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Recently we developed a new method for attenuation correction in three-dimensional
imaging by a confocal scanning laser microscope (CSLM) in the (epi)fluorescence
mode. The fundamental element in our approach consisted in multiplying the meas-
ured fluorescent intensity by a correction factor involving a convolution integral of this
intensity, which can be computed efficiently by the Fast Fourier Transform (FFT).
The resulting algorithm is one or two orders of magnitude faster than an existing
iterative method, but was found to have a somewhat smaller accuracy. In this paper
we improve on this latter point by reformulating the problem as a statistical estim-
ation problem. In particular we derive first order moment and cumulant estimators
leading to a nonlinear integral equation for the unknown fluorescent density, which is
solved by an iterative method where in each step a discrete convolution is performed
using the FFT. We find that only a few iterations are needed. It is shown that the
estimators proposed here are more accurate than the existing iterative method, while
retaining the advantage in computational efficiency of the FFT-based approach.
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1. Introduction

A major problem in three-dimensional (3D) imaging by a confocal scanning laser microscope
(CSLM) in the (epi)fluorescence mode is the darkening of the deeper layers in the object
due to scattering and absorption of excitation and fluorescence light [1,7]. A way has been



devised to correct for this effect by a layer stripping method, where one iteratively corrects
the first, second etc. layer, see Visser et al. [6]. In a previous paper [5], hereafter referred
to as Part I, we developed a new restoration method to correct for these effects. Assuming
that the attenuation is weak, we constructed by analytic methods a correction factor to the
standard restoration taking the form of a 3D convolution of the measured signal, which can
be efficiently computed by the use of the Fast Fourier Transform (FFT). We therefore refer
to this method as the ‘FFT-method’. In this way, the complexity of computation is reduced
to O(N; log N,), where N, is the number of vertical layers to be restored. The accuracy of
the results depends on the depth of the layer considered: deeper layers are less accurately
reconstructed than higher layers.

We also compared the computational efficiency of our algorithm with the iterative layer
stripping method of [6], henceforth referred to as the ‘layer method’. In its original form
this method has computational complexity O(N2) which is unacceptably slow, taking many
hours on a RISC workstation for a 256 x 256 x 16 image [6]. The layer method ‘with
condensation’ developed in [6] in order to reduce the computation time, still has complexity
O(N2). Thus, when the number of vertical layers gets larger the difference in computational
efficiency with the FFT-method becomes increasingly pronounced. For spatially varying
image densities the restoration quality using our method was found to be a little poorer
than in the layer method.

In this paper we improve the accuracy of the FFT-method by reformulating the problem
as a statistical estimation problem. In particular we derive first order moment and cumulant
estimators leading to a nonlinear integral equation for the unknown fluorescent density,
which is solved by an iterative method. It is shown that the new estimators, the moment
estimator in particular, are more accurate than the layer method. Since only two or three
iterations are needed and each iteration step involves a discrete 3D convolution computable
by the FFT, the advantage in computational efficiency over the layer method is retained.

The organization of this paper is as follows. In Section 2 we review the mathematical
model of the imaging process of the CSLM leading to a nonlinear integral transform of the
object function, and review the solution method of Part I. In Section 3 we then reformulate
the CSLM transform as a statistical averaging problem and derive the corresponding first
order moment and cumulant estimators. The resulting nonlinear integral equations for the
object density can be solved by an iterative method, which is described in Section 4. We
apply our method in Section 5 to the test images used in Part I, and present results on the
restoration accuracy. Section 6 contains a summary and conclusions.

