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ABSTRACT

We describe a method to extract the haemodynamic response func-
tion (HRF) from functional magnetic resonance imaging (fMRI)
time series based on Fourier-wavelet regularised deconvolution
(ForWaRD), and introduce a simple model for the HRF. The HRF
extraction algorithm extends the ForWaRD algorithm by introduc-
ing a more efficient computation in the case of very long wavelet
filters. We compute shift-invariant discrete wavelet transforms (SI-
DWT) in the frequency domain, and apply ForWaRD using orthog-
onal spline wavelets. Extraction and modelling of subject-specific
HRFs is demonstrated, as well as the use of these HRFs in a sub-
sequent brain activation analysis. Temporal responses are predicted
by using the extracted HRF coefficients. The resulting activation
maps show the effectiveness of the proposed method.

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a versatile tool
for functional neuroimaging. Regional brain activation induces
changes in blood oxygenation, generating a blood oxygenation level
dependent (BOLD) contrast in MR images [16]. An important tool
for fMRI analysis is statistical hypothesis testing, where the fMRI
signal is predicted using the stimulus pattern and a response model.
The general linear model (GLM) assumes that the BOLD response
to each stimulus is linear and time-invariant (LTI) and that the total
response is the sum of all modelled responses. Statistical parametric
mapping [6] uses a model of the noise (Gaussian), and hypothesis
tests are based on the parameters of the model. Within the GLM
framework and given the stimulus pattern, a response can be com-
puted with a fixed impulse response function, by convolving the
time pattern of stimuli with the impulse response.

This paper presents a method to extract the haemodynamic re-
sponse function (HRF) from fMRI data. The method is based on
Fourier-wavelet regularised deconvolution, ForWaRD [15], using
orthogonal spline wavelets [19]. Extraction of the HRF is a diffi-
cult task. Most methods in use today are either based on selective
averaging, which requires long inter-stimulus times to prevent over-
lapping responses [1, 3], or they combine HRF extraction and mod-
elling, restricting the HRF to predefined functions [4, 9, 14]. Non-
linear stimulus-response relations have been found [7, 20],e.g., for
varying stimulus durations and amplitudes. The experiments pre-
sented here have fixed stimulus durations and amplitudes, and the
GLM is assumed to be valid.

The advantage of deconvolution in the frequency domain is that
overlapping responses can be separated [10], which is not possible
with selective averaging. ForWaRD combines frequency-domain
deconvolution with regularisation in the frequency and wavelet do-
mains, to reduce noise as much as possible without introducing
large errors. An orthogonal spline wavelet basis is used; spline
wavelets have many favourable properties, such as smoothness, op-
timal approximation properties, and good localisation in both the

time and frequency domains [18].
Prior to the HRF extraction, low-frequency trends are re-

moved from the time signals using a standard wavelet-based tech-
nique [13]. The input of the extraction routine is an fMRI time
series and a file containing the stimulus times, and the output is
given as a time series of image volumes containing the HRF at each
voxel location. Compared to other HRF extraction methods, the
method requires only few assumptions. The stimulus-response re-
lation is assumed to be linear and time invariant (LTI), and the signal
is assumed to be separable from noise in the Fourier and/or wavelet
representation. Our ForWaRD algorithm uses a novel frequency-
domain implementation of the shift-invariant discrete wavelet trans-
form (SI-DWT) that we have recently developed [23]. It is efficient
to compute the wavelet transform in the frequency domain if the
basis functions do not have compact support [21]. This is the case
for orthogonal spline wavelets, which have exponential decay.

To obtain a precise temporal representation, we use a very sim-
ple model for the HRF, based on a damped oscillator. Sampling the
HRF only at the start of each scan yields a coarse temporal reso-
lution, while a model function can be computed at arbitrary time
points. The HRF is found by fitting the model function to the ex-
tracted HRF coefficients. The model is easily combined with a stan-
dard time series analysis and is more flexible than the canonical
HRF as used in the SPM program [6], which is the the difference of
two specific gamma density functions.

