
FFT-based Methods for Nonlinear ImageRestoration in Confocal MicroscopyJ.B.T.M. RoerdinkDepartment of Computing ScienceUniversity of GroningenP.O. Box 800, 9700 AV GroningenThe NetherlandsRecently we developed a new method for attenuation correction in three-dimensionalimaging by a confocal scanning laser microscope (CSLM) in the (epi)
uorescencemode. The fundamental element in our approach consisted in multiplying the meas-ured 
uorescent intensity by a correction factor involving a convolution integral of thisintensity, which can be computed e�ciently by the Fast Fourier Transform (FFT).The resulting algorithm is one or two orders of magnitude faster than an existingiterative method, but was found to have a somewhat smaller accuracy. In this paperwe improve on this latter point by reformulating the problem as a statistical estim-ation problem. In particular we derive �rst order moment and cumulant estimatorsleading to a nonlinear integral equation for the unknown 
uorescent density, which issolved by an iterative method where in each step a discrete convolution is performedusing the FFT. We �nd that only a few iterations are needed. It is shown that theestimators proposed here are more accurate than the existing iterative method, whileretaining the advantage in computational e�ciency of the FFT-based approach.AMS 1991 Mathematics Subject Classi�cation: 68U10, 78A99.Keywords: Fluorescence confocal microscopy, attenuation correction, convolutionmethod, Fast Fourier Transform, moment estimator, cumulant estimator, 3D imagerestoration, iterative methods.Note: Postscript version obtainable at http://www.cs.rug.nl/~roe/. Final versionappeared in: J. Math. Imaging and Vision 4 (2), 1994, pp. 199-207.1. IntroductionA major problem in three-dimensional (3D) imaging by a confocal scanning laser microscope(CSLM) in the (epi)
uorescence mode is the darkening of the deeper layers in the objectdue to scattering and absorption of excitation and 
uorescence light [1,7]. A way has been



2devised to correct for this e�ect by a layer stripping method, where one iteratively correctsthe �rst, second etc. layer, see Visser et al. [6]. In a previous paper [5], hereafter referredto as Part I, we developed a new restoration method to correct for these e�ects. Assumingthat the attenuation is weak, we constructed by analytic methods a correction factor to thestandard restoration taking the form of a 3D convolution of the measured signal, which canbe e�ciently computed by the use of the Fast Fourier Transform (FFT). We therefore referto this method as the `FFT-method'. In this way, the complexity of computation is reducedto O(Nz logNz), where Nz is the number of vertical layers to be restored. The accuracy ofthe results depends on the depth of the layer considered: deeper layers are less accuratelyreconstructed than higher layers.We also compared the computational e�ciency of our algorithm with the iterative layerstripping method of [6], henceforth referred to as the `layer method'. In its original formthis method has computational complexity O(N4z ) which is unacceptably slow, taking manyhours on a RISC workstation for a 256 � 256 � 16 image [6]. The layer method `withcondensation' developed in [6] in order to reduce the computation time, still has complexityO(N2z ). Thus, when the number of vertical layers gets larger the di�erence in computationale�ciency with the FFT-method becomes increasingly pronounced. For spatially varyingimage densities the restoration quality using our method was found to be a little poorerthan in the layer method.In this paper we improve the accuracy of the FFT-method by reformulating the problemas a statistical estimation problem. In particular we derive �rst order moment and cumulantestimators leading to a nonlinear integral equation for the unknown 
uorescent density,which is solved by an iterative method. It is shown that the new estimators, the momentestimator in particular, are more accurate than the layer method. Since only two or threeiterations are needed and each iteration step involves a discrete 3D convolution computableby the FFT, the advantage in computational e�ciency over the layer method is retained.The organization of this paper is as follows. In Section 2 we review the mathematicalmodel of the imaging process of the CSLM leading to a nonlinear integral transform of theobject function, and review the solution method of Part I. In Section 3 we then reformulatethe CSLM transform as a statistical averaging problem and derive the corresponding �rstorder moment and cumulant estimators. The resulting nonlinear integral equations for theobject density can be solved by an iterative method, which is described in Section 4. Weapply our method in Section 5 to the test images used in Part I, and present results on therestoration accuracy. Section 6 contains a summary and conclusions.2. The CSLM transformThe imaging process of a CSLM operating in the 
uorescence mode was described in detailin Part I. A laserbeam is focussed upon a pinhole, expanded again and, through a systemof lenses, focussed upon a point r = (x; y; z) in the object. Here the z-direction is chosenalong the optical axis. The rays converging to the object point are contained in a circularcone (`light cone') with angle !, called the `semi-aperture angle', see Figure 1. The radiationabsorbed at the point in focus is uniformly reemitted as 
uorescent radiation and the partwhich travels back the same route as the incoming radiation is detected. The object isdiscretized into a number Nz of layers along the optical axis, a distance �z apart. The totaldepth of the sample is denoted by dz. Also, each layer is discretized into a rectangular gridof Nx by Ny points, with spacings �x and �y in the x- and y-direction, respectively. Bymoving the scan table of the CSLM each objectpoint of the 3D grid so formed is broughtinto focus and the corresponding 
uorescent intensity (energy per unit of time) measured.