2. The CSLM transform

The imaging process of a CSLM operating in the fluorescence mode was described in detail
in Part I. A laserbeam is focussed upon a pinhole, expanded again and, through a system
of lenses, focussed upon a point r = (z,y, z) in the object. Here the z-direction is chosen
along the optical axis. The rays converging to the object point are contained in a circular
cone (‘light cone’) with angle w, called the ‘semi-aperture angle’, see Figure 1. The radiation
absorbed at the point in focus is uniformly reemitted as fluorescent radiation and the part
which travels back the same route as the incoming radiation is detected. The object is
discretized into a number N, of layers along the optical axis, a distance §, apart. The total
depth of the sample is denoted by d,. Also, each layer is discretized into a rectangular grid
of Ny by Ny points, with spacings ¢, and J, in the z- and y-direction, respectively. By
moving the scan table of the CSLM each objectpoint of the 3D grid so formed is brought
into focus and the corresponding fluorescent intensity (energy per unit of time) measured.
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As a result, the measured fluorescent intensity f(r) can be expressed as the following
nonlinear integral transform (‘CSLM-transform’) of the unknown fluorescent density p(r),

Fle) = ple) x5 () 7o (r), (2.1)

w 2w z /
v (r) := C'f/o d@/o d¢ sinf cosf exp [—6/0 dz p(f')] (2.2)

cos 6

where

is the forward attenuation factor, and

w 2w ) Zdy .
Y (r) := C’b/o d@/o d¢ sinf exp [—6/0 cozﬁ p(r)] (2.3)

is the backward attenuation factor (both factors equal unity if there is no attenuation). In

these equations € is a proportionality constant and

1 1
3 Cy =

Cy = (2.4)

msin‘w’ 27(1 — cosw)’

are the normalization constants referring to the forward and backward attenuation factors,
respectively. Here r is the vector

r(r;0,6,2)) = (x + (r — 2’) tanf cos ¢, y + (z — 2') tanfsin ¢, 2’). (2.5)

As 2’ runs from 0 to z this vector describes a light ray travelling to the point r = (z,y, 2)
and making polar angles 8 and ¢ with respect to the optical axis, cf. Figure 1.
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Figure 1.  Geometry of light cone with apex at a
point P(x,y, z) in the object. R: radius of spherical
bundle; w: semi-aperture angle; (0, ¢): polar angles
of light ray; d,: depth of the sample. The optical
axis coincides with the z-axis.



A measure for the degree of attenuation of the signal when traversing the complete
sample 1s provided by the dimensionless parameter ed,, where d, is the depth of the sample.
Here we have restricted ourselves to the case that the attenuation is proportional to the
fluorescent density. For a more general case see Part I.

Inversion of the CSLM transform

By performing a perturbation expansion of the density p in the parameter ¢ and collecting
terms to first order in €, we derived in Part I the following approximation g(r) for the density,

plr) = F) {1+ (o)} (2.6)

where ¢(r) is the convolution integral

e(r) :/_O; /_O; /_O; dr' k(') f(r—1'), (2.7)

with k(r) the space-invariant kernel given by

{C’fW—I—CbW, 0<2<d,, 224 y* < (s tanw)?

k(z,y,2) = (2.8)
0 elsewhere

where it should be kept in mind that the densities f and p are only nonzero for 0 < z < d,.

This means that to compute the value of ¢z, y, z) only the part of the kernel between 0 and

z has to be taken into account, see Figure 1.

Numerical computation

For numerical computation, the integral (2.7) is discretized on a grid of N, x Ny x N,
voxels, each voxel being a box of dimensions d,,dy,d, in the -, y- and z-directions. Then
the approximation (2.6) is replaced by

Rijr = Fije(1+ € Ciji), (2.9)
where
M — M.
Cijk =" ) Yoo D K Ficingojrge—iry (2.10)
i’:—%-l—l j,:_%_l_l k=1
with

Rijp: = p(i0s, joy, k)
Cijr 2 = ¢ (i0y, joy, kd,)
Fiji 0 = f (0, joy, ko)
for (7,4, k) in the index set [ := {(4,j,k) :i=1,.. ,Ny; j=1,.,Ny; k=1,..,N.}, and it
is tacitly understood that array elements are defined to be zero when the indices are not in

the index set I (so the third summation in Eq. (2.10) actually runs from 1 to & — 1). Here
K is the discrete counterpart of the convolution kernel (2.8),