2. THEORETICAL BACKGROUND

2.1 SPM

Statistical parametric mapping (SPM) is the standard fMRI analy-
sis tool. It uses the general linear model (GLM): the response to a
stimulus pattern is modelled as the output of a linear, time invari-
ant (LTI) system, see Fig. 1(a). It assumes the temporal noise to
be independent, identically distributed and Gaussian. SPM consists
of the following steps: (i) estimate the parameters of the noise, (ii)
compute a statistic at every voxel location, (iii) threshold the statis-
tic values using the noise parameters and a multiple testing correc-
tion method. Assuming an LTI stimulus-response relation, an fMRI
data set ofT time samples inN voxels is modelled as:

Y[T×N] = X[T×M]β [M×N] +e[T×N]. (1)

Y represents the fMRI data,X is thedesign matrixof M explana-
tory variables (modelled effects),β contains the weights of each
of these variables in each voxel, ande contains the residuals,i.e.,
the unmodelled part of the signals. Each column ofX contains the
modelled response to the stimuli of one type. An LTI response to
one type of stimulus is given by a convolution of the time pattern of
the stimuli and the appropriate HRF. A good HRF model is critical
to the success of the estimation based on (1), because an inaccurate
model may lead to a non-Gaussian distribution of the values ine.
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(a) (b)

Figure 1: (a) Inputs and output of the GLM: (i) the impulse response
function, (ii) the stimulus pattern, (iii) the total response without
noise, (iv) the noisy response. (b) Various stages of the ForWaRD
algorithm: (i) extracted HRF after frequency domain inversion, (ii)
after frequency domain shrinkage, (iii) after subsequent wavelet do-
main Wiener filtering.

2.2 Modelling the HRF

A simple way to model a delayed response like the BOLD signal
(the delivery of extra oxygen follows the increased oxygen con-
sumption) is by describing it as a damped oscillator. The function

fH,D,P,L(t) =

{
H sin(t−L

P ) e
−t+L

D , if t > L
0, otherwise

(2)

models a damped oscillator withH(eight), L(ag), P(eriod), and
D(ilation) parameters. Function (2) can be used to model the BOLD
response by fitting it to the extracted HRF coefficients, and using the
resulting function as the HRF. It is demonstrated in section 4 that if
there are enough time points to model the complete undershoot of
the HRF as well as the initial peak, a sum of two such functions can
also be used to describe the HRF, yielding a more accurate model
of the undershoot.

2.3 ForWaRD

Using the LTI model described in section 2.1, an HRF can be ex-
tracted from an fMRI time series by deconvolving the measured
time signals with the stimulus pattern. In the frequency domain,
deconvolution can be done via pointwise division; this is called
Fourier inversion. The great advantage of Fourier inversion is the
fact that it can separate overlapping responses. However, noise is
amplified at frequencies where the signal is small, introducing in-
stablitity: small changes in the inputs induce large changes in the
output. Regularisation suppresses the destabilising effects. If the
destabilising factor is the noise, regularisation is tantamount to de-
noising.

A common regularisation technique for frequency domain de-
convolution is shrinking the frequency coefficients after inversion.
The signal of interest is usually smooth (low-frequency) and noise
is usually erratic (high-frequency). Two familiar shrinkage meth-
ods are Wiener shrinkage and Tikhonov shrinkage [15]. Non-
smooth parts of signals (such as steep edges) are not efficiently
represented in the frequency domain, because they contain much
high-frequency energy. As a result, noise at those frequencies is not
shrunk. Using more shrinkage to remove noise introduces artifacts,
such as ringing.

The ForWaRD deconvolution scheme performs noise regular-
isation via scalar shrinkage in the Fourier and wavelet domains.
Fourier shrinkage exploits the economical representation of the
noise in the Fourier domain, whereas wavelet shrinkage exploits
the fact that piecewise smooth signals and images with singulari-
ties, such as step edges, have a sparse representation in the wavelet
domain. The main steps of this approach are depicted in Fig. 2, see
also Fig. 1(b). Wiener shrinkage reduces the magnitude of wavelet
coefficients at indices where the true signal is weak, and preserves
those coefficients where the true signal is strong. The true signal
is unknown, so ForWaRD uses two wavelet transforms of a signal:
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Figure 2: ForWaRD HRF extraction scheme. Fourier shrinkage
(determined by shrinkage factorλ ) is applied to partially attenu-
ate noise amplified during the inversion step. Subsequent wavelet
shrinkage (determined by shrinkage factorκ) effectively attenuates
the residual noise.

one transform with basis functions(φ1,ψ1) to estimate the true sig-
nal by thresholding detail coefficients, and another transform with
basis functions(φ2,ψ2), whose detail coefficients are shrunk. For-
WaRD uses the SI-DWT to ensure shift-invariance.

3. COMPUTING THE SI-DWT IN THE FREQUENCY
DOMAIN

ForWaRD requires the SI-DWT, which was implemented in the time
domain [12]. Spline wavelets [19] can be computed most efficiently
in the frequency domain.