3As a result, the measured 
uorescent intensity f(r) can be expressed as the followingnonlinear integral transform (`CSLM-transform') of the unknown 
uorescent density �(r),f(r) = �(r)� 
f (r)
b(r); (2:1)where 
f (r) := Cf Z !0 d� Z 2�0 d� sin � cos � exp ���Z z0 dz0cos � �(r̂)� (2:2)is the forward attenuation factor, and
b(r) := Cb Z !0 d� Z 2�0 d� sin � exp ���Z z0 dz0cos � �(r̂)� (2:3)is the backward attenuation factor (both factors equal unity if there is no attenuation). Inthese equations � is a proportionality constant andCf := 1� sin2! ; Cb := 12�(1� cos!) ; (2:4)are the normalization constants referring to the forward and backward attenuation factors,respectively. Here r̂ is the vectorr̂(r; �; �; z0) = (x+ (z � z0) tan � cos�; y + (z � z0) tan � sin�; z0): (2:5)As z0 runs from 0 to z this vector describes a light ray travelling to the point r = (x; y; z)and making polar angles � and � with respect to the optical axis, cf. Figure 1.
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Figure 1. Geometry of light cone with apex at apoint P (x; y; z) in the object. R: radius of sphericalbundle; !: semi-aperture angle; (�; �): polar anglesof light ray; dz: depth of the sample. The opticalaxis coincides with the z-axis.



4 A measure for the degree of attenuation of the signal when traversing the completesample is provided by the dimensionless parameter �dz, where dz is the depth of the sample.Here we have restricted ourselves to the case that the attenuation is proportional to the
uorescent density. For a more general case see Part I.Inversion of the CSLM transformBy performing a perturbation expansion of the density � in the parameter � and collectingterms to �rst order in �, we derived in Part I the following approximation ~�(r) for the density,~�(r) = f(r) f1 + � c(r)g ; (2:6)where c(r) is the convolution integralc(r) = Z 1�1 Z 1�1 Z 1�1 dr0 �(r0) f(r � r0); (2:7)with �(r) the space-invariant kernel given by�(x; y; z) = (Cf z(x2+y2+z2)3=2 + Cb 1x2+y2+z2 ; 0 � z � dz; x2 + y2 � (z tan!)20 elsewhere (2:8)where it should be kept in mind that the densities f and � are only nonzero for 0 � z � dz.This means that to compute the value of c(x; y; z) only the part of the kernel between 0 andz has to be taken into account, see Figure 1.Numerical computationFor numerical computation, the integral (2.7) is discretized on a grid of Nx � Ny � Nzvoxels, each voxel being a box of dimensions �x; �y; �z in the x-, y- and z-directions. Thenthe approximation (2.6) is replaced byRijk = Fijk(1 + � Cijk); (2:9)where Cijk = Mx2Xi0=�Mx2 +1 My2Xj0=�My2 +1 MzXk0=1Ki0j0k0 Fi�i0;j�j0;k�k0; (2:10)with Rijk : = ~� (i�x; j�y ; k�z)Cijk : = c (i�x; j�y; k�z)Fijk : = f (i�x; j�y; k�z)for (i; j; k) in the index set II := f(i; j; k) : i = 1; ::; Nx; j = 1; ::; Ny; k = 1; ::; Nzg, and itis tacitly understood that array elements are de�ned to be zero when the indices are not inthe index set II (so the third summation in Eq. (2.10) actually runs from 1 to k � 1). HereK is the discrete counterpart of the convolution kernel (2.8),Kijk : = Z (i+ 12 )�x(i� 12 )�x dx Z (j+ 12 )�y(j� 12 )�y dy Z (k+12 )�z(k�12 )�z dz �(x; y; z)� �x�y�z � (i�x; j�y; k�z) ; (2:11)and Mx = 2dz tan(!)=�x;My = 2dz tan(!)=�y and Mz = dz=�z = Nz denote the support ofthe kernel in the three space directions, where in all cases rounding o� to integer values isunderstood. The di�erent treatment of the x; y-summations versus the z-summation stemsfrom the fact that the kernel is symmetric in the x; y-directions, while it extends only overnon-negative values in the z-direction. The discrete convolution (2.10) can be computede�ciently by FFT methods [5], see also [4].