(i+3)8= (G+3)3y (k+%)8-
Kijr = / dx / dy / dz k(z,y, z)
(i-%)ds (1—%)dy (k=3)d:

-3

R 0p0y0, K (105, j0y, kd, ), (2.11)
and M, = 2d, tan(w)/d,, My, = 2d, tan(w)/é, and M, = d./§, = N, denote the support of
the kernel in the three space directions, where in all cases rounding off to integer values is
understood. The different treatment of the z, y-summations versus the z-summation stems
from the fact that the kernel is symmetric in the x, y-directions, while it extends only over

non-negative values in the z-direction. The discrete convolution (2.10) can be computed
efficiently by FFT methods [5], see also [4].



3. Statistical estimators

It is useful to provide a probabilistic formulation of the CSLM-transform introduced above.
To this end we notice that, by introducing the following ‘probability densities’” in 8, ¢—space
{(0,6):0<0<w,0< ¢ < 2,

pr(0,0) = Cy sinfcosb, pu(6,¢)=Cpsind, (3.1)

we can rewrite the basic transform (2.1) as

) =ote) 1 (explc [ 25 o] ) <8y (expl=c [ 255 000)) . )

where IE; denotes the mathematical expectation (statistical average) with respect to the

density p;,i = f,b.
Now we can apply moment and cumulant expansions of characteristic functions [2].
Performing the first order moment expansion for the random variable X (6, ¢),

IE; (exp[—eX (0, ¢)]) = 1 — €IE; (X (6, ¢)) + ..., (3.3)

both for the forward and backward averages, we get
2w w z
f(r) = p(r) {1 — e/ dqb/ df Cysinf / dz' p(f'(r;@,q/),z/))}
0 0 0

27 w z
X {1 — 6/0 dqb/o df Cytan 0 /0 dz' p(f'(r;@,q/),z/))}. (3.4)

Neglecting tems of order €? and rewriting the sum of the two first order terms in convolution
form as in Part I, Section 3, we obtain an equation for the ‘“moment approximation’ p("™) (r)

of Eq. (2.6),
7o) = o™ @) {1 = ¢ (s p™) )} (3.5)
where k % p denotes the convolution of the functions x and p, and the kernel « is identical

to that in Eq. (2.8).
Next we look also at the first order cumulant expansion,

IE; (exp[—eX (0, ¢)]) = exp[—¢ IE:(X(0,9)) + ..], (3.6)

for both averages. Then we find the ‘cumulant approximation’ p(¢) (r) for the density, satis-
fying the equation

7)) = 9 () exp [—e (% o) )] (37)

where again the same kernel & as above turns up. To solve Eq. (3.5) and Eq. (3.7) numer-
ically, we rewrite them in the form
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for the moment estimator. We assume that e is chosen small enough for the inverse in
Eq. (3.9) to exist. A precise condition can be derived by rewriting the convolution in this
equation in the form (cf. Section 3 of Part I)

27 w z
(k% p"™))(x) :/ / de (cf sin9+C’btan9)/ d2' p™ (2(x; 0, 6,2"), (3.10)
0 0 0

which yields
‘(K * p(m))(r) < 2d; prax

where d, is the depth of the sample and ppax the maximum value of the density p. So the

inverse above exists if ¢ < (2d; pmax)~*

If in the expressions Eq. (3.8)-(3.9) only first order terms in € are taken into account
and p(® or p{"™) is replaced by f in the RHS of these equations, respectively, we recover
the approximation Eq. (2.6). It is therefore to be expected that the moment and cumulant
estimators may give accurate results for a larger range of values of € than the estimator used
in Part I. This will be investigated further in Section 5.

