0

0

1

2

1

2
j

...

2

polyphase

...

...

monophase

2
j

2
j

2
j

j

2
j

2
j

2
j

2

cj cj+1

j+1d

2
j

2
j

2
j

2
j

2
j

2
j

2
j

2
j H  

~

G
~

H  
~

H  
~

G
~

G
~

G
~

H  
~

z

z

z

z

z

z

+

+

z −1

z −1

+

+

z −1

z −1

+

z −1

2
j/

2
j/ + 2/

0

1

2

0

1

2

j
2−1

j
2−1

...

... ...

...

z −1

polyphase monophase

2
j

2
j

2
j

2
j

2
j

2
j

2
j

2
j

+

dj+1

cj+1 cj

(c) (d)

Fig. 1. Graphical representations of the FWT (a), the IFWT (b), one level of the SI-DWT

(c) and one level of the SI-IDWT (d).

3.1 Definition of the SI-DWT

We introduce the SI-DWT as defined in Eq. (3.14) of Shensa’s paper [8] describing

the à trous algorithm. Let h, g be the scaling and wavelet filters of an orthonormal

wavelet basis (this will guarantee that perfect reconstruction holds). The definition

of the SI-DWT with J levels (octaves) then is 1 :

cj+1 = (↑Q h) ∗ cj, dj+1 = (↑Q g) ∗ cj (7)

for Q = 2j, j = 0, 1, . . . , J−1. Here, ∗ denotes discrete convolution, and the opera-

tion ↑Q x denotes upsampling of x by a factor Q, i.e., inserting Q−1 zeros between

1 We write dj+1 instead of w̃j (j = 0, 1, . . .) as in [8]
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each pair of elements of x. Input is a vector c0; output are vectors d1,d2,. . .,dJ ,cJ .

The dj
k are the detail coefficients of the expansion of c0 and the cJ

k are the approxi-

mation coefficients on the coarsest level. If the length of the input signal c0 equals

N , then for all levels j the length of cj and dj is N as well. Many coefficients of

the filter after upsampling are zero (à trous filter = filter with holes).

The original signal is reconstructed recursively, starting at level J , by upsampling

the dual filters h̃ and g̃, followed by the convolution

cj−1 = (↑Q h′) ∗ cj + (↑Q g′) ∗ dj (8)

for Q = 2j; j = L, J − 1, . . . , 1. Here h′ = h̃/2 and g′ = g̃/2, i.e., the reconstruc-

tion filter coefficients are divided by 2 to account for the fact that the data size is

not reduced by a factor of 2 in each step, but remains constant [8].

3.2 Polyphase transform

An efficient SI-DWT implementation skips multiplications of zero filter coeffi-

cients. To show this in more detail, (7) can be written as:

cj+1(k) =
∑
n

h(−n)cj(Q n + k), dj+1(k) =
∑
n

g(−n)cj(Q n + k), or

cj+1,q = h ∗ cj,q, dj+1,q = g ∗ cj,q (9)

where cj,q(n) = cj(Q n + q) and dj,q(n) = dj(Q n + q) are the polyphase com-

ponents of cj and dj , respectively. In step j the data vector cj is split into Q = 2j

blocks (polyphase decomposition), and each block is convolved with filter h̃ (for

cj+1) or with g̃ (for dj+1). All blocks are assembled into new vectors cj+1 and

dj+1, with the same dimensions as c0, by the monophase transform (1). The inverse

transform (SI-IDWT) does the same polyphase filtering procedure, with h̃ and g̃.

10



The upsampled and filtered signals cj+1 and dj+1 are added together to produce cj

(see Fig. 1c-d).

In summary, the implementations of the shift-invariant discrete wavelet transform

(SI-DWT) by the à trous algorithm [3,8] or cycle spinning [2], contain the following

steps: subsample for all possible shifts (polyphase decomposition), filter the phase

signals separately, and merge the filtered phase signals (monophase reconstruction).