53. Statistical estimatorsIt is useful to provide a probabilistic formulation of the CSLM-transform introduced above.To this end we notice that, by introducing the following `probability densities' in �; �{spacef(�; �) : 0 � � � !; 0 � � < 2�g,pf (�; �) = Cf sin � cos �; pb(�; �) = Cb sin �; (3:1)we can rewrite the basic transform (2.1) asf(r) =�(r) IEf �exp���Z z0 dz0cos � �(r̂)��� IEb�exp���Z z0 dz0cos � �(r̂)�� ; (3:2)where IEi denotes the mathematical expectation (statistical average) with respect to thedensity pi; i = f; b.Now we can apply moment and cumulant expansions of characteristic functions [2].Performing the �rst order moment expansion for the random variable X(�; �),IEi (exp[��X(�; �)]) = 1� �IEi(X(�; �)) + :::; (3:3)both for the forward and backward averages, we getf(r) ' �(r) �1� � Z 2�0 d� Z !0 d� Cf sin � Z z0 dz0 �(r̂(r; �; �; z0))���1� � Z 2�0 d� Z !0 d� Cb tan � Z z0 dz0 �(r̂(r; �; �; z0))� : (3:4)Neglecting tems of order �2 and rewriting the sum of the two �rst order terms in convolutionform as in Part I, Section 3, we obtain an equation for the `moment approximation' �(m)(r)of Eq. (2.6), f(r) = �(m)(r)n1� � (� � �(m))(r)o ; (3:5)where � � � denotes the convolution of the functions � and �, and the kernel � is identicalto that in Eq. (2.8).Next we look also at the �rst order cumulant expansion,IEi (exp[��X(�; �)]) = exp [�� IEi(X(�; �)) + :::] ; (3:6)for both averages. Then we �nd the `cumulant approximation' �(c)(r) for the density, satis-fying the equation f(r) = �(c)(r) exp h�� (� � �(c))(r)i ; (3:7)where again the same kernel � as above turns up. To solve Eq. (3.5) and Eq. (3.7) numer-ically, we rewrite them in the form�(c)(r) = f(r) exp h� (� � �(c))(r)i ; (3:8)for the cumulant estimator, and�(m)(r) = f(r) h1� � (� � �(m))(r)i�1 ; (3:9)