4. Computation by iterative algorithms

After discretization of equations Eq. (3.8)—(3.9), a finite system of nonlinear equations of
the form

Rijk = Fijk G(([( * R)z’jk), (i,j, k’) el (4.1)

results, where G(z) = exp(ex) and G(z) = (1 — ex)™!, respectively, with K x R the discrete
convolution of the 3D arrays K and R. The following result is immediate.

Lemma 4.1. The equations Eq. (4.1) have a unique solution.

Proof. We consider successive values of the depth variable k. Starting at & = 1, we have
Rz’jl = Fz’jl G(([( * R)ij1)~
Now, suppressing the summation limits in the ¢ and j direction, we have
M,
(K * R)ij1 = Z Z Kirjigr Riir j—jri—kr,
3§ k=1
which equals zero because R;j; = 0 for £ < 0. Since G(0) = 1 for both estimators, we get
Rij1 = Fij. (4.2)
Next, observe that for k& > 2, we have
E—1
(K % R)ije =D > Ky Rizirj—jr—w, (4.3)
il gl k=1

so that there are only nonzero contributions from the previous k& — 1 vertical layers to the

convolution. This means that Eq. (4.1) can be solved successively for layer 1,2, ..., N,, e.g.
Rijo = Fijo G(Z Kijn Fi—i’,j—j’,l)a (4.4)
Z'ijl

where we have used the previous result Eq. (4.2). The same argument shows that for any
n, R;jn can be uniquely expressed in terms of the values in the previous n — 1 layers of the
signal array F'. This completes the proof. |
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The equations Eq. (4.1) can be solved by Picard iteration [3], with Fj;x as the initial estimate:

1
Rij\ = Fij,

RU) = Fiye G (K« RO D)0 ), n=2,3,.. (4.5)
Each iteration step involves the computation of the discrete convolution K % R("~1) of the
estimate R("~1) of the previous iteration (with the same convolution kernel K') which can be
efficiently computed by the FFT. The first iterate of Eq. (4.5) with G(z) = 1 + ex coincides
with the discrete analogon of Eq. (2.6) and is the approximation used in Part I.

The question of convergence of the iteration Eq. (4.5) is answered by the following
proposition.

Proposition 4.2. The iterates RZ(;L,C) of Eq. (4.5) converge in a finite number of N, steps

towards the unique solution of Eq. (4.1). The convergence is monotonous, that is, RZ(;L,C) >
R(”—l)

ik
(n) -
ijk 1
the layers 1 to n have the correct values, that is, coincide with the solution of Eq. (4.1). We

Proof. We will prove the following assertion: after n iterations, the array elements R

use induction on n. The main ingredient is again Eq. (4.3), which for £ = 1 has to be read
as (K * R);;1 = 0. The initial estimate

1
R\ = Fij,

is correct for k = 1, see Eq. (4.2). Next assume that ngk_l) is correct for k= 1,2,...,n—1.

n—1)

Then, since (K * R(”_l))ijk involves only layers 1,2, ..,k — 1 of the array R! , We can

write for k = 1,2..,n,

Rl(;lk) = Fz’jk G (([{ * R(n_l))ijk) = Fz’jk G(([{ * R)zyk) = Rzyk
(n—1)
ik
k =1,2,..,n. This proves the assertion.

So the induction hypothesis R = Ry for k = 1,2,..,n—1 yields RZ(;L,C) = Ry for
Finally, monotonicity of the iterates is easily proved by induction as well. First, using
that GG is increasing,

Rl(fl)c = Fyr G (([( * R(l))ijk) > Fiji = Rz(]ll)c

Next, assume that RZ(;L,C) > ngk_l) (induction hypothesis). Then, using (i) nonnegativity of
the convolution kernel (ii) the fact that G is increasing and (iii) the induction hypothesis,
we deduce

RGH = Py @ ((K * R(n))ijk) > Fiji G ((K * R(n_l))ijk) =R

and we are done. [ |

In the next section we apply the iterative procedure of this proposition for improving the
image restorations as described in Part I. We will see that only a few iterations are needed
for obtaining accurate results. If this were not the case, and the full N, iterations would
be needed, then the complexity of our algorithm would increase from O(N, log N,) (single
convolution) to O(N?log N, ), and the advantage of our method over the layer method ‘with
condensation’ of Visser et al. [6], which has complexity O(N2), would be lost.