4 Frequency domain SI-DWT

We now describe the implementations of the SI-DWT in the frequency domain. The

FFT implementation produces a cyclic convolution. To avoid wrap-around effects,

the signal has to be extended by zero elements (zero padding). We will look in more

detail at this when we consider the computational complexity in section 5.

First we look at the method of Rioul and Duhamel [7]. Then we describe our two

new implementations.

4.1 The method of Rioul and Duhamel

The approach of Rioul and Duhamel [7] is based on the polyphase representation

(9). This representation contains three steps for each octave j: a polyphase decom-

position, a convolution, and a monophase reconstruction. Only the convolution is

done in the frequency domain. That is, after the polyphase decomposition an FFT

is applied, followed by a multiplication of the Fourier coefficients and an IFFT. The

monophase transform then gives the next octave j + 1. This procedure is repeated

until the maximum number of octaves J has been reached.
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4.2 Direct Fourier-domain filtering

Our alternative method starts with an initial FFT of the input signal, and afterwards

works purely in the frequency domain for all octaves. We start by an N -point FFT

of the input signals and filters. The formulas for the SI-DWT (7) then become:

Cj+1 = HQ • Cj, Dj+1 = GQ • Cj, (10)

for j = 0, 1, . . . , J−1, Q = 2j . Input is a vector C0; output are vectors D1, D2, . . .,

DJ , CJ . Here x•y denotes pointwise multiplication of vectors x and y, and Cj , Dj ,

HQ and GQ denote the N -point DFT vectors of cj , dj , ↑Q h and ↑Q g, respectively.

The vectors HQ and GQ contain the Fourier coefficients of the upsampled filters.

In particular, if j = 0, that is, Q = 1, H1 equals the DFT vector H of h.

Note that the operations (10) are all just successive multiplications of frequency

domain vectors: there are no intermediate FFTs or IFFTs between octaves. After

all octaves have been computed, the time domain vectors d1, d2, . . ., dJ , cJ may be

obtained by taking N -point IFFTs of D1, D2, . . . , DJ , CJ , respectively.

Let us consider the elements of the DFT vector HQ in more detail.

HQ(k) =
N−1∑
n=0

(↑Q h)(n) e−
2π i k n

N

=
M−1∑
m=0

h(m) e−
2π i k m Q

N = H(k Q), (11)

for k = 0, . . . , N − 1. Here the filter h is assumed to have length M . Note that the

index k in (11) runs from 0 to N − 1, independent of level j, i.e., the filter length

stays constant. For example, for j = 1 (i.e., Q = 2):

H2 = [H(0) H(2) . . . H(N − 2) H(0) H(2) . . . H(N − 2)]

In general,
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HQ =

Q times︷ ︸︸ ︷
(↓2j H) (↓2j H) · · · (↓2j H)


So, in iteration j of the decomposition, the DFT vector HQ is obtained by down-

sampling the DFT vector H by a factor Q = 2j , and then Q times repeating this

reduced vector of length N/Q to again get a filter of length N . Alternatively, two

copies of the even-numbered samples of the filter values in the previous iteration

j − 1 (i.e., HQ/2) are concatenated to obtain HQ. The case of GQ is analogous.

From (8), reconstruction in the Fourier domain is obtained by

Cj−1 = H ′Q • Cj + G′Q •Dj,

where H ′Q and G′Q are obtained in the same way from h′ and g′ as described above

for HQ.

This frequency-domain implementation of the SI-DWT does not use the polyphase

decomposition, which at higher levels of the wavelet decomposition substantially

reduces the number of required computations. Matlab code of the SI-DWT and

SI-IDWT routines is given in Algorithm 1.