6for the moment estimator. We assume that � is chosen small enough for the inverse inEq. (3.9) to exist. A precise condition can be derived by rewriting the convolution in thisequation in the form (cf. Section 3 of Part I)(� � �(m))(r) = Z 2�0 Z !0 d� �Cf sin � + Cb tan ��Z z0 dz0 �(m)(r̂(r; �; �; z0)); (3:10)which yields ���(� � �(m))(r)��� � 2dz�maxwhere dz is the depth of the sample and �max the maximum value of the density �. So theinverse above exists if � � (2dz�max)�1.If in the expressions Eq. (3.8){(3.9) only �rst order terms in � are taken into accountand �(c) or �(m) is replaced by f in the RHS of these equations, respectively, we recoverthe approximation Eq. (2.6). It is therefore to be expected that the moment and cumulantestimators may give accurate results for a larger range of values of � than the estimator usedin Part I. This will be investigated further in Section 5.4. Computation by iterative algorithmsAfter discretization of equations Eq. (3.8){(3.9), a �nite system of nonlinear equations ofthe form Rijk = Fijk G�(K �R)ijk�; (i; j; k) 2 II (4:1)results, where G(x) = exp(�x) and G(x) = (1� �x)�1, respectively, with K �R the discreteconvolution of the 3D arrays K and R. The following result is immediate.Lemma 4.1. The equations Eq. (4.1) have a unique solution.Proof. We consider successive values of the depth variable k. Starting at k = 1, we haveRij1 = Fij1 G�(K �R)ij1�:Now, suppressing the summation limits in the i and j direction, we have(K �R)ij1 =Xi0;j0 MzXk0=1Ki0j0k0 Ri�i0;j�j0;1�k0;which equals zero because Rijk = 0 for k � 0. Since G(0) = 1 for both estimators, we getRij1 = Fij1: (4:2)Next, observe that for k � 2, we have(K �R)ijk =Xi0;j0 k�1Xk0=1Ki0j0k0 Ri�i0;j�j0;k�k0; (4:3)so that there are only nonzero contributions from the previous k � 1 vertical layers to theconvolution. This means that Eq. (4.1) can be solved successively for layer 1; 2; :::; Nz, e.g.Rij2 = Fij2 G�Xi0;j0 Ki0j01 Fi�i0;j�j0;1�; (4:4)where we have used the previous result Eq. (4.2). The same argument shows that for anyn, Rijn can be uniquely expressed in terms of the values in the previous n� 1 layers of thesignal array F . This completes the proof.



7The equations Eq. (4.1) can be solved by Picard iteration [3], with Fijk as the initial estimate:R(1)ijk = Fijk;R(n)ijk = Fijk G�(K �R(n�1))ijk� ; n = 2; 3; ::: : (4:5)Each iteration step involves the computation of the discrete convolution K �R(n�1) of theestimate R(n�1) of the previous iteration (with the same convolution kernel K) which can bee�ciently computed by the FFT. The �rst iterate of Eq. (4.5) with G(x) = 1+ �x coincideswith the discrete analogon of Eq. (2.6) and is the approximation used in Part I.The question of convergence of the iteration Eq. (4.5) is answered by the followingproposition.Proposition 4.2. The iterates R(n)ijk of Eq. (4.5) converge in a �nite number of Nz stepstowards the unique solution of Eq. (4.1). The convergence is monotonous, that is, R(n)ijk �R(n�1)ijk .Proof. We will prove the following assertion: after n iterations, the array elements R(n)ijk inthe layers 1 to n have the correct values, that is, coincide with the solution of Eq. (4.1). Weuse induction on n. The main ingredient is again Eq. (4.3), which for k = 1 has to be readas (K �R)ij1 = 0. The initial estimate R(1)ijk = Fijk;is correct for k = 1, see Eq. (4.2). Next assume that R(n�1)ijk is correct for k = 1; 2; :::; n� 1.Then, since (K � R(n�1))ijk involves only layers 1; 2; ::; k� 1 of the array R(n�1), we canwrite for k = 1; 2::; n,R(n)ijk = Fijk G�(K �R(n�1))ijk� = Fijk G ((K �R)ijk) = Rijk:So the induction hypothesis R(n�1)ijk = Rijk for k = 1; 2; ::; n� 1 yields R(n)ijk = Rijk fork = 1; 2; ::; n. This proves the assertion.Finally, monotonicity of the iterates is easily proved by induction as well. First, usingthat G is increasing, R(2)ijk = Fijk G�(K �R(1))ijk� � Fijk = R(1)ijk:Next, assume that R(n)ijk � R(n�1)ijk (induction hypothesis). Then, using (i) nonnegativity ofthe convolution kernel (ii) the fact that G is increasing and (iii) the induction hypothesis,we deduce R(n+1)ijk = Fijk G�(K �R(n))ijk� � Fijk G�(K �R(n�1))ijk� = R(n)ijk;and we are done.In the next section we apply the iterative procedure of this proposition for improving theimage restorations as described in Part I. We will see that only a few iterations are neededfor obtaining accurate results. If this were not the case, and the full Nz iterations wouldbe needed, then the complexity of our algorithm would increase from O(Nz logNz) (singleconvolution) to O(N2z logNz), and the advantage of our method over the layer method `withcondensation' of Visser et al. [6], which has complexity O(N2z ), would be lost.A �nal result concerns the relative ordering of the two estimators considered.