A final result concerns the relative ordering of the two estimators considered.
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Proposition 4.3. The estimators p(m) and p(c) satisfy the inequality

Pl < plm),
This can be proved by complete induction just as in the proof of Proposition 4.2. It seems
very hard to obtain any general statement as to the ordering of these estimators with respect
to the ezxact solution p. In the case when the exact density p does only depend on z one
may show by convexity arguments that

pl) < p < plm)

pointwise (that is, for every z). In that case it is also clear that the cumulant estimator is
more accurate than the approximation (2.6). For the examples with densities varying in the
x, y-directions presented below these inequalities are found to be satisfied as well.

5. Restoration of a test image

In this section we consider a test density (‘trig image’) p(r) with a sinusoidal spatial variation,
already used in Part I,

plr) = %cos(?ﬂ'nxx/dx) cos(2mnyy/dy), (5.1)

where d, and d, are the spatial dimensions of the sample in the z- and y-directions. Signal
data Fjj; were generated by numerically computing the integrals in Eq. (2.1) for a number
of equidistant 3D positions. The parameters were chosen as follows: d, = dy, = 1.0,d, = 0.1,
Ny = Ny =128, N, =8, w = 1.04719, n, = ny = 8. We computed the relative root mean
square error

£(z) = (Zx;l il 0 2) = 0, 2)) ) , (5.2)

N: N
Zx:l Zy:yl{p(x’ Y, Z)}z
between original density p and restored density p at each plane z = constant. Computations

were performed on a SPARC workstation (35 Mhz, 26 MIPS), taking about one minute per
iteration step (see Table 2 in Part I).

€z signal error iter =1 iter = 2 iter = 3
0.0000 0.000 0.000 0.000 0.000
0.0625 0.116 0.004 0.004 0.004
0.1250 0.218 0.006 0.016 0.016
0.1875 0.305 0.025 0.041 0.045
0.2500 0.382 0.065 0.065 0.090
0.3125 0.450 0.127 0.075 0.153
0.3750 0.509 0.200 0.056 0.236
0.4375 0.560 0.278 0.026 0.330

Table 1. Signal error and restoration errors by the moment estimator p\™) after
one, two and three iterations as a function of the effective depth ¢z.



€z signal error iter =1 iter = 2 iter = 3
0.0000 0.000 0.000 0.000 0.000
0.0625 0.116 0.010 0.010 0.010
0.1250 0.218 0.035 0.022 0.022
0.1875 0.305 0.080 0.047 0.046
0.2500 0.382 0.141 0.089 0.084
0.3125 0.450 0.213 0.146 0.136
0.3750 0.509 0.286 0.213 0.198
0.4375 0.560 0.357 0.283 0.265

Table 2. Signal error and restoration errors by the cumulant estimator p{¢) after
one, two and three iterations as a function of the effective depth ¢z.

Figure 2.  Restoration of the trig image.
First row: the attenuated test images; second row: restoration

by the cumulant estimator (iter = 2); third row: restoration
by the moment estimator (iter = 2). In each row, the first,
fourth and seventh layer is displayed from left to right. The
original image in each layer is identical to the first image in
row 1.