Starting from the definition of the SI-DWT of Shensa [17] (re-
sulting in theà trousalgorithm), we recently derived an efficient
implementation of the SI-DWT in the frequency domain [23]. Let
h andg define an orthogonal wavelet basis, withdualfilters defined
as h̃(n) = h(−n) and g̃(n) = g(−n), with x denoting the complex
conjugate ofx. Then the forward SI-DWT in the Fourier domain is
given by:

C j+1 = HQ •C j , D j+1 = GQ •C j , (3)

for j = 0,1,· · ·L−1, Q = 2 j , whereL denotes the number of lev-
els in the decomposition. Input is a vectorC0; output are vectors
D1,D2, · · · ,DL,CL. Herex• y denotes pointwise multiplication of
vectorsx andy, andC j , D j , HQ andGQ denote the DFT vectors of
C j , D j , ↑Q h and↑Q g, respectively. Here,↑Q x denotes upsampling
vectorx with a factorQ, and the length-NvectorsHQ andGQ con-
tain the Fourier coefficients of the upsampled filters. In particular,
if j = 0, i.e.,Q = 1, H1 equals the DFT vectorH of h.

It can be shown that [23],

HQ =

Q times︷ ︸︸ ︷
[(↓2 j H) (↓2 j H) · · ·(↓2 j H)]

So, in iterationj of the decomposition, the DFT vectorHQ is ob-
tained by downsampling the DFT vectorH by a factor ofQ = 2 j ,
and thenQ times repeating this reduced vector of lengthN/Q to
again get a filter of lengthN. Alternatively, two copies of the even-
numbered samples of the filter values in the previous iterationj −1
(i.e.,HQ/2) are concatenated to obtainHQ. The case ofGQ is anal-
ogous.

Reconstruction in the Fourier domain is given by

C j−1 = H ′Q •C j +G′Q •D j , (4)

whereH ′Q andG′Q are obtained in the same way fromh′ andg′ as
described above forHQ.

3.1 Computation times: spline wavelets

The algorithm for computing the SI-DWT in the frequency domain
is more efficient than a time-domain computation when the wavelet
basis functions have wide support. We compared the computation
times of the time and frequency-domain versions of the SI-DWT,
by computing the three-level SI-DWT of signals varying in length,
using the symmetric orthogonal cubic spline wavelet basis [11]. For
each length, 100 signals were transformed and reconstructed, using
the time-domain implementation, a naive frequency-domain imple-
mentation, and our fast implementation of theà trous algorithm.



Figure 3 shows the results: the naive frequency-domain version
is faster than the time-domain version for signals of more than 64
points. The optimised frequency-domain version is always fastest.
Therefore, the frequency-domain SI-DWT is preferred for long fil-
ters (like orthogonal spline wavelets), and is used in this paper.
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Figure 3: Computation times of the time-domain SI-DWT and SI-
IDWT and the frequency-domain SI-DWT and SI-IDWT, respec-
tively, with symmetric orthogonal cubic spline wavelet basis func-
tions. Time domain:�: SI-DWT, +: SI-IDWT. Frequency domain
(naive)×: SI-DWT, ◦: SI-IDWT, (fast)�: SI-DWT, ∗: SI-IDWT.

3.2 ForWaRD using spline wavelets

Our new version of ForWaRD with efficient frequency-domain SI-
DWT and spline wavelets was used in the HRF extraction program.
We use orthonormal splines to preserve the signals’ energy during
the transform. Unser et al. have proposed fractional spline wavelets
because of their favourable properties [2, 19]. Their implementation
of fractional splines was used to generate the wavelet basis func-
tions, cf. Fig. 4. In this paper, we used causal splines with degree
α = 4 for (φ1,ψ1) and anticausal splines with degreeα = 3 for
(φ2,ψ2).
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Figure 4: Orthonormal quartic (α=4) spline wavelet basis func-
tions: (a) causal, (b) anticausal, (c) symmetric. Top: scaling func-
tion φ , bottom: waveletψ.

3.3 HRF extraction based on ForWaRD

The total routine for extracting an HRF from an fMRI time se-
ries, using only the stimulus times, consists of the following
steps:

1: load the time seriesg and the stimulus patternf ;
2: subtract the time series mean;
3: remove low-frequency trends;

this is done with a wavelet-based method described in the liter-
ature [13];

4: apply ForWaRD tog, estimate the HRFhκ to the stimuli with
patternf .

Time signals at different voxel locations can be processed indepen-
dently, so that it is possible to process multiple time signals at once.
The number of time signals processed simultaneously can be ad-
justed according to the amount of available computer memory.

This routine was implemented in MatLab (The Mathworks,
USA) and was used in combination with the SPM program [6] to
analyse fMRI data.