For separable filters, generalisation of this algorithm to higher dimensions follows

directly from the time-domain version and the convolution property. In the 2D case,

the input C is a 2D frequency spectrum, and the 4 filters HH , HG, GH , and

GG are the tensor products of the 1D filters. Filtering becomes multiplication, and

higher-level filters are made by subsampling the originals by a factor 1/Q×1/Q

and repeating the subsampled filter Q×Q times. For every next level, each of the

filters is applied to the current approximation.
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Algorithm 1. Frequency-domain implementation of SI-DWT and SI-IDWT in Matlab code

Frequency-domain SI-DWT

Inputs: level J , signal S, filters H , G;


all signals and filters

Outputs: approx. C, detail D(j, :) (j = 1, 2, . . . , J) are DFT vectors

1: len=length(S);

2: C=S;

3: for j = (1:J)

4: C = H .* C;

5: D( j, : ) = G .* C;

6: H = [H(1:2:len) H(1:2:len)];

7: G = [G(1:2:len) G(1:2:len)];

8: end;

Frequency-domain SI-IDWT

Inputs: level J , approx. C, details D(j, :), dual filters H ′, G′


all signals and filters

Outputs: reconstruction R (j = 1, 2, . . . , J) are DFT vectors

1: len=length(C);

2: R=C;

3: for j = (J :-1:1)

4: Q = 2ˆ(j-1);

5: H ′
s = repmat ( H ′(1:Q:len), 1, Q );

6: G′
s = repmat ( G′(1:Q:len), 1, Q );

7: R = H ′
s .* R + G′

s .* D( j, : );

8: end;

Special symbols: u .* v: pointwise multiplication of u and v;

repmat(A,m,n): m-by-n tiling of copies of A.
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4.3 Fourier-domain polyphase filtering

Another method is based on a frequency domain version of (9):

Cj+1,q = H • Cj,q, Dj+1,q = G • Cj,q (12)

for j = 0, 1, . . . , J − 1, q = 0, 1, . . . , Q − 1, Q = 2j . The notation is as in the

previous subsection, i.e., Cj,q, Dj,q, H and G are the DFT vectors of cj,q, dj,q, h

and g, respectively, all of length N/Q.

The algorithm starts by an initial FFT of the input signal c0, and from then on per-

form all operations (polyphase transform, filtering, and monophase reconstruction)

in the frequency domain. At each octave j, the steps are:

(1) Compute {Cj,q} = FPD(Cj), q = 0, 1, . . . , Q− 1,

(FPD denotes frequency domain polyphase decomposition)

(2) Compute Cj+1,q and Dj+1,q for all q by (12)

(3) Compute Cj+1 = FMR({Cj+1,q}) and Dj+1 = FMR({Dj+1,q}),

(FMR denotes frequency domain monophase reconstruction)

The frequency domain polyphase and monophase transforms are based on the for-

mulas of section 2.2. In contrast to the direct method, the explicit polyphase trans-

form in this algorithm needs to process the entire signal for every phase component,

making it computationally expensive when the downsampling factor Q is large (at

high levels of decomposition). See section 5 for more details.
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5 Complexity analysis

We consider the time complexity of the algorithms described above, in the case

where the filter length L is the same order as the signal length N = 2m, and J is the

number of octaves (decomposition levels). We express the arithmetic complexity in

terms of the total number of flops, i.e., real multiplications and additions.

5.1 Time domain

A direct implementation in the time domain which avoids multiplication by zero

coefficients can be based on the polyphase decomposition (9). This requires 2L−1

operations (L multiplications and L − 1 additions) for each filter on each octave,

i.e., 2(2L− 1) N operations per octave. The total complexity is

2J(2L− 1) N.

For a number of octaves J = log2 N and L = O(N), the asymptotic complexity

for the time-domain SI-DWT is 4N2 log2 N .

5.2 Rioul -Duhamel method

The complexity of the RD algorithm can be found from the formulas in [7, p. 582,

eq. (58)]. To enable comparison with our periodic frequency domain implemen-

tations, we note that in the periodic case the FFT-length N used in the RD al-

gorithm equals the block length B, so that the denominators in eq. (58) of [7]

equal 2m. This means that the total number of flops per octave for N points equals

6 · 2m(m− 1)+18. For a total number of J octaves we thus find (N = 2m) that the
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complexity equals

6J(N(log2 N − 1) + 3).