Results are shown in Table 1 for the moment estimator Eq. (3.9) and in Table 2 for the
cumulant estimator Eq. (3.9). In the case of the moment estimator the errors first decrease
and then start to grow again after the third iteration. This is due to the fact that the initial
estimate f(r) is smaller then the exact density p(r) (this is obvious from Eq. (2.1)-(2.3)),
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Figure 3. Restoration of the circle image.
First row: the attenuated test images; second row: restoration

by the cumulant estimator (iter = 2); third row: restoration
by the moment estimator (iter = 2). In each row, the first,
fourth and seventh layer is displayed from left to right. The
original image in each layer is identical to the first image in
row 1.

so that at first the iterates underestimate the true solution. Because of the monotonicity
property the iterates always increase so that (if the solution pl™) is larger than the true
p, which is apparently the case here) they will start to overestimate the true density. The
cumulant estimator p(¢) underestimates the true density, and the values were stable within
an accuracy of three digits after the third iteration. For comparison we give in column 2 of
the Tables the error before restoration, denoted by ‘signal error’ and computed according to
(5.2) with p replaced by f.

Comparing the numbers in Table 4 of Part I, we conclude that both the moment estim-
ator with ¢ter = 1,2 and cumulant estimator with iter > 2 are more accurate than the layer
method of [6] which gives a restoration error of 0.301 at the deepest layer. From the Tables
it is clear that the moment estimator, when run to convergence, overestimates the exact
image densities. The first iterate, however, underestimates the exact values. Therefore, in
case of the moment estimator, we take the reconstruction corresponding to the intermediate
value iter = 2, which gives the best results.

In Figure 2 we show the corresponding restored images. We rescale the restored values
of the densities to make sure that they occupy the complete grey-scale, which consists of
the set of integer values from 0 to 255. In order to avoid that a few outliers cause a large
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visual degradation of the resulting images, we constrained the approximate solutions g to
lie between the known lower and upper bounds, i.e. 0 < p < 1. In each row, the first, fourth
and seventh layer is displayed from left to right, out of a total of 8 depth layers. Since
the exact density p(r) does not depend on z, the original image in each layer is identical
to the first image in row 1. The first row contains the attenuated test images f(r), the
second row the restoration by the cumulant estimator and the third row the restoration
by the moment estimator, both after two iterations. The images which are restored by
the cumulant estimator are virtually identical to those of the layer method of Visser et
al. [6], cf. Figure 4 of Part I. Clearly the largest improvement in restoration quality has
been obtained by using the moment estimator. The reconstruction is not perfect, however:
the central regions in the centers of the light circular regions are slightly overestimated.
The calculations made here for the trig image have been repeated for the ‘circle image’
used in Part I, leading to similar conclusions: the reconstruction errors are smallest when
using the moment estimator with ¢ter = 2, but the reconstructed images still show some
differences when compared to the original images, see Figure 3. Nevertheless, a considerable
improvement in restoration accuracy has been obtained by using the estimators developed
here, which in addition are efficiently computable by using FFT methods.

6. Summary

In this paper we describe a refinement of the method developed in Part I for attenuation
correction in Fluorescence Confocal Microscopy using Fast Fourier Transform methods. Our
approach, valid for weak attenuation, consists in multiplying the measured fluorescent in-
tensity by a correction factor involving a convolution integral of the measured signal, which
can be computed efficiently by an FFT-based algorithm. By a statistical reformulation of
the problem we derive first order moment and cumulant estimators leading to a nonlinear in-
tegral equation for the unknown fluorescent density, which is solved by an iterative method.
The algorithm is as follows:

e Read the measured data Fijr,e=1,.. , Ny, j=1,.., Ny, k=1, N,
e Iteratively compute

Rl(;lk) = Fijk G (([{ * R(n_l))ijk) , n=273, ..

where RE;)C = Fyjk, and G(z) = (1 — ex)™! or G(x) = exp(ex) for the moment and
cumulant estimator, respectively.
In each iteration the convolution of the previous estimate is computed by means of the FFT
(using the same kernel K of Eq. (2.11)). The first iterate of the new estimators coincides
with the approximation used in Part I for very weak attenuation. It turns out that the
moment estimator with two iterations gives the best results, which are more accurate than
the layer method of [6]. Since only two iterations are needed, the advantage in computational
efficiency over the layer method is retained. We conclude therefore that the combined results
of Part I and this paper provide an efficient and accurate method for attenuation correction

in confocal microscopy.
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