8Proposition 4.3. The estimators �(m) and �(c) satisfy the inequality�(c) � �(m):This can be proved by complete induction just as in the proof of Proposition 4.2. It seemsvery hard to obtain any general statement as to the ordering of these estimators with respectto the exact solution �. In the case when the exact density � does only depend on z onemay show by convexity arguments that�(c) � � � �(m)pointwise (that is, for every z). In that case it is also clear that the cumulant estimator ismore accurate than the approximation (2.6). For the examples with densities varying in thex; y-directions presented below these inequalities are found to be satis�ed as well.5. Restoration of a test imageIn this section we consider a test density (`trig image') �(r) with a sinusoidal spatial variation,already used in Part I, �(r) = 14 cos(2�nxx=dx) cos(2�nyy=dy); (5:1)where dx and dy are the spatial dimensions of the sample in the x- and y-directions. Signaldata Fijk were generated by numerically computing the integrals in Eq. (2.1) for a numberof equidistant 3D positions. The parameters were chosen as follows: dx = dy = 1:0; dz = 0:1,Nx = Ny = 128, Nz = 8, ! = 1:04719, nx = ny = 8. We computed the relative root meansquare error E(z) :=  PNxx=1PNyy=1f�(x; y; z)� ~�(x; y; z)g2PNxx=1PNyy=1f�(x; y; z)g2 ! 12 ; (5:2)between original density � and restored density ~� at each plane z = constant. Computationswere performed on a SPARC workstation (35 Mhz, 26 MIPS), taking about one minute periteration step (see Table 2 in Part I).�z signal error iter = 1 iter = 2 iter = 30:0000 0:000 0:000 0:000 0:0000:0625 0:116 0:004 0:004 0:0040:1250 0:218 0:006 0:016 0:0160:1875 0:305 0:025 0:041 0:0450:2500 0:382 0:065 0:065 0:0900:3125 0:450 0:127 0:075 0:1530:3750 0:509 0:200 0:056 0:2360:4375 0:560 0:278 0:026 0:330Table 1. Signal error and restoration errors by the moment estimator �(m) afterone, two and three iterations as a function of the e�ective depth �z.



9�z signal error iter = 1 iter = 2 iter = 30:0000 0:000 0:000 0:000 0:0000:0625 0:116 0:010 0:010 0:0100:1250 0:218 0:035 0:022 0:0220:1875 0:305 0:080 0:047 0:0460:2500 0:382 0:141 0:089 0:0840:3125 0:450 0:213 0:146 0:1360:3750 0:509 0:286 0:213 0:1980:4375 0:560 0:357 0:283 0:265Table 2. Signal error and restoration errors by the cumulant estimator �(c) afterone, two and three iterations as a function of the e�ective depth �z.

Figure 2. Restoration of the trig image.First row: the attenuated test images; second row: restorationby the cumulant estimator (iter = 2); third row: restorationby the moment estimator (iter = 2). In each row, the �rst,fourth and seventh layer is displayed from left to right. Theoriginal image in each layer is identical to the �rst image inrow 1.Results are shown in Table 1 for the moment estimator Eq. (3.9) and in Table 2 for thecumulant estimator Eq. (3.9). In the case of the moment estimator the errors �rst decreaseand then start to grow again after the third iteration. This is due to the fact that the initialestimate f(r) is smaller then the exact density �(r) (this is obvious from Eq. (2.1){(2.3)),