For a number of octaves J = log2 N , the asymptotic complexity for the RD method

is 6N(log2 N)2.

5.3 Frequency domain polyphase filtering

For octave j, the number of operations is as follows. The FPD needs to process Q

blocks of length N/Q. Each block element XQ,q(k) in (5) requires Q complex mul-

tiplications and Q − 1 additions for computing the sum, followed by one complex

and one real multiplication. Since each complex multiplication (addition) requires

six (two) real operations, the total number of flops per block element is 8Q + 5.

This makes Q ·N/Q · (8Q + 5) = N · (8Q + 5) operations in total. The filters have

length N/Q and there are Q blocks, this makes N complex multiplications or 6N

real operations per filter, so 12N operations in total. Finally, the FMR (6 ) again has

Q blocks of length N/Q, each requiring Q complex multiplications and Q− 1 ad-

ditions, hence N (8Q − 2) real operations. In total that is (remember that Q = 2j)

15N + 16N · 2j operations per octave j. Summing this over j = 0, 1, . . . J − 1

octaves gives a complexity of 15N J + 16N (2J − 1).

The get the total complexity, we have to add the operation count of the initial FFT

of the input c0, and J +1 IFFTs of the outputs D1, D2, . . . , DJ , CJ in the frequency

domain. The operation count in [7], i.e., for a split-radix FFT of a real sequence of

length N , is 2N(log2 N − 2) + 6. The same holds for a complex sequence with

complex conjugate symmetry, which applies to D1, D2, . . . , DJ , CJ , since these

are multiplications of DFTs of real signals. The FFTs thus require a total of (J +

2)(2N(log2 N − 2) + 6) flops.
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In summary, this implementation has an overall complexity of

(J + 2)(2N(log2 N − 2) + 6) + 15N J + 16N (2J − 1)

= 2(J + 2)(N log2 N + 3) + N(11J − 24 + 2J+4).

For fixed J , the asymptotic complexity is O(N log2 N) in the signal length. How-

ever, it is clear that the operation count increases exponentially as the number J of

octaves increases. When J = log2 N , the asymptotic complexity is O(N2), mak-

ing this implementation less attractive than the direct method. However, for low

decomposition levels and very long filters (L ∼ N ) this algorithm is still more

efficient than the time domain implementation.

5.4 Direct frequency domain filtering

Two length N filters are applied at each octave, both consisting of N complex

multiplications. This makes 12N real operations per octave and a total of 12J N

operations summed over all octaves. Again the complexity of the initial and final

FFTs, i.e., (J + 2)(2N(log2 N − 2) + 6) flops, needs to be added, giving a total of

(J + 2)(2N(log2 N − 2) + 6) + 12N J

= 2(J + 2)(N log2 N + 3) + 8N(J − 1).

This implementation is clearly much more efficient than the frequency domain

polyphase filtering method. It is also more efficient than the time domain imple-

mentation for large filter size L, i.e., of the order of N , where the complexity of the

convolution becomes quadratic in N . Frequency domain convolution is unaffected,

since it does not depend on the filter length.

The direct algorithm has the same asymptotic complexity O(N(log2 N)2) as the

18



RD method, but with a smaller constant: for large N the speed gain is a factor of

3J/(J +2). For a number of octaves J = log2 N , the asymptotic complexity of the

direct algorithm is 2N(log2 N)2, i.e., a factor of 3 smaller than the RD algorithm.