4. EVENT-RELATED FMRI EXPERIMENTS

The HRF extraction routine was used in the analysis of two event-
related fMRI experiments of one subject, measured on different
days. The subject had to make a fist upon presentation of a visual
stimulus, and then immediately relax. Stimuli were presented on a
white screen inside the MRI scanner. A white disc was shown as the
default, a red disc was the cue to make a fist. One experiment was
performed with a fixed inter-stimulus interval (ISI) and one with a
randomised ISI. Realignment, normalisation, and statistical analy-
sis were done with the SPM program. Denoising was done with a
wavelet-based technique [22]. We computed HRFs for the whole
brain and in a region of interest, respectively, which were then used
in covariance analyses to test for activation.

4.1 Fixed-ISI Experiment

The fixed-ISI data set consisted of 156 volumes of 64×64×46 vox-
els with size 3.5× 3.5× 3.5 mm3. Cues were given every 24 s
(8 scans× 3 s) starting at scan 2. HRFs were extracted by our
method, and also by selective averaging [5], a simple and robust ex-
traction method that works for long ISIs. A first statistical analysis
was done to detect activation synchronous to the stimuli. We used
a design matrix with a set of 6 Fourier basis functions, modulated
by a Hanning window, in the time interval of 8 scans after each
stimulus, so as not to impose shape assumptions on the HRF. An
SPM{F} resulting from anF-test was computed, using false dis-
covery rate (FDR) control [8] withq= 0.05 for multiple hypothesis
testing. With both ForWaRD (using 128 of the 156 scans) and selec-
tive averaging, we computed a whole-volume HRF and a regional
HRF in a 7×7×7-voxel region with high activity (see the region
indicated by a ’<’ in Fig. 5a). The post-stimulus volumes were
multiplied by theF-values in the map, after thresholding with an
FDR-parameterq = 0.0001, and averaged over the volume/region.
Figures 6a-b show the HRFs. Selective averaging almost returns to
baseline within the ISI, whereas ForWaRD remains below baseline.
This may be because the real HRF does not return to baseline within
the measured interval, so in the LTI model the response decreases at
every next stimulus. This results in an HRF with a lower baseline.
Selective averaging forces each response to begin at baseline, even
when the response does not return to baseline within the sampled
time interval. In general, ForWaRD-based methods are expected to
work better with a varying ISI, because a fixed ISI leads to a badly
conditioned Fourier inversion. The next experiment therefore used
a randomised ISI.

(a) (b)

Figure 5: SPM{F} of the fixed-ISI experiment (a), SPM{F} of
the random-ISI experiment (b), thresholded using FDR correction
with q=0.05

4.2 Random-ISI Experiment

In a second fMRI experiment, stimulus times for this experiment
were random and the length of the random-ISI data set was 256
scans. The other parameters were unchanged. The stimulus sig-
nal was created by thresholding a vector of uniformly distributed



random numbers. The number of stimuli was 39, so the aver-
age ISI was between 6 and 7 scans. Post-stimulus image vol-
umes were produced by ForWaRD. Thanks to the spreading of the
stimulus, the HRF could be sampled on a much larger time inter-
val. Due to the response overlap, neither selective averaging nor
the Fourier basis set could be used. The design matrixX was
made by convolving the stimulus signal with the ‘canonical’ HRF
from the SPM´99 program [6] and its time and dilation derivatives.
HRFs were made from the SPM{F} (see Fig. 5b) and the post-
stimulus volumes, see Fig. 6c. The regional HRF corresponds most
to the previously extracted HRFs. Both HRFs return to baseline
within the post-stimulus interval. This does indicate that with ran-
dom inter-stimulus times, where selective averaging cannot be used,
ForWaRD-based HRF extraction performsbetter than with fixed
inter-stimulus times.

−1 0 1 2 3 4 5 6 
peristimulus scan no.

−1 0 1 2 3 4 5 6 
peristimulus scan no.

−1 0 1 2 3 4 5 6 7 8 9 10111213
peristimulus scan no.

(a) (b) (c)

Figure 6: HRFs extracted from the fixed-ISI data set by selective
averaging (a) and by ForWaRD (b), and from the random-ISI time
series by ForWaRD (c).×: whole-volume,◦, region-specific.