10

Figure 3. Restoration of the circle image.First row: the attenuated test images; second row: restorationby the cumulant estimator (iter = 2); third row: restorationby the moment estimator (iter = 2). In each row, the �rst,fourth and seventh layer is displayed from left to right. Theoriginal image in each layer is identical to the �rst image inrow 1.so that at �rst the iterates underestimate the true solution. Because of the monotonicityproperty the iterates always increase so that (if the solution �(m) is larger than the true�, which is apparently the case here) they will start to overestimate the true density. Thecumulant estimator �(c) underestimates the true density, and the values were stable withinan accuracy of three digits after the third iteration. For comparison we give in column 2 ofthe Tables the error before restoration, denoted by `signal error' and computed according to(5.2) with ~� replaced by f .Comparing the numbers in Table 4 of Part I, we conclude that both the moment estim-ator with iter = 1; 2 and cumulant estimator with iter � 2 are more accurate than the layermethod of [6] which gives a restoration error of 0.301 at the deepest layer. From the Tablesit is clear that the moment estimator, when run to convergence, overestimates the exactimage densities. The �rst iterate, however, underestimates the exact values. Therefore, incase of the moment estimator, we take the reconstruction corresponding to the intermediatevalue iter = 2, which gives the best results.In Figure 2 we show the corresponding restored images. We rescale the restored valuesof the densities to make sure that they occupy the complete grey-scale, which consists ofthe set of integer values from 0 to 255. In order to avoid that a few outliers cause a large



11visual degradation of the resulting images, we constrained the approximate solutions ~� tolie between the known lower and upper bounds, i.e. 0 � ~� � 1. In each row, the �rst, fourthand seventh layer is displayed from left to right, out of a total of 8 depth layers. Sincethe exact density �(r) does not depend on z, the original image in each layer is identicalto the �rst image in row 1. The �rst row contains the attenuated test images f(r), thesecond row the restoration by the cumulant estimator and the third row the restorationby the moment estimator, both after two iterations. The images which are restored bythe cumulant estimator are virtually identical to those of the layer method of Visser etal. [6], cf. Figure 4 of Part I. Clearly the largest improvement in restoration quality hasbeen obtained by using the moment estimator. The reconstruction is not perfect, however:the central regions in the centers of the light circular regions are slightly overestimated.The calculations made here for the trig image have been repeated for the `circle image'used in Part I, leading to similar conclusions: the reconstruction errors are smallest whenusing the moment estimator with iter = 2, but the reconstructed images still show somedi�erences when compared to the original images, see Figure 3. Nevertheless, a considerableimprovement in restoration accuracy has been obtained by using the estimators developedhere, which in addition are e�ciently computable by using FFT methods.6. SummaryIn this paper we describe a re�nement of the method developed in Part I for attenuationcorrection in Fluorescence Confocal Microscopy using Fast Fourier Transformmethods. Ourapproach, valid for weak attenuation, consists in multiplying the measured 
uorescent in-tensity by a correction factor involving a convolution integral of the measured signal, whichcan be computed e�ciently by an FFT-based algorithm. By a statistical reformulation ofthe problem we derive �rst order moment and cumulant estimators leading to a nonlinear in-tegral equation for the unknown 
uorescent density, which is solved by an iterative method.The algorithm is as follows:� Read the measured data Fijk; i = 1; ::; Nx; j = 1; ::; Ny; k = 1; ::; Nz.� Iteratively computeR(n)ijk = Fijk G�(K �R(n�1))ijk� ; n = 2; 3; :::where R(1)ijk = Fijk, and G(x) = (1 � �x)�1 or G(x) = exp(�x) for the moment andcumulant estimator, respectively.In each iteration the convolution of the previous estimate is computed by means of the FFT(using the same kernel K of Eq. (2.11)). The �rst iterate of the new estimators coincideswith the approximation used in Part I for very weak attenuation. It turns out that themoment estimator with two iterations gives the best results, which are more accurate thanthe layer method of [6]. Since only two iterations are needed, the advantage in computationale�ciency over the layer method is retained. We conclude therefore that the combined resultsof Part I and this paper provide an e�cient and accurate method for attenuation correctionin confocal microscopy.References1. Brakenho� G.J., P. Blom and P. Barends (1979). Confocal scanning light microscopywith high aperture immersion lenses. J. of Microscopy 117, pp. 219-232.2. Lukacs E. (1960). Characteristic Functions. Gri�n, London.
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