5.5 Summary

Table 1 shows the complexities of all algorithms, for filter length N . If the decom-

position level J is fixed, the time domain implementation of the polyphase decom-

position is quadratic in N , while the frequency domain implementations are both of

order N log2 N . The direct algorithm is much more efficient than the polyphase im-

plementation, especially for large J . The direct algorithm is also faster than the RD

algorithm: for large N the speed gain equals 3J/(J+2). For the highest possible de-

composition level, i.e., J = log2 N , the polyphase frequency domain algorithm has

complexity O(N2), while the direct and RD algorithms both have O(N(log2 N)2),

the direct algorithm in turn being three times faster than the RD algorithm.
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(a) J = 3 (b) J = log2 N

Fig. 2. Doubly logarithmic plot of the complexity of the time-domain implementation (with

L = N ) and frequency domain implementations of the SI-DWT.
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Table 1

Arithmetical complexity of the SI-DWT for the time domain (TD) and frequency domain

methods (Direct, Polyphase, RD) expressed in terms of the total number of floating points

operations. Here N is the signal length, L the filter length, J the number of octaves. The

third column (‘Asymptotic’) contains the asymptotic number of flops when L = N , J =

log2 N , with N very large.

Method Nr of flops Asymptotic

TD 2J(2L− 1) N 4N2 log2 N

Direct 2(J + 2)(N log2 N + 3) + 8N(J − 1) 2N(log2 N)2

Polyphase 2(J + 2)(N log2 N + 3) + N(11J − 24 + 2J+4) 16N2

RD 6J(N(log2 N − 1) + 3) 6N(log2 N)2

A log-log plot of the complexity as a function of the input length for decomposition

level J = 3 and filter length L = N is shown in Fig. 2. The frequency domain

algorithms all scale similarly for large N , and the direct method is fastest. The

quadratic scaling of the time-domain implementation is clearly evident from the

larger slope of the plot.

5.6 Experimental results

We implemented our direct and polyphase frequency-domain versions of the SI-

DWT as Matlab MEX-routines and compared the computation times with those of

the time-domain implementation provided by the Rice Wavelet Toolbox. No imple-

mentation of the RD algorithm was available to us, therefore this method was ex-

cluded from the experiments. The test was done for a four-level SI-DWT, once with

the Daubechies-4 filter [12], and once with the symmetric orthogonal cubic spline

20



wavelet filter [5] (the support of orthogonal spline wavelet filters has the same size

as the signal). For each signal length, 16384 (214) signals were decomposed and re-

constructed. The computation times we obtained were in excellent agreement with

the theoretical complexity estimates. For the Daubechies-4 filter, all algorithms

scale linearly in N , but the polyphase implementation is significantly slower. For

the cubic spline wavelet, the time-domain implementation scales quadratically, and

the direct algorithm is again much faster than the polyphase implementation.

6 Conclusion

We have analysed the implementation of the periodic shift-invariant wavelet trans-

form (SI-DWT) and its inverse in the time and frequency domain. We have de-

scribed two frequency domain implementations, one based on explicit polyphase

decompositions carried out entirely in the frequency domain (the ‘polyphase’ im-

plementation), and one that employs all upsampling and downsampling of signals,

for arbitrary sampling factors and signal shifts, in the frequency domain (the ‘di-

rect’ implementation). Both methods only use one initial FFT and one final IFFT,

all other steps consist of simple copying and multiplication of matrix elements.

The implementation of the direct algorithm is very simple; explicit (Matlab-like)

pseudo-code has been presented.

We performed a complexity analysis of our algorithms, comparing them to the algo-

rithm by Rioul and Duhamel (RD method), which performs the convolution steps of

the SI-DWT in the Fourier domain, while computing the downsampling and shift

operations in the time domain, for all octaves of the wavelet decomposition [7].

We found that for long filter lengths (of the order of the signal length) the ‘direct’

and RD algorithms are the most efficient, both being of order O(N log2 N). In ad-
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dition, the direct algorithm is faster than the RD algorithm: for large N the speed

gain equals 3J/(J+2). For high number of octaves, i.e., J = log2 N , the polyphase

frequency domain algorithm has complexity O(N2), while the direct and RD algo-

rithms both are of order O(N(log2 N)2), the direct algorithm being three times as

fast as the RD algorithm. In applications like the analysis of fMRI data, where the

SI-DWT transform is performed millions of times, a significant speedup is achieved

by using the direct algorithm.
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