4.3 Using the extracted HRFs in activation tests

A covariance test was done on the random-ISI data using the fixed-
ISI HRF coefficients in the model, andvice versa. HRFs extracted
from one data set cannot be used for covariance tests on that same
data set: a model must be specifieda priori, and inferences cannot
be made from models that are determined by the data. We mod-
elled the fixed-ISI HRFs by fitting one model function (2) to the
HRFs extracted from the fixed-ISI data. Two such functions (one

(a) (b)

Figure 7: The modelled HRFS for the covariance test, with the coef-
ficients from the fixed-ISI experiment (a) and the random-ISI exper-
iment (b). Solid lines: regionally determined HRFs, dashed lines:
whole-volume HRFs.

to model the peak and one to model the undershoot) were used for
the HRFs from the random-ISI data. The fixed-ISI signals did not
have enough coefficients to accurately model the undershoot. The
fitted functions were then used to build the design matrices for sub-
sequent covariance tests. The maps in Fig. 8 resulting from at-test
show very similar shapes as those in Fig. 5, but here the detected
activations are stronger. This indicates that the model used here
captures all variance captured by those methods. The difference be-
tween this analysis and the previous is that only one basis function
is used here, enabling a covariance test with stronger responses.

Table 1 shows the maximum variance ratio values found in the
tests with the modelled HRFs. A high variance ratio indicates that
much of the variance in the signal is explained by the model, and
that the residual noise in the GLM (see Eq. (1)) is small. It shows

(a) (b)

(c) (d)

Figure 8: SPM{T}s of the activation found by using the modelled
HRFs: (a) fixed-ISI data, random-ISI whole-volume HRF, (b) fixed-
ISI data, random-ISI regional HRF, (c) random-ISI data, fixed-ISI
whole-volume HRF, (d) random-ISI data, fixed-ISI regional HRF.

that ForWaRD works as well on the random-ISI dataset as it does on
the fixed-ISI data set. Its performance is similar to that of averaging
on the fixed-ISI dataset. The modelled HRFs, acquired with For-
WaRD as well as with selective averaging, outperform the canon-
ical HRF in terms of explained variance. The modelled region-
specific HRFs generally perform better than whole-volume HRFs.
The maps of detected activation indicate that the modelled HRFs do
not only detect activation in the region from which they were ex-
tracted, but that they are general enough also to detect activation in
other areas.

Table 1: A comparison of maximum variance ratio values. The
activation test for the fixed-ISI experiment used the HRFs computed
from the random-ISI data, andvice versa.

ForWaRD selective averaging
volume regionvolume region HRFspm

fixed-ISI 120 163 – – 117
random-ISI 103 101 102 104 74

5. CONCLUSION

We have presented an HRF extraction method for fMRI time series
based on ForWaRD (Fourier-wavelet regularised deconvolution).
The extraction method removes the time series mean, removes low-
pass trends with a wavelet-based method, and applies ForWaRD to
the resulting signal to extract the HRF. The output of is given as a
post-stimulus time series of image volumes, representing the HRF
in every voxel.

The existing ForWaRD method has been extended by intro-
ducing a novel frequency-domain implementation of the SI-DWT.
Timings show that for signals longer than 64 points, the speed
gain of the frequency-domain transform is considerable. This en-
abled us to efficiently use orthogonal spline wavelets. We also pre-
sented a model for the HRF that can be used in combination with
the extracted coefficients to predict event-related fMRI responses.



In combination with HRF data extracted from fMRI time series,
this model yielded an accurate an temporal description of subject-
specific or group-specific BOLD responses.

In the event-related fMRI experiments, the ForWaRD-based
method was able to extract the HRF from both fixed-ISI fMRI time
series and random-ISI fMRI time series. The HRF extracted from
the fixed-ISI data by ForWaRD looked more noisy than the HRF
extracted by selective averaging, which is most likely due to the re-
sponse not completely returning to baseline within 24 seconds, as
well as to the badly conditioned inversion (deconvolution) problem
with a fixed ISI. The ForWaRD-based method worked particularly
well in the latter case. This suggests that additional long-ISI studies
for HRF extraction are not necessary: they may just be extracted
from other studies (with the same stimuli) of the same subject. De-
spite the fact that the average inter-stimulus distance was smaller in
the random-ISI study, the HRF could be sampled in a much longer
interval. In the fixed-ISI case, the size of the sampling interval was
bounded by the ISI itself. This is another good reason to use ran-
dom ISIs and deconvolution methods to extract the HRF, rather than
fixed ISIs and selective averaging.

The modelled HRFs, using the model function and extracted
coefficients, have shown to capture the same amount of variance in
one basis function as traditional methods that require multiple basis
functions. The SPM{F} maps of the traditional models and the
SPM{T} maps show the same regions. The SPM{T} maps result-
ing from the ‘canonical’ HRF show much smaller detected regions
and the amount of detected activity (indicated by the maximum val-
ues for the variance ratio) is much smaller. This suggests that the
performance of standard HRF functions may be significantly im-
proved by re-evaluating them for each subject. The generality of
the results need not depend on the parameters of the model func-
tion, but only on the acceptance of the HRF model